1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerPC version 4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 5 * 6 * Derived from "arch/i386/mm/fault.c" 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * 9 * Modified by Cort Dougan and Paul Mackerras. 10 * 11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) 12 */ 13 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/errno.h> 19 #include <linux/string.h> 20 #include <linux/types.h> 21 #include <linux/pagemap.h> 22 #include <linux/ptrace.h> 23 #include <linux/mman.h> 24 #include <linux/mm.h> 25 #include <linux/interrupt.h> 26 #include <linux/highmem.h> 27 #include <linux/extable.h> 28 #include <linux/kprobes.h> 29 #include <linux/kdebug.h> 30 #include <linux/perf_event.h> 31 #include <linux/ratelimit.h> 32 #include <linux/context_tracking.h> 33 #include <linux/hugetlb.h> 34 #include <linux/uaccess.h> 35 36 #include <asm/firmware.h> 37 #include <asm/interrupt.h> 38 #include <asm/page.h> 39 #include <asm/mmu.h> 40 #include <asm/mmu_context.h> 41 #include <asm/siginfo.h> 42 #include <asm/debug.h> 43 #include <asm/kup.h> 44 #include <asm/inst.h> 45 46 47 /* 48 * do_page_fault error handling helpers 49 */ 50 51 static int 52 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code) 53 { 54 /* 55 * If we are in kernel mode, bail out with a SEGV, this will 56 * be caught by the assembly which will restore the non-volatile 57 * registers before calling bad_page_fault() 58 */ 59 if (!user_mode(regs)) 60 return SIGSEGV; 61 62 _exception(SIGSEGV, regs, si_code, address); 63 64 return 0; 65 } 66 67 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address) 68 { 69 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR); 70 } 71 72 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code) 73 { 74 struct mm_struct *mm = current->mm; 75 76 /* 77 * Something tried to access memory that isn't in our memory map.. 78 * Fix it, but check if it's kernel or user first.. 79 */ 80 mmap_read_unlock(mm); 81 82 return __bad_area_nosemaphore(regs, address, si_code); 83 } 84 85 static noinline int bad_area(struct pt_regs *regs, unsigned long address) 86 { 87 return __bad_area(regs, address, SEGV_MAPERR); 88 } 89 90 #ifdef CONFIG_PPC_MEM_KEYS 91 static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address, 92 struct vm_area_struct *vma) 93 { 94 struct mm_struct *mm = current->mm; 95 int pkey; 96 97 /* 98 * We don't try to fetch the pkey from page table because reading 99 * page table without locking doesn't guarantee stable pte value. 100 * Hence the pkey value that we return to userspace can be different 101 * from the pkey that actually caused access error. 102 * 103 * It does *not* guarantee that the VMA we find here 104 * was the one that we faulted on. 105 * 106 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 107 * 2. T1 : set AMR to deny access to pkey=4, touches, page 108 * 3. T1 : faults... 109 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 110 * 5. T1 : enters fault handler, takes mmap_lock, etc... 111 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 112 * faulted on a pte with its pkey=4. 113 */ 114 pkey = vma_pkey(vma); 115 116 mmap_read_unlock(mm); 117 118 /* 119 * If we are in kernel mode, bail out with a SEGV, this will 120 * be caught by the assembly which will restore the non-volatile 121 * registers before calling bad_page_fault() 122 */ 123 if (!user_mode(regs)) 124 return SIGSEGV; 125 126 _exception_pkey(regs, address, pkey); 127 128 return 0; 129 } 130 #endif 131 132 static noinline int bad_access(struct pt_regs *regs, unsigned long address) 133 { 134 return __bad_area(regs, address, SEGV_ACCERR); 135 } 136 137 static int do_sigbus(struct pt_regs *regs, unsigned long address, 138 vm_fault_t fault) 139 { 140 if (!user_mode(regs)) 141 return SIGBUS; 142 143 current->thread.trap_nr = BUS_ADRERR; 144 #ifdef CONFIG_MEMORY_FAILURE 145 