xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision dbdc671d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Derived from "arch/i386/mm/fault.c"
7  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *
9  *  Modified by Cort Dougan and Paul Mackerras.
10  *
11  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12  */
13 
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/pagemap.h>
22 #include <linux/ptrace.h>
23 #include <linux/mman.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/highmem.h>
27 #include <linux/extable.h>
28 #include <linux/kprobes.h>
29 #include <linux/kdebug.h>
30 #include <linux/perf_event.h>
31 #include <linux/ratelimit.h>
32 #include <linux/context_tracking.h>
33 #include <linux/hugetlb.h>
34 #include <linux/uaccess.h>
35 
36 #include <asm/firmware.h>
37 #include <asm/interrupt.h>
38 #include <asm/page.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/siginfo.h>
42 #include <asm/debug.h>
43 #include <asm/kup.h>
44 #include <asm/inst.h>
45 
46 
47 /*
48  * do_page_fault error handling helpers
49  */
50 
51 static int
52 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
53 {
54 	/*
55 	 * If we are in kernel mode, bail out with a SEGV, this will
56 	 * be caught by the assembly which will restore the non-volatile
57 	 * registers before calling bad_page_fault()
58 	 */
59 	if (!user_mode(regs))
60 		return SIGSEGV;
61 
62 	_exception(SIGSEGV, regs, si_code, address);
63 
64 	return 0;
65 }
66 
67 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
68 {
69 	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
70 }
71 
72 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
73 {
74 	struct mm_struct *mm = current->mm;
75 
76 	/*
77 	 * Something tried to access memory that isn't in our memory map..
78 	 * Fix it, but check if it's kernel or user first..
79 	 */
80 	mmap_read_unlock(mm);
81 
82 	return __bad_area_nosemaphore(regs, address, si_code);
83 }
84 
85 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
86 {
87 	return __bad_area(regs, address, SEGV_MAPERR);
88 }
89 
90 #ifdef CONFIG_PPC_MEM_KEYS
91 static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
92 				    struct vm_area_struct *vma)
93 {
94 	struct mm_struct *mm = current->mm;
95 	int pkey;
96 
97 	/*
98 	 * We don't try to fetch the pkey from page table because reading
99 	 * page table without locking doesn't guarantee stable pte value.
100 	 * Hence the pkey value that we return to userspace can be different
101 	 * from the pkey that actually caused access error.
102 	 *
103 	 * It does *not* guarantee that the VMA we find here
104 	 * was the one that we faulted on.
105 	 *
106 	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
107 	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
108 	 * 3. T1   : faults...
109 	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
110 	 * 5. T1   : enters fault handler, takes mmap_lock, etc...
111 	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
112 	 *	     faulted on a pte with its pkey=4.
113 	 */
114 	pkey = vma_pkey(vma);
115 
116 	mmap_read_unlock(mm);
117 
118 	/*
119 	 * If we are in kernel mode, bail out with a SEGV, this will
120 	 * be caught by the assembly which will restore the non-volatile
121 	 * registers before calling bad_page_fault()
122 	 */
123 	if (!user_mode(regs))
124 		return SIGSEGV;
125 
126 	_exception_pkey(regs, address, pkey);
127 
128 	return 0;
129 }
130 #endif
131 
132 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
133 {
134 	return __bad_area(regs, address, SEGV_ACCERR);
135 }
136 
137 static int do_sigbus(struct pt_regs *regs, unsigned long address,
138 		     vm_fault_t fault)
139 {
140 	if (!user_mode(regs))
141 		return SIGBUS;
142 
143 	current->thread.trap_nr = BUS_ADRERR;
144 #ifdef CONFIG_MEMORY_FAILURE
145 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
146 		unsigned int lsb = 0; /* shutup gcc */
147 
148 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
149 			current->comm, current->pid, address);
150 
151 		if (fault & VM_FAULT_HWPOISON_LARGE)
152 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
153 		if (fault & VM_FAULT_HWPOISON)
154 			lsb = PAGE_SHIFT;
155 
156 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
157 		return 0;
158 	}
159 
160 #endif
161 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
162 	return 0;
163 }
164 
165 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
166 				vm_fault_t fault)
167 {
168 	/*
169 	 * Kernel page fault interrupted by SIGKILL. We have no reason to
170 	 * continue processing.
