xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision e1f7c9ee)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 #include <linux/perf_event.h>
33 #include <linux/ratelimit.h>
34 #include <linux/context_tracking.h>
35 #include <linux/hugetlb.h>
36 
37 #include <asm/firmware.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/mmu_context.h>
42 #include <asm/uaccess.h>
43 #include <asm/tlbflush.h>
44 #include <asm/siginfo.h>
45 #include <asm/debug.h>
46 #include <mm/mmu_decl.h>
47 
48 #include "icswx.h"
49 
50 #ifdef CONFIG_KPROBES
51 static inline int notify_page_fault(struct pt_regs *regs)
52 {
53 	int ret = 0;
54 
55 	/* kprobe_running() needs smp_processor_id() */
56 	if (!user_mode(regs)) {
57 		preempt_disable();
58 		if (kprobe_running() && kprobe_fault_handler(regs, 11))
59 			ret = 1;
60 		preempt_enable();
61 	}
62 
63 	return ret;
64 }
65 #else
66 static inline int notify_page_fault(struct pt_regs *regs)
67 {
68 	return 0;
69 }
70 #endif
71 
72 /*
73  * Check whether the instruction at regs->nip is a store using
74  * an update addressing form which will update r1.
75  */
76 static int store_updates_sp(struct pt_regs *regs)
77 {
78 	unsigned int inst;
79 
80 	if (get_user(inst, (unsigned int __user *)regs->nip))
81 		return 0;
82 	/* check for 1 in the rA field */
83 	if (((inst >> 16) & 0x1f) != 1)
84 		return 0;
85 	/* check major opcode */
86 	switch (inst >> 26) {
87 	case 37:	/* stwu */
88 	case 39:	/* stbu */
89 	case 45:	/* sthu */
90 	case 53:	/* stfsu */
91 	case 55:	/* stfdu */
92 		return 1;
93 	case 62:	/* std or stdu */
94 		return (inst & 3) == 1;
95 	case 31:
96 		/* check minor opcode */
97 		switch ((inst >> 1) & 0x3ff) {
98 		case 181:	/* stdux */
99 		case 183:	/* stwux */
100 		case 247:	/* stbux */
101 		case 439:	/* sthux */
102 		case 695:	/* stfsux */
103 		case 759:	/* stfdux */
104 			return 1;
105 		}
106 	}
107 	return 0;
108 }
109 /*
110  * do_page_fault error handling helpers
111  */
112 
113 #define MM_FAULT_RETURN		0
114 #define MM_FAULT_CONTINUE	-1
115 #define MM_FAULT_ERR(sig)	(sig)
116 
117 static int do_sigbus(struct pt_regs *regs, unsigned long address,
118 		     unsigned int fault)
119 {
120 	siginfo_t info;
121 	unsigned int lsb = 0;
122 
123 	up_read(&current->mm->mmap_sem);
124 
125 	if (!user_mode(regs))
126 		return MM_FAULT_ERR(SIGBUS);
127 
128 	current->thread.trap_nr = BUS_ADRERR;
129 	info.si_signo = SIGBUS;
130 	info.si_errno = 0;
131 	info.si_code = BUS_ADRERR;
132 	info.si_addr = (void __user *)address;
133 #ifdef CONFIG_MEMORY_FAILURE
134 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
135 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
136 			current->comm, current->pid, address);
137 		info.si_code = BUS_MCEERR_AR;
138 	}
139 
140 	if (fault & VM_FAULT_HWPOISON_LARGE)
141 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
142 	if (fault & VM_FAULT_HWPOISON)
143 		lsb = PAGE_SHIFT;
144 #endif
145 	info.si_addr_lsb = lsb;
146 	force_sig_info(SIGBUS, &info, current);
147 	return MM_FAULT_RETURN;
148 }
149 
150 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
151 {
152 	/*
153 	 * Pagefault was interrupted by SIGKILL. We have no reason to
154 	 * continue the pagefault.
155 	 */
156 	if (fatal_signal_pending(current)) {
157 		/*
158 		 * If we have retry set, the mmap semaphore will have
159 		 * alrady been released in __lock_page_or_retry(). Else
160 		 * we release it now.