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 146 unsigned int lsb = 0; /* shutup gcc */ 147 148 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 149 current->comm, current->pid, address); 150 151 if (fault & VM_FAULT_HWPOISON_LARGE) 152 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 153 if (fault & VM_FAULT_HWPOISON) 154 lsb = PAGE_SHIFT; 155 156 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); 157 return 0; 158 } 159 160 #endif 161 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); 162 return 0; 163 } 164 165 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, 166 vm_fault_t fault) 167 { 168 /* 169 * Kernel page fault interrupted by SIGKILL. We have no reason to 170 * continue processing. 171 */ 172 if (fatal_signal_pending(current) && !user_mode(regs)) 173 return SIGKILL; 174 175 /* Out of memory */ 176 if (fault & VM_FAULT_OOM) { 177 /* 178 * We ran out of memory, or some other thing happened to us that 179 * made us unable to handle the page fault gracefully. 180 */ 181 if (!user_mode(regs)) 182 return SIGSEGV; 183 pagefault_out_of_memory(); 184 } else { 185 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 186 VM_FAULT_HWPOISON_LARGE)) 187 return do_sigbus(regs, addr, fault); 188 else if (fault & VM_FAULT_SIGSEGV) 189 return bad_area_nosemaphore(regs, addr); 190 else 191 BUG(); 192 } 193 return 0; 194 } 195 196 /* Is this a bad kernel fault ? */ 197 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code, 198 unsigned long address, bool is_write) 199 { 200 int is_exec = TRAP(regs) == 0x400; 201 202 /* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */ 203 if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT | 204 DSISR_PROTFAULT))) { 205 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n", 206 address >= TASK_SIZE ? "exec-protected" : "user", 207 address, 208 from_kuid(&init_user_ns, current_uid())); 209 210 // Kernel exec fault is always bad 211 return true; 212 } 213 214 // Kernel fault on kernel address is bad 215 if (address >= TASK_SIZE) 216 return true; 217 218 // Read/write fault blocked by KUAP is bad, it can never succeed. 219 if (bad_kuap_fault(regs, address, is_write)) { 220 pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n", 221 is_write ? "write" : "read", address, 222 from_kuid(&init_user_ns, current_uid())); 223 224 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad 225 if (!search_exception_tables(regs->nip)) 226 return true; 227 228 // Read/write fault in a valid region (the exception table search passed 229 // above), but blocked by KUAP is bad, it can never succeed. 230 return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read"); 231 } 232 233 // What's left? Kernel fault on user and allowed by KUAP in the faulting context. 234 return false; 235 } 236 237 #ifdef CONFIG_PPC_MEM_KEYS 238 static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey, 239 struct vm_area_struct *vma) 240 { 241 /* 242 * Make sure to check the VMA so that we do not perform 243 * faults just to hit a pkey fault as soon as we fill in a 244 * page. Only called for current mm, hence foreign == 0 245 */ 246 if (!arch_vma_access_permitted(vma, is_write, is_exec, 0)) 247 return true; 248 249 return false; 250 } 251 #endif 252 253 static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma) 254 { 255 /* 256 * Allow execution from readable areas if the MMU does not 257 * provide separate controls over reading and executing. 258 * 259 * Note: That code used to not be enabled for 4xx/BookE. 260 * It is now as I/D cache coherency for these is done at 261 * set_pte_at() time and I see no reason why the test 262 * below wouldn't be valid on those processors. This -may- 263 * break programs compiled with a really old ABI though. 264 */ 265 if (is_exec) { 266 return !(vma->vm_flags & VM_EXEC) && 267 (cpu_has_feature(CPU_FTR_NOEXECUTE) || 268 !