171 	 */
172 	if (fatal_signal_pending(current) && !user_mode(regs))
173 		return SIGKILL;
174 
175 	/* Out of memory */
176 	if (fault & VM_FAULT_OOM) {
177 		/*
178 		 * We ran out of memory, or some other thing happened to us that
179 		 * made us unable to handle the page fault gracefully.
180 		 */
181 		if (!user_mode(regs))
182 			return SIGSEGV;
183 		pagefault_out_of_memory();
184 	} else {
185 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
186 			     VM_FAULT_HWPOISON_LARGE))
187 			return do_sigbus(regs, addr, fault);
188 		else if (fault & VM_FAULT_SIGSEGV)
189 			return bad_area_nosemaphore(regs, addr);
190 		else
191 			BUG();
192 	}
193 	return 0;
194 }
195 
196 /* Is this a bad kernel fault ? */
197 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
198 			     unsigned long address, bool is_write)
199 {
200 	int is_exec = TRAP(regs) == 0x400;
201 
202 	/* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
203 	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
204 				      DSISR_PROTFAULT))) {
205 		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
206 				    address >= TASK_SIZE ? "exec-protected" : "user",
207 				    address,
208 				    from_kuid(&init_user_ns, current_uid()));
209 
210 		// Kernel exec fault is always bad
211 		return true;
212 	}
213 
214 	// Kernel fault on kernel address is bad
215 	if (address >= TASK_SIZE)
216 		return true;
217 
218 	// Read/write fault blocked by KUAP is bad, it can never succeed.
219 	if (bad_kuap_fault(regs, address, is_write)) {
220 		pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
221 				    is_write ? "write" : "read", address,
222 				    from_kuid(&init_user_ns, current_uid()));
223 
224 		// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
225 		if (!search_exception_tables(regs->nip))
226 			return true;
227 
228 		// Read/write fault in a valid region (the exception table search passed
229 		// above), but blocked by KUAP is bad, it can never succeed.
230 		return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
231 	}
232 
233 	// What's left? Kernel fault on user and allowed by KUAP in the faulting context.
234 	return false;
235 }
236 
237 #ifdef CONFIG_PPC_MEM_KEYS
238 static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
239 			      struct vm_area_struct *vma)
240 {
241 	/*
242 	 * Make sure to check the VMA so that we do not perform
243 	 * faults just to hit a pkey fault as soon as we fill in a
244 	 * page. Only called for current mm, hence foreign == 0
245 	 */
246 	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
247 		return true;
248 
249 	return false;
250 }
251 #endif
252 
253 static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
254 {
255 	/*
256 	 * Allow execution from readable areas if the MMU does not
257 	 * provide separate controls over reading and executing.
258 	 *
259 	 * Note: That code used to not be enabled for 4xx/BookE.
260 	 * It is now as I/D cache coherency for these is done at
261 	 * set_pte_at() time and I see no reason why the test
262 	 * below wouldn't be valid on those processors. This -may-
263 	 * break programs compiled with a really old ABI though.
264 	 */
265 	if (is_exec) {
266 		return !(vma->vm_flags & VM_EXEC) &&
267 			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
268 			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
269 	}
270 
271 	if (is_write) {
272 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
273 			return true;
274 		return false;
275 	}
276 
277 	if (unlikely(!vma_is_accessible(vma)))
278 		return true;
279 	/*
280 	 * We should ideally do the vma pkey access check here. But in the
281 	 * fault path, handle_mm_fault() also does the same check. To avoid
282 	 * these multiple checks, we skip it here and handle access error due
283 	 * to pkeys later.
