1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerPC version 4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 5 * 6 * Derived from "arch/i386/mm/fault.c" 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * 9 * Modified by Cort Dougan and Paul Mackerras. 10 * 11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) 12 */ 13 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/errno.h> 19 #include <linux/string.h> 20 #include <linux/types.h> 21 #include <linux/pagemap.h> 22 #include <linux/ptrace.h> 23 #include <linux/mman.h> 24 #include <linux/mm.h> 25 #include <linux/interrupt.h> 26 #include <linux/highmem.h> 27 #include <linux/extable.h> 28 #include <linux/kprobes.h> 29 #include <linux/kdebug.h> 30 #include <linux/perf_event.h> 31 #include <linux/ratelimit.h> 32 #include <linux/context_tracking.h> 33 #include <linux/hugetlb.h> 34 #include <linux/uaccess.h> 35 36 #include <asm/firmware.h> 37 #include <asm/page.h> 38 #include <asm/pgtable.h> 39 #include <asm/mmu.h> 40 #include <asm/mmu_context.h> 41 #include <asm/siginfo.h> 42 #include <asm/debug.h> 43 #include <asm/kup.h> 44 #include <asm/inst.h> 45 46 /* 47 * Check whether the instruction inst is a store using 48 * an update addressing form which will update r1. 49 */ 50 static bool store_updates_sp(struct ppc_inst inst) 51 { 52 /* check for 1 in the rA field */ 53 if (((ppc_inst_val(inst) >> 16) & 0x1f) != 1) 54 return false; 55 /* check major opcode */ 56 switch (ppc_inst_primary_opcode(inst)) { 57 case OP_STWU: 58 case OP_STBU: 59 case OP_STHU: 60 case OP_STFSU: 61 case OP_STFDU: 62 return true; 63 case OP_STD: /* std or stdu */ 64 return (ppc_inst_val(inst) & 3) == 1; 65 case OP_31: 66 /* check minor opcode */ 67 switch ((ppc_inst_val(inst) >> 1) & 0x3ff) { 68 case OP_31_XOP_STDUX: 69 case OP_31_XOP_STWUX: 70 case OP_31_XOP_STBUX: 71 case OP_31_XOP_STHUX: 72 case OP_31_XOP_STFSUX: 73 case OP_31_XOP_STFDUX: 74 return true; 75 } 76 } 77 return false; 78 } 79 /* 80 * do_page_fault error handling helpers 81 */ 82 83 static int 84 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code) 85 { 86 /* 87 * If we are in kernel mode, bail out with a SEGV, this will 88 * be caught by the assembly which will restore the non-volatile 89 * registers before calling bad_page_fault() 90 */ 91 if (!user_mode(regs)) 92 return SIGSEGV; 93 94 _exception(SIGSEGV, regs, si_code, address); 95 96 return 0; 97 } 98 99 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address) 100 { 101 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR); 102 } 103 104 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code) 105 { 106 struct mm_struct *mm = current->mm; 107 108 /* 109 * Something tried to access memory that isn't in our memory map.. 110 * Fix it, but check if it's kernel or user first.. 111 */ 112 up_read(&mm->mmap_sem); 113 114 return __bad_area_nosemaphore(regs, address, si_code); 115 } 116 117 static noinline int bad_area(struct pt_regs *regs, unsigned long address) 118 { 119 return __bad_area(regs, address, SEGV_MAPERR); 120 } 121 122 #ifdef CONFIG_PPC_MEM_KEYS 123 static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address, 124 struct vm_area_struct *vma) 125 { 126 struct mm_struct *mm = current->mm; 127 int pkey; 128 129 /* 130 * We don't try to fetch the pkey from page table because reading 131 * page table without locking doesn't guarantee stable pte value. 132 * Hence the pkey value that we return to userspace can be different 133 * from the pkey that actually caused access error. 134 * 135 * It does *not* guarantee that the VMA we find here 136 * was the one that we faulted on. 137 * 138 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 139 * 2. T1 : set AMR to deny access to pkey=4, touches, page 140 * 3. T1 : faults... 