(vma->vm_flags & (VM_READ | VM_WRITE))); 269 } 270 271 if (is_write) { 272 if (unlikely(!(vma->vm_flags & VM_WRITE))) 273 return true; 274 return false; 275 } 276 277 if (unlikely(!vma_is_accessible(vma))) 278 return true; 279 /* 280 * We should ideally do the vma pkey access check here. But in the 281 * fault path, handle_mm_fault() also does the same check. To avoid 282 * these multiple checks, we skip it here and handle access error due 283 * to pkeys later. 284 */ 285 return false; 286 } 287 288 #ifdef CONFIG_PPC_SMLPAR 289 static inline void cmo_account_page_fault(void) 290 { 291 if (firmware_has_feature(FW_FEATURE_CMO)) { 292 u32 page_ins; 293 294 preempt_disable(); 295 page_ins = be32_to_cpu(get_lppaca()->page_ins); 296 page_ins += 1 << PAGE_FACTOR; 297 get_lppaca()->page_ins = cpu_to_be32(page_ins); 298 preempt_enable(); 299 } 300 } 301 #else 302 static inline void cmo_account_page_fault(void) { } 303 #endif /* CONFIG_PPC_SMLPAR */ 304 305 static void sanity_check_fault(bool is_write, bool is_user, 306 unsigned long error_code, unsigned long address) 307 { 308 /* 309 * Userspace trying to access kernel address, we get PROTFAULT for that. 310 */ 311 if (is_user && address >= TASK_SIZE) { 312 if ((long)address == -1) 313 return; 314 315 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n", 316 current->comm, current->pid, address, 317 from_kuid(&init_user_ns, current_uid())); 318 return; 319 } 320 321 if (!IS_ENABLED(CONFIG_PPC_BOOK3S)) 322 return; 323 324 /* 325 * For hash translation mode, we should never get a 326 * PROTFAULT. Any update to pte to reduce access will result in us 327 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE 328 * fault instead of DSISR_PROTFAULT. 329 * 330 * A pte update to relax the access will not result in a hash page table 331 * entry invalidate and hence can result in DSISR_PROTFAULT. 332 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have 333 * the special !is_write in the below conditional. 334 * 335 * For platforms that doesn't supports coherent icache and do support 336 * per page noexec bit, we do setup things such that we do the 337 * sync between D/I cache via fault. But that is handled via low level 338 * hash fault code (hash_page_do_lazy_icache()) and we should not reach 339 * here in such case. 340 * 341 * For wrong access that can result in PROTFAULT, the above vma->vm_flags 342 * check should handle those and hence we should fall to the bad_area 343 * handling correctly. 344 * 345 * For embedded with per page exec support that doesn't support coherent 346 * icache we do get PROTFAULT and we handle that D/I cache sync in 347 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON 348 * is conditional for server MMU. 349 * 350 * For radix, we can get prot fault for autonuma case, because radix 351 * page table will have them marked noaccess for user. 352 */ 353 if (radix_enabled() || is_write) 354 return; 355 356 WARN_ON_ONCE(error_code & DSISR_PROTFAULT); 357 } 358 359 /* 360 * Define the correct "is_write" bit in error_code based 361 * on the processor family 362 */ 363 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) 364 #define page_fault_is_write(__err) ((__err) & ESR_DST) 365 #else 366 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE) 367 #endif 368 369 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 370 #define page_fault_is_bad(__err) (0) 371 #elif defined(CONFIG_PPC_8xx) 372 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G) 373 #elif defined(CONFIG_PPC64) 374 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S) 375 #else 376 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S) 377 #endif 378 379 /* 380 * For 600- and 800-family processors, the error_code parameter is DSISR 381 * for a data fault, SRR1 for an instruction fault. 382 * For 400-family processors the error_code parameter is ESR for a data fault, 383 * 0 for an instruction fault. 