284 	 */
285 	return false;
286 }
287 
288 #ifdef CONFIG_PPC_SMLPAR
289 static inline void cmo_account_page_fault(void)
290 {
291 	if (firmware_has_feature(FW_FEATURE_CMO)) {
292 		u32 page_ins;
293 
294 		preempt_disable();
295 		page_ins = be32_to_cpu(get_lppaca()->page_ins);
296 		page_ins += 1 << PAGE_FACTOR;
297 		get_lppaca()->page_ins = cpu_to_be32(page_ins);
298 		preempt_enable();
299 	}
300 }
301 #else
302 static inline void cmo_account_page_fault(void) { }
303 #endif /* CONFIG_PPC_SMLPAR */
304 
305 static void sanity_check_fault(bool is_write, bool is_user,
306 			       unsigned long error_code, unsigned long address)
307 {
308 	/*
309 	 * Userspace trying to access kernel address, we get PROTFAULT for that.
310 	 */
311 	if (is_user && address >= TASK_SIZE) {
312 		if ((long)address == -1)
313 			return;
314 
315 		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
316 				   current->comm, current->pid, address,
317 				   from_kuid(&init_user_ns, current_uid()));
318 		return;
319 	}
320 
321 	if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
322 		return;
323 
324 	/*
325 	 * For hash translation mode, we should never get a
326 	 * PROTFAULT. Any update to pte to reduce access will result in us
327 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
328 	 * fault instead of DSISR_PROTFAULT.
329 	 *
330 	 * A pte update to relax the access will not result in a hash page table
331 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
332 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
333 	 * the special !is_write in the below conditional.
334 	 *
335 	 * For platforms that doesn't supports coherent icache and do support
336 	 * per page noexec bit, we do setup things such that we do the
337 	 * sync between D/I cache via fault. But that is handled via low level
338 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
339 	 * here in such case.
340 	 *
341 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
342 	 * check should handle those and hence we should fall to the bad_area
343 	 * handling correctly.
344 	 *
345 	 * For embedded with per page exec support that doesn't support coherent
346 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
347 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
348 	 * is conditional for server MMU.
349 	 *
350 	 * For radix, we can get prot fault for autonuma case, because radix
351 	 * page table will have them marked noaccess for user.
352 	 */
353 	if (radix_enabled() || is_write)
354 		return;
355 
356 	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
357 }
358 
359 /*
360  * Define the correct "is_write" bit in error_code based
361  * on the processor family
362  */
363 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
364 #define page_fault_is_write(__err)	((__err) & ESR_DST)
365 #else
366 #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
367 #endif
368 
369 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
370 #define page_fault_is_bad(__err)	(0)
371 #elif defined(CONFIG_PPC_8xx)
372 #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
373 #elif defined(CONFIG_PPC64)
374 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
375 #else
376 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
377 #endif
378 
379 /*
380  * For 600- and 800-family processors, the error_code parameter is DSISR
381  * for a data fault, SRR1 for an instruction fault.
382  * For 400-family processors the error_code parameter is ESR for a data fault,
383  * 0 for an instruction fault.
384  * For 64-bit processors, the error_code parameter is DSISR for a data access
385  * fault, SRR1 & 0x08000000 for an instruction access fault.
386  *
387  * The return value is 0 if the fault was handled, or the signal
388  * number if this is a kernel fault that can't be handled here.