161 		 */
162 		if (!(fault & VM_FAULT_RETRY))
163 			up_read(&current->mm->mmap_sem);
164 		/* Coming from kernel, we need to deal with uaccess fixups */
165 		if (user_mode(regs))
166 			return MM_FAULT_RETURN;
167 		return MM_FAULT_ERR(SIGKILL);
168 	}
169 
170 	/* No fault: be happy */
171 	if (!(fault & VM_FAULT_ERROR))
172 		return MM_FAULT_CONTINUE;
173 
174 	/* Out of memory */
175 	if (fault & VM_FAULT_OOM) {
176 		up_read(&current->mm->mmap_sem);
177 
178 		/*
179 		 * We ran out of memory, or some other thing happened to us that
180 		 * made us unable to handle the page fault gracefully.
181 		 */
182 		if (!user_mode(regs))
183 			return MM_FAULT_ERR(SIGKILL);
184 		pagefault_out_of_memory();
185 		return MM_FAULT_RETURN;
186 	}
187 
188 	if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE))
189 		return do_sigbus(regs, addr, fault);
190 
191 	/* We don't understand the fault code, this is fatal */
192 	BUG();
193 	return MM_FAULT_CONTINUE;
194 }
195 
196 /*
197  * For 600- and 800-family processors, the error_code parameter is DSISR
198  * for a data fault, SRR1 for an instruction fault. For 400-family processors
199  * the error_code parameter is ESR for a data fault, 0 for an instruction
200  * fault.
201  * For 64-bit processors, the error_code parameter is
202  *  - DSISR for a non-SLB data access fault,
203  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
204  *  - 0 any SLB fault.
205  *
206  * The return value is 0 if the fault was handled, or the signal
207  * number if this is a kernel fault that can't be handled here.
208  */
209 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
210 			    unsigned long error_code)
211 {
212 	enum ctx_state prev_state = exception_enter();
213 	struct vm_area_struct * vma;
214 	struct mm_struct *mm = current->mm;
215 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
216 	int code = SEGV_MAPERR;
217 	int is_write = 0;
218 	int trap = TRAP(regs);
219  	int is_exec = trap == 0x400;
220 	int fault;
221 	int rc = 0, store_update_sp = 0;
222 
223 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
224 	/*
225 	 * Fortunately the bit assignments in SRR1 for an instruction
226 	 * fault and DSISR for a data fault are mostly the same for the
227 	 * bits we are interested in.  But there are some bits which
228 	 * indicate errors in DSISR but can validly be set in SRR1.
229 	 */
230 	if (trap == 0x400)
231 		error_code &= 0x48200000;
232 	else
233 		is_write = error_code & DSISR_ISSTORE;
234 #else
235 	is_write = error_code & ESR_DST;
236 #endif /* CONFIG_4xx || CONFIG_BOOKE */
237 
238 #ifdef CONFIG_PPC_ICSWX
239 	/*
240 	 * we need to do this early because this "data storage
241 	 * interrupt" does not update the DAR/DEAR so we don't want to
242 	 * look at it
243 	 */
244 	if (error_code & ICSWX_DSI_UCT) {
245 		rc = acop_handle_fault(regs, address, error_code);
246 		if (rc)
247 			goto bail;
248 	}
249 #endif /* CONFIG_PPC_ICSWX */
250 
251 	if (notify_page_fault(regs))
252 		goto bail;
253 
254 	if (unlikely(debugger_fault_handler(regs)))
255 		goto bail;
256 
257 	/* On a kernel SLB miss we can only check for a valid exception entry */
258 	if (!user_mode(regs) && (address >= TASK_SIZE)) {
259 		rc = SIGSEGV;
260 		goto bail;
261 	}
262 
263 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
264 			     defined(CONFIG_PPC_BOOK3S_64))
265   	if (error_code & DSISR_DABRMATCH) {
266 		/* breakpoint match */
267 		do_break(regs, address, error_code);
268 		goto bail;
269 	}
270 #endif
271 
272 	/* We restore the interrupt state now */
273 	if (!arch_irq_disabled_regs(regs))
274 		local_irq_enable();
275 
276 	if (in_atomic() || mm == NULL) {
277 		if (!user_mode(regs)) {
278 			rc = SIGSEGV;
279 			goto bail;
280 		}
281 		/* in_atomic() in user mode is really bad,
282 		   as is current->mm == NULL. */
283 		printk(KERN_EMERG "Page fault in user mode with "
284 		       "in_atomic() = %d mm = %p\n", in_atomic(), mm);
285 		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
286 		       regs->nip, regs->msr);
287 		die("Weird page fault", regs, SIGSEGV);
288 	}
289 
290 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
291 
292 	/*
293 	 * We want to do this outside mmap_sem, because reading code around nip
294 	 * can result in fault, which will cause a deadlock when called with
295 	 * mmap_sem held
296 	 */
297 	if (user_mode(regs))
298 		store_update_sp = store_updates_sp(regs);
299 
300 	if (user_mode(regs))
301 		flags |= FAULT_FLAG_USER;
302 
303 	/* When running in the kernel we expect faults to occur only to
304 	 * addresses in user space.  All other faults represent errors in the
305 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
306 	 * erroneous fault occurring in a code path which already holds mmap_sem
307 	 * we will deadlock attempting to validate the fault against the
308 	 * address space.  Luckily the kernel only validly references user
309 	 * space from well defined areas of code, which are listed in the
310 	 * exceptions table.