141 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 142 * 5. T1 : enters fault handler, takes mmap_sem, etc... 143 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 144 * faulted on a pte with its pkey=4. 145 */ 146 pkey = vma_pkey(vma); 147 148 up_read(&mm->mmap_sem); 149 150 /* 151 * If we are in kernel mode, bail out with a SEGV, this will 152 * be caught by the assembly which will restore the non-volatile 153 * registers before calling bad_page_fault() 154 */ 155 if (!user_mode(regs)) 156 return SIGSEGV; 157 158 _exception_pkey(regs, address, pkey); 159 160 return 0; 161 } 162 #endif 163 164 static noinline int bad_access(struct pt_regs *regs, unsigned long address) 165 { 166 return __bad_area(regs, address, SEGV_ACCERR); 167 } 168 169 static int do_sigbus(struct pt_regs *regs, unsigned long address, 170 vm_fault_t fault) 171 { 172 if (!user_mode(regs)) 173 return SIGBUS; 174 175 current->thread.trap_nr = BUS_ADRERR; 176 #ifdef CONFIG_MEMORY_FAILURE 177 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 178 unsigned int lsb = 0; /* shutup gcc */ 179 180 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 181 current->comm, current->pid, address); 182 183 if (fault & VM_FAULT_HWPOISON_LARGE) 184 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 185 if (fault & VM_FAULT_HWPOISON) 186 lsb = PAGE_SHIFT; 187 188 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); 189 return 0; 190 } 191 192 #endif 193 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); 194 return 0; 195 } 196 197 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, 198 vm_fault_t fault) 199 { 200 /* 201 * Kernel page fault interrupted by SIGKILL. We have no reason to 202 * continue processing. 203 */ 204 if (fatal_signal_pending(current) && !user_mode(regs)) 205 return SIGKILL; 206 207 /* Out of memory */ 208 if (fault & VM_FAULT_OOM) { 209 /* 210 * We ran out of memory, or some other thing happened to us that 211 * made us unable to handle the page fault gracefully. 212 */ 213 if (!user_mode(regs)) 214 return SIGSEGV; 215 pagefault_out_of_memory(); 216 } else { 217 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 218 VM_FAULT_HWPOISON_LARGE)) 219 return do_sigbus(regs, addr, fault); 220 else if (fault & VM_FAULT_SIGSEGV) 221 return bad_area_nosemaphore(regs, addr); 222 else 223 BUG(); 224 } 225 return 0; 226 } 227 228 /* Is this a bad kernel fault ? */ 229 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code, 230 unsigned long address, bool is_write) 231 { 232 int is_exec = TRAP(regs) == 0x400; 233 234 /* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */ 235 if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT | 236 DSISR_PROTFAULT))) { 237 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n", 238 address >= TASK_SIZE ? "exec-protected" : "user", 239 address, 240 from_kuid(&init_user_ns, current_uid())); 241 242 // Kernel exec fault is always bad 243 return true; 244 } 245 246 if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) && 247 !search_exception_tables(regs->nip)) { 248 pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n", 249 address, 250 from_kuid(&init_user_ns, current_uid())); 251 } 252 253 // Kernel fault on kernel address is bad 254 if (address >= TASK_SIZE) 255 return true; 256 257 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad 258 if (!search_exception_tables(regs->nip)) 259 return true; 260 261 // Read/write fault in a valid region (the exception table search passed 262 // above), but blocked by KUAP is bad, it can never succeed. 263 if (bad_kuap_fault(regs, address, is_write)) 264 return true; 265 266 // What's left? Kernel fault on user in well defined regions (extable 267 // matched), and allowed by KUAP in the faulting context. 268 return false; 269 } 270 271 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address, 272 struct vm_area_struct *vma, unsigned int flags, 273 bool *must_retry) 274 { 275 /* 276 * N.B. The POWER/Open ABI allows programs to access up to 277 * 288 bytes below the stack pointer. 