389  */
390 static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
391 			   unsigned long error_code)
392 {
393 	struct vm_area_struct * vma;
394 	struct mm_struct *mm = current->mm;
395 	unsigned int flags = FAULT_FLAG_DEFAULT;
396  	int is_exec = TRAP(regs) == 0x400;
397 	int is_user = user_mode(regs);
398 	int is_write = page_fault_is_write(error_code);
399 	vm_fault_t fault, major = 0;
400 	bool kprobe_fault = kprobe_page_fault(regs, 11);
401 
402 	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
403 		return 0;
404 
405 	if (unlikely(page_fault_is_bad(error_code))) {
406 		if (is_user) {
407 			_exception(SIGBUS, regs, BUS_OBJERR, address);
408 			return 0;
409 		}
410 		return SIGBUS;
411 	}
412 
413 	/* Additional sanity check(s) */
414 	sanity_check_fault(is_write, is_user, error_code, address);
415 
416 	/*
417 	 * The kernel should never take an execute fault nor should it
418 	 * take a page fault to a kernel address or a page fault to a user
419 	 * address outside of dedicated places
420 	 */
421 	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
422 		return SIGSEGV;
423 
424 	/*
425 	 * If we're in an interrupt, have no user context or are running
426 	 * in a region with pagefaults disabled then we must not take the fault
427 	 */
428 	if (unlikely(faulthandler_disabled() || !mm)) {
429 		if (is_user)
430 			printk_ratelimited(KERN_ERR "Page fault in user mode"
431 					   " with faulthandler_disabled()=%d"
432 					   " mm=%p\n",
433 					   faulthandler_disabled(), mm);
434 		return bad_area_nosemaphore(regs, address);
435 	}
436 
437 	interrupt_cond_local_irq_enable(regs);
438 
439 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
440 
441 	/*
442 	 * We want to do this outside mmap_lock, because reading code around nip
443 	 * can result in fault, which will cause a deadlock when called with
444 	 * mmap_lock held
445 	 */
446 	if (is_user)
447 		flags |= FAULT_FLAG_USER;
448 	if (is_write)
449 		flags |= FAULT_FLAG_WRITE;
450 	if (is_exec)
451 		flags |= FAULT_FLAG_INSTRUCTION;
452 
453 	/* When running in the kernel we expect faults to occur only to
454 	 * addresses in user space.  All other faults represent errors in the
455 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
456 	 * erroneous fault occurring in a code path which already holds mmap_lock
457 	 * we will deadlock attempting to validate the fault against the
458 	 * address space.  Luckily the kernel only validly references user
459 	 * space from well defined areas of code, which are listed in the
460 	 * exceptions table.
461 	 *
462 	 * As the vast majority of faults will be valid we will only perform
463 	 * the source reference check when there is a possibility of a deadlock.
464 	 * Attempt to lock the address space, if we cannot we then validate the
465 	 * source.  If this is invalid we can skip the address space check,
466 	 * thus avoiding the deadlock.
467 	 */
468 	if (unlikely(!mmap_read_trylock(mm))) {
469 		if (!is_user && !search_exception_tables(regs->nip))
470 			return bad_area_nosemaphore(regs, address);
471 
472 retry:
473 		mmap_read_lock(mm);
474 	} else {
475 		/*
476 		 * The above down_read_trylock() might have succeeded in
477 		 * which case we'll have missed the might_sleep() from
478 		 * down_read():
479 		 */
480 		might_sleep();
481 	}
482 
483 	vma = find_vma(mm, address);
484 	if (unlikely(!vma))
485 		return bad_area(regs, address);
486 
487 	if (unlikely(vma->vm_start > address)) {
488 		if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
489 			return bad_area(regs, address);
490 
491 		if (unlikely(expand_stack(vma, address)))
492 			return bad_area(regs, address);
493 	}
494 
495 #ifdef CONFIG_PPC_MEM_KEYS
496 	if (unlikely(access_pkey_error(is_write, is_exec,
497 				       (error_code & DSISR_KEYFAULT), vma)))
498 		return bad_access_pkey(regs, address, vma);
499 #endif /* CONFIG_PPC_MEM_KEYS */
500 
501 	if (unlikely(access_error(is_write, is_exec, vma)))
502 		return bad_access(regs, address);
503 
504 	/*
505 	 * If for any reason at all we couldn't handle the fault,
506 	 * make sure we exit gracefully rather than endlessly redo
507 	 * the fault.