311 	 *
312 	 * As the vast majority of faults will be valid we will only perform
313 	 * the source reference check when there is a possibility of a deadlock.
314 	 * Attempt to lock the address space, if we cannot we then validate the
315 	 * source.  If this is invalid we can skip the address space check,
316 	 * thus avoiding the deadlock.
317 	 */
318 	if (!down_read_trylock(&mm->mmap_sem)) {
319 		if (!user_mode(regs) && !search_exception_tables(regs->nip))
320 			goto bad_area_nosemaphore;
321 
322 retry:
323 		down_read(&mm->mmap_sem);
324 	} else {
325 		/*
326 		 * The above down_read_trylock() might have succeeded in
327 		 * which case we'll have missed the might_sleep() from
328 		 * down_read():
329 		 */
330 		might_sleep();
331 	}
332 
333 	vma = find_vma(mm, address);
334 	if (!vma)
335 		goto bad_area;
336 	if (vma->vm_start <= address)
337 		goto good_area;
338 	if (!(vma->vm_flags & VM_GROWSDOWN))
339 		goto bad_area;
340 
341 	/*
342 	 * N.B. The POWER/Open ABI allows programs to access up to
343 	 * 288 bytes below the stack pointer.
344 	 * The kernel signal delivery code writes up to about 1.5kB
345 	 * below the stack pointer (r1) before decrementing it.
346 	 * The exec code can write slightly over 640kB to the stack
347 	 * before setting the user r1.  Thus we allow the stack to
348 	 * expand to 1MB without further checks.
349 	 */
350 	if (address + 0x100000 < vma->vm_end) {
351 		/* get user regs even if this fault is in kernel mode */
352 		struct pt_regs *uregs = current->thread.regs;
353 		if (uregs == NULL)
354 			goto bad_area;
355 
356 		/*
357 		 * A user-mode access to an address a long way below
358 		 * the stack pointer is only valid if the instruction
359 		 * is one which would update the stack pointer to the
360 		 * address accessed if the instruction completed,
361 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
362 		 * (or the byte, halfword, float or double forms).
363 		 *
364 		 * If we don't check this then any write to the area
365 		 * between the last mapped region and the stack will
366 		 * expand the stack rather than segfaulting.
367 		 */
368 		if (address + 2048 < uregs->gpr[1] && !store_update_sp)
369 			goto bad_area;
370 	}
371 	if (expand_stack(vma, address))
372 		goto bad_area;
373 
374 good_area:
375 	code = SEGV_ACCERR;
376 #if defined(CONFIG_6xx)
377 	if (error_code & 0x95700000)
378 		/* an error such as lwarx to I/O controller space,
379 		   address matching DABR, eciwx, etc. */
380 		goto bad_area;
381 #endif /* CONFIG_6xx */
382 #if defined(CONFIG_8xx)
383 	/* 8xx sometimes need to load a invalid/non-present TLBs.
384 	 * These must be invalidated separately as linux mm don't.
385 	 */
386 	if (error_code & 0x40000000) /* no translation? */
387 		_tlbil_va(address, 0, 0, 0);
388 
389         /* The MPC8xx seems to always set 0x80000000, which is
390          * "undefined".  Of those that can be set, this is the only
391          * one which seems bad.
392          */
393 	if (error_code & 0x10000000)
394                 /* Guarded storage error. */
395 		goto bad_area;
396 #endif /* CONFIG_8xx */
397 
398 	if (is_exec) {
399 #ifdef CONFIG_PPC_STD_MMU
400 		/* Protection fault on exec go straight to failure on
401 		 * Hash based MMUs as they either don't support per-page
402 		 * execute permission, or if they do, it's handled already
403 		 * at the hash level. This test would probably have to
404 		 * be removed if we change the way this works to make hash
405 		 * processors use the same I/D cache coherency mechanism
406 		 * as embedded.
407 		 */
408 		if (error_code & DSISR_PROTFAULT)
409 			goto bad_area;
410 #endif /* CONFIG_PPC_STD_MMU */
411 
412 		/*
413 		 * Allow execution from readable areas if the MMU does not
414 		 * provide separate controls over reading and executing.