384 * For 64-bit processors, the error_code parameter is DSISR for a data access 385 * fault, SRR1 & 0x08000000 for an instruction access fault. 386 * 387 * The return value is 0 if the fault was handled, or the signal 388 * number if this is a kernel fault that can't be handled here. 389 */ 390 static int ___do_page_fault(struct pt_regs *regs, unsigned long address, 391 unsigned long error_code) 392 { 393 struct vm_area_struct * vma; 394 struct mm_struct *mm = current->mm; 395 unsigned int flags = FAULT_FLAG_DEFAULT; 396 int is_exec = TRAP(regs) == 0x400; 397 int is_user = user_mode(regs); 398 int is_write = page_fault_is_write(error_code); 399 vm_fault_t fault, major = 0; 400 bool kprobe_fault = kprobe_page_fault(regs, 11); 401 402 if (unlikely(debugger_fault_handler(regs) || kprobe_fault)) 403 return 0; 404 405 if (unlikely(page_fault_is_bad(error_code))) { 406 if (is_user) { 407 _exception(SIGBUS, regs, BUS_OBJERR, address); 408 return 0; 409 } 410 return SIGBUS; 411 } 412 413 /* Additional sanity check(s) */ 414 sanity_check_fault(is_write, is_user, error_code, address); 415 416 /* 417 * The kernel should never take an execute fault nor should it 418 * take a page fault to a kernel address or a page fault to a user 419 * address outside of dedicated places 420 */ 421 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) 422 return SIGSEGV; 423 424 /* 425 * If we're in an interrupt, have no user context or are running 426 * in a region with pagefaults disabled then we must not take the fault 427 */ 428 if (unlikely(faulthandler_disabled() || !mm)) { 429 if (is_user) 430 printk_ratelimited(KERN_ERR "Page fault in user mode" 431 " with faulthandler_disabled()=%d" 432 " mm=%p\n", 433 faulthandler_disabled(), mm); 434 return bad_area_nosemaphore(regs, address); 435 } 436 437 interrupt_cond_local_irq_enable(regs); 438 439 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 440 441 /* 442 * We want to do this outside mmap_lock, because reading code around nip 443 * can result in fault, which will cause a deadlock when called with 444 * mmap_lock held 445 */ 446 if (is_user) 447 flags |= FAULT_FLAG_USER; 448 if (is_write) 449 flags |= FAULT_FLAG_WRITE; 450 if (is_exec) 451 flags |= FAULT_FLAG_INSTRUCTION; 452 453 /* When running in the kernel we expect faults to occur only to 454 * addresses in user space. All other faults represent errors in the 455 * kernel and should generate an OOPS. Unfortunately, in the case of an 456 * erroneous fault occurring in a code path which already holds mmap_lock 457 * we will deadlock attempting to validate the fault against the 458 * address space. Luckily the kernel only validly references user 459 * space from well defined areas of code, which are listed in the 460 * exceptions table. 461 * 462 * As the vast majority of faults will be valid we will only perform 463 * the source reference check when there is a possibility of a deadlock. 464 * Attempt to lock the address space, if we cannot we then validate the 465 * source. If this is invalid we can skip the address space check, 466 * thus avoiding the deadlock. 467 */ 468 if (unlikely(!mmap_read_trylock(mm))) { 469 if (!is_user && !search_exception_tables(regs->nip)) 470 return bad_area_nosemaphore(regs, address); 471 472 retry: 473 mmap_read_lock(mm); 474 } else { 475 /* 476 * The above down_read_trylock() might have succeeded in 477 * which case we'll have missed the might_sleep() from 478 * down_read(): 479 */ 480 might_sleep(); 481 } 482 483 vma = find_vma(mm, address); 484 if (unlikely(!vma)) 485 return bad_area(regs, address); 486 487 if (unlikely(vma->vm_start > address)) { 488 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) 489 return bad_area(regs, address); 490 491 if (unlikely(expand_stack(vma, address))) 492 return bad_area(regs, address); 493 } 494 495 #ifdef CONFIG_PPC_MEM_KEYS 496 if (unlikely(access_pkey_error(is_write, is_exec, 497 (error_code & DSISR_KEYFAULT), vma))) 498 return bad_access_pkey(regs, address, vma); 499 #endif /* CONFIG_PPC_MEM_KEYS */ 500 501 if (unlikely(access_error(is_write, is_exec, vma))) 502 return bad_access(regs, address); 503 504 /* 505 * If for any reason at all we couldn't handle the fault, 506 * make sure we exit gracefully rather than endlessly redo 507 * the fault. 