278 * The kernel signal delivery code writes up to about 1.5kB 279 * below the stack pointer (r1) before decrementing it. 280 * The exec code can write slightly over 640kB to the stack 281 * before setting the user r1. Thus we allow the stack to 282 * expand to 1MB without further checks. 283 */ 284 if (address + 0x100000 < vma->vm_end) { 285 struct ppc_inst __user *nip = (struct ppc_inst __user *)regs->nip; 286 /* get user regs even if this fault is in kernel mode */ 287 struct pt_regs *uregs = current->thread.regs; 288 if (uregs == NULL) 289 return true; 290 291 /* 292 * A user-mode access to an address a long way below 293 * the stack pointer is only valid if the instruction 294 * is one which would update the stack pointer to the 295 * address accessed if the instruction completed, 296 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb 297 * (or the byte, halfword, float or double forms). 298 * 299 * If we don't check this then any write to the area 300 * between the last mapped region and the stack will 301 * expand the stack rather than segfaulting. 302 */ 303 if (address + 2048 >= uregs->gpr[1]) 304 return false; 305 306 if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) && 307 access_ok(nip, sizeof(*nip))) { 308 struct ppc_inst inst; 309 310 if (!probe_user_read_inst(&inst, nip)) 311 return !store_updates_sp(inst); 312 *must_retry = true; 313 } 314 return true; 315 } 316 return false; 317 } 318 319 #ifdef CONFIG_PPC_MEM_KEYS 320 static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey, 321 struct vm_area_struct *vma) 322 { 323 /* 324 * Make sure to check the VMA so that we do not perform 325 * faults just to hit a pkey fault as soon as we fill in a 326 * page. Only called for current mm, hence foreign == 0 327 */ 328 if (!arch_vma_access_permitted(vma, is_write, is_exec, 0)) 329 return true; 330 331 return false; 332 } 333 #endif 334 335 static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma) 336 { 337 /* 338 * Allow execution from readable areas if the MMU does not 339 * provide separate controls over reading and executing. 340 * 341 * Note: That code used to not be enabled for 4xx/BookE. 342 * It is now as I/D cache coherency for these is done at 343 * set_pte_at() time and I see no reason why the test 344 * below wouldn't be valid on those processors. This -may- 345 * break programs compiled with a really old ABI though. 346 */ 347 if (is_exec) { 348 return !(vma->vm_flags & VM_EXEC) && 349 (cpu_has_feature(CPU_FTR_NOEXECUTE) || 350 !(vma->vm_flags & (VM_READ | VM_WRITE))); 351 } 352 353 if (is_write) { 354 if (unlikely(!(vma->vm_flags & VM_WRITE))) 355 return true; 356 return false; 357 } 358 359 if (unlikely(!vma_is_accessible(vma))) 360 return true; 361 /* 362 * We should ideally do the vma pkey access check here. But in the 363 * fault path, handle_mm_fault() also does the same check. To avoid 364 * these multiple checks, we skip it here and handle access error due 365 * to pkeys later. 366 */ 367 return false; 368 } 369 370 #ifdef CONFIG_PPC_SMLPAR 371 static inline void cmo_account_page_fault(void) 372 { 373 if (firmware_has_feature(FW_FEATURE_CMO)) { 374 u32 page_ins; 375 376 preempt_disable(); 377 page_ins = be32_to_cpu(get_lppaca()->page_ins); 378 page_ins += 1 << PAGE_FACTOR; 379 get_lppaca()->page_ins = cpu_to_be32(page_ins); 380 preempt_enable(); 381 } 382 } 383 #else 384 static inline void cmo_account_page_fault(void) { } 385 #endif /* CONFIG_PPC_SMLPAR */ 386 387 #ifdef CONFIG_PPC_BOOK3S 388 static void sanity_check_fault(bool is_write, bool is_user, 389 unsigned long error_code, unsigned long address) 390 { 391 /* 392 * Userspace trying to access kernel address, we get PROTFAULT for that. 393 */ 394 if (is_user && address >= TASK_SIZE) { 395 if ((long)address == -1) 396 return; 397 398 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n", 399 current->comm, current->pid, address, 400 from_kuid(&init_user_ns, current_uid())); 401 return; 402 } 403 404 /* 405 * For hash translation mode, we should never get a 406 * PROTFAULT. Any update to pte to reduce access will result in us 407 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE 408 * fault instead of DSISR_PROTFAULT. 