508 	 */
509 	fault = handle_mm_fault(vma, address, flags, regs);
510 
511 	major |= fault & VM_FAULT_MAJOR;
512 
513 	if (fault_signal_pending(fault, regs))
514 		return user_mode(regs) ? 0 : SIGBUS;
515 
516 	/*
517 	 * Handle the retry right now, the mmap_lock has been released in that
518 	 * case.
519 	 */
520 	if (unlikely(fault & VM_FAULT_RETRY)) {
521 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
522 			flags |= FAULT_FLAG_TRIED;
523 			goto retry;
524 		}
525 	}
526 
527 	mmap_read_unlock(current->mm);
528 
529 	if (unlikely(fault & VM_FAULT_ERROR))
530 		return mm_fault_error(regs, address, fault);
531 
532 	/*
533 	 * Major/minor page fault accounting.
534 	 */
535 	if (major)
536 		cmo_account_page_fault();
537 
538 	return 0;
539 }
540 NOKPROBE_SYMBOL(___do_page_fault);
541 
542 static long __do_page_fault(struct pt_regs *regs)
543 {
544 	const struct exception_table_entry *entry;
545 	long err;
546 
547 	err = ___do_page_fault(regs, regs->dar, regs->dsisr);
548 	if (likely(!err))
549 		return err;
550 
551 	entry = search_exception_tables(regs->nip);
552 	if (likely(entry)) {
553 		instruction_pointer_set(regs, extable_fixup(entry));
554 		return 0;
555 	} else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64)) {
556 		__bad_page_fault(regs, err);
557 		return 0;
558 	} else {
559 		/* 32 and 64e handle the bad page fault in asm */
560 		return err;
561 	}
562 }
563 NOKPROBE_SYMBOL(__do_page_fault);
564 
565 DEFINE_INTERRUPT_HANDLER_RET(do_page_fault)
566 {
567 	return __do_page_fault(regs);
568 }
569 
570 #ifdef CONFIG_PPC_BOOK3S_64
571 /* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
572 long hash__do_page_fault(struct pt_regs *regs)
573 {
574 	return __do_page_fault(regs);
575 }
576 NOKPROBE_SYMBOL(hash__do_page_fault);
577 #endif
578 
579 /*
580  * bad_page_fault is called when we have a bad access from the kernel.
581  * It is called from the DSI and ISI handlers in head.S and from some
582  * of the procedures in traps.c.
583  */
584 void __bad_page_fault(struct pt_regs *regs, int sig)
585 {
586 	int is_write = page_fault_is_write(regs->dsisr);
587 
588 	/* kernel has accessed a bad area */
589 
590 	switch (TRAP(regs)) {
591 	case 0x300:
592 	case 0x380:
593 	case 0xe00:
594 		pr_alert("BUG: %s on %s at 0x%08lx\n",
595 			 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
596 			 "Unable to handle kernel data access",
597 			 is_write ? "write" : "read", regs->dar);
598 		break;
599 	case 0x400:
600 	case 0x480:
601 		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
602 			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
603 		break;
604 	case 0x600:
605 		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
606 			 regs->dar);
607 		break;
608 	default:
609 		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
610 			 regs->dar);
611 		break;
612 	}
613 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
614 		regs->nip);
615 
616 	if (task_stack_end_corrupted(current))
617 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
618 
619 	die("Kernel access of bad area", regs, sig);
620 }
621 
622 void bad_page_fault(struct pt_regs *regs, int sig)
623 {
624 	const struct exception_table_entry *entry;
625 
626 	/* Are we prepared to handle this fault?  */
627 	entry = search_exception_tables(instruction_pointer(regs));
628 	if (entry)
629 		instruction_pointer_set(regs, extable_fixup(entry));
630 	else
631 		__bad_page_fault(regs, sig);
632 }
633 
634 #ifdef CONFIG_PPC_BOOK3S_64
635 DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
636 {
637 	bad_page_fault(regs, SIGSEGV);
638 }
639 #endif
640