508 */ 509 fault = handle_mm_fault(vma, address, flags, regs); 510 511 major |= fault & VM_FAULT_MAJOR; 512 513 if (fault_signal_pending(fault, regs)) 514 return user_mode(regs) ? 0 : SIGBUS; 515 516 /* 517 * Handle the retry right now, the mmap_lock has been released in that 518 * case. 519 */ 520 if (unlikely(fault & VM_FAULT_RETRY)) { 521 if (flags & FAULT_FLAG_ALLOW_RETRY) { 522 flags |= FAULT_FLAG_TRIED; 523 goto retry; 524 } 525 } 526 527 mmap_read_unlock(current->mm); 528 529 if (unlikely(fault & VM_FAULT_ERROR)) 530 return mm_fault_error(regs, address, fault); 531 532 /* 533 * Major/minor page fault accounting. 534 */ 535 if (major) 536 cmo_account_page_fault(); 537 538 return 0; 539 } 540 NOKPROBE_SYMBOL(___do_page_fault); 541 542 static long __do_page_fault(struct pt_regs *regs) 543 { 544 const struct exception_table_entry *entry; 545 long err; 546 547 err = ___do_page_fault(regs, regs->dar, regs->dsisr); 548 if (likely(!err)) 549 return err; 550 551 entry = search_exception_tables(regs->nip); 552 if (likely(entry)) { 553 instruction_pointer_set(regs, extable_fixup(entry)); 554 return 0; 555 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64)) { 556 __bad_page_fault(regs, err); 557 return 0; 558 } else { 559 /* 32 and 64e handle the bad page fault in asm */ 560 return err; 561 } 562 } 563 NOKPROBE_SYMBOL(__do_page_fault); 564 565 DEFINE_INTERRUPT_HANDLER_RET(do_page_fault) 566 { 567 return __do_page_fault(regs); 568 } 569 570 #ifdef CONFIG_PPC_BOOK3S_64 571 /* Same as do_page_fault but interrupt entry has already run in do_hash_fault */ 572 long hash__do_page_fault(struct pt_regs *regs) 573 { 574 return __do_page_fault(regs); 575 } 576 NOKPROBE_SYMBOL(hash__do_page_fault); 577 #endif 578 579 /* 580 * bad_page_fault is called when we have a bad access from the kernel. 581 * It is called from the DSI and ISI handlers in head.S and from some 582 * of the procedures in traps.c. 583 */ 584 void __bad_page_fault(struct pt_regs *regs, int sig) 585 { 586 int is_write = page_fault_is_write(regs->dsisr); 587 588 /* kernel has accessed a bad area */ 589 590 switch (TRAP(regs)) { 591 case 0x300: 592 case 0x380: 593 case 0xe00: 594 pr_alert("BUG: %s on %s at 0x%08lx\n", 595 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" : 596 "Unable to handle kernel data access", 597 is_write ? "write" : "read", regs->dar); 598 break; 599 case 0x400: 600 case 0x480: 601 pr_alert("BUG: Unable to handle kernel instruction fetch%s", 602 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n"); 603 break; 604 case 0x600: 605 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n", 606 regs->dar); 607 break; 608 default: 609 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n", 610 regs->dar); 611 break; 612 } 613 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", 614 regs->nip); 615 616 if (task_stack_end_corrupted(current)) 617 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 618 619 die("Kernel access of bad area", regs, sig); 620 } 621 622 void bad_page_fault(struct pt_regs *regs, int sig) 623 { 624 const struct exception_table_entry *entry; 625 626 /* Are we prepared to handle this fault? */ 627 entry = search_exception_tables(instruction_pointer(regs)); 628 if (entry) 629 instruction_pointer_set(regs, extable_fixup(entry)); 630 else 631 __bad_page_fault(regs, sig); 632 } 633 634 #ifdef CONFIG_PPC_BOOK3S_64 635 DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv) 636 { 637 bad_page_fault(regs, SIGSEGV); 638 } 639 #endif 640