415 		 *
416 		 * Note: That code used to not be enabled for 4xx/BookE.
417 		 * It is now as I/D cache coherency for these is done at
418 		 * set_pte_at() time and I see no reason why the test
419 		 * below wouldn't be valid on those processors. This -may-
420 		 * break programs compiled with a really old ABI though.
421 		 */
422 		if (!(vma->vm_flags & VM_EXEC) &&
423 		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
424 		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
425 			goto bad_area;
426 	/* a write */
427 	} else if (is_write) {
428 		if (!(vma->vm_flags & VM_WRITE))
429 			goto bad_area;
430 		flags |= FAULT_FLAG_WRITE;
431 	/* a read */
432 	} else {
433 		/* protection fault */
434 		if (error_code & 0x08000000)
435 			goto bad_area;
436 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
437 			goto bad_area;
438 	}
439 
440 	/*
441 	 * If for any reason at all we couldn't handle the fault,
442 	 * make sure we exit gracefully rather than endlessly redo
443 	 * the fault.
444 	 */
445 	fault = handle_mm_fault(mm, vma, address, flags);
446 	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
447 		rc = mm_fault_error(regs, address, fault);
448 		if (rc >= MM_FAULT_RETURN)
449 			goto bail;
450 		else
451 			rc = 0;
452 	}
453 
454 	/*
455 	 * Major/minor page fault accounting is only done on the
456 	 * initial attempt. If we go through a retry, it is extremely
457 	 * likely that the page will be found in page cache at that point.
458 	 */
459 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
460 		if (fault & VM_FAULT_MAJOR) {
461 			current->maj_flt++;
462 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
463 				      regs, address);
464 #ifdef CONFIG_PPC_SMLPAR
465 			if (firmware_has_feature(FW_FEATURE_CMO)) {
466 				u32 page_ins;
467 
468 				preempt_disable();
469 				page_ins = be32_to_cpu(get_lppaca()->page_ins);
470 				page_ins += 1 << PAGE_FACTOR;
471 				get_lppaca()->page_ins = cpu_to_be32(page_ins);
472 				preempt_enable();
473 			}
474 #endif /* CONFIG_PPC_SMLPAR */
475 		} else {
476 			current->min_flt++;
477 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
478 				      regs, address);
479 		}
480 		if (fault & VM_FAULT_RETRY) {
481 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
482 			 * of starvation. */
483 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
484 			flags |= FAULT_FLAG_TRIED;
485 			goto retry;
486 		}
487 	}
488 
489 	up_read(&mm->mmap_sem);
490 	goto bail;
491 
492 bad_area:
493 	up_read(&mm->mmap_sem);
494 
495 bad_area_nosemaphore:
496 	/* User mode accesses cause a SIGSEGV */
497 	if (user_mode(regs)) {
498 		_exception(SIGSEGV, regs, code, address);
499 		goto bail;
500 	}
501 
502 	if (is_exec && (error_code & DSISR_PROTFAULT))
503 		printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
504 				   " page (%lx) - exploit attempt? (uid: %d)\n",
505 				   address, from_kuid(&init_user_ns, current_uid()));
506 
507 	rc = SIGSEGV;
508 
509 bail:
510 	exception_exit(prev_state);
511 	return rc;
512 
513 }
514 
515 /*
516  * bad_page_fault is called when we have a bad access from the kernel.
517  * It is called from the DSI and ISI handlers in head.S and from some
518  * of the procedures in traps.c.
519  */
520 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
521 {
522 	const struct exception_table_entry *entry;
523 
524 	/* Are we prepared to handle this fault?  */
525 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
526 		regs->nip = entry->fixup;
527 		return;
528 	}
529 
530 	/* kernel has accessed a bad area */
531 
532 	switch (regs->trap) {
533 	case 0x300:
534 	case 0x380:
535 		printk(KERN_ALERT "Unable to handle kernel paging request for "
536 			"data at address 0x%08lx\n", regs->dar);
537 		break;
538 	case 0x400:
539 	case 0x480:
540 		printk(KERN_ALERT "Unable to handle kernel paging request for "
541 			"instruction fetch\n");
542 		break;
543 	default:
544 		printk(KERN_ALERT "Unable to handle kernel paging request for "
545 			"unknown fault\n");
546 		break;
547 	}
548 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
549 		regs->nip);
550 
551 	if (task_stack_end_corrupted(current))
552 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
553 
554 	die("Kernel access of bad area", regs, sig);
555 }
556