409 * 410 * A pte update to relax the access will not result in a hash page table 411 * entry invalidate and hence can result in DSISR_PROTFAULT. 412 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have 413 * the special !is_write in the below conditional. 414 * 415 * For platforms that doesn't supports coherent icache and do support 416 * per page noexec bit, we do setup things such that we do the 417 * sync between D/I cache via fault. But that is handled via low level 418 * hash fault code (hash_page_do_lazy_icache()) and we should not reach 419 * here in such case. 420 * 421 * For wrong access that can result in PROTFAULT, the above vma->vm_flags 422 * check should handle those and hence we should fall to the bad_area 423 * handling correctly. 424 * 425 * For embedded with per page exec support that doesn't support coherent 426 * icache we do get PROTFAULT and we handle that D/I cache sync in 427 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON 428 * is conditional for server MMU. 429 * 430 * For radix, we can get prot fault for autonuma case, because radix 431 * page table will have them marked noaccess for user. 432 */ 433 if (radix_enabled() || is_write) 434 return; 435 436 WARN_ON_ONCE(error_code & DSISR_PROTFAULT); 437 } 438 #else 439 static void sanity_check_fault(bool is_write, bool is_user, 440 unsigned long error_code, unsigned long address) { } 441 #endif /* CONFIG_PPC_BOOK3S */ 442 443 /* 444 * Define the correct "is_write" bit in error_code based 445 * on the processor family 446 */ 447 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) 448 #define page_fault_is_write(__err) ((__err) & ESR_DST) 449 #define page_fault_is_bad(__err) (0) 450 #else 451 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE) 452 #if defined(CONFIG_PPC_8xx) 453 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G) 454 #elif defined(CONFIG_PPC64) 455 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S) 456 #else 457 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S) 458 #endif 459 #endif 460 461 /* 462 * For 600- and 800-family processors, the error_code parameter is DSISR 463 * for a data fault, SRR1 for an instruction fault. For 400-family processors 464 * the error_code parameter is ESR for a data fault, 0 for an instruction 465 * fault. 466 * For 64-bit processors, the error_code parameter is 467 * - DSISR for a non-SLB data access fault, 468 * - SRR1 & 0x08000000 for a non-SLB instruction access fault 469 * - 0 any SLB fault. 470 * 471 * The return value is 0 if the fault was handled, or the signal 472 * number if this is a kernel fault that can't be handled here. 473 */ 474 static int __do_page_fault(struct pt_regs *regs, unsigned long address, 475 unsigned long error_code) 476 { 477 struct vm_area_struct * vma; 478 struct mm_struct *mm = current->mm; 479 unsigned int flags = FAULT_FLAG_DEFAULT; 480 int is_exec = TRAP(regs) == 0x400; 481 int is_user = user_mode(regs); 482 int is_write = page_fault_is_write(error_code); 483 vm_fault_t fault, major = 0; 484 bool must_retry = false; 485 bool kprobe_fault = kprobe_page_fault(regs, 11); 486 487 if (unlikely(debugger_fault_handler(regs) || kprobe_fault)) 488 return 0; 489 490 if (unlikely(page_fault_is_bad(error_code))) { 491 if (is_user) { 492 _exception(SIGBUS, regs, BUS_OBJERR, address); 493 return 0; 494 } 495 return SIGBUS; 496 } 497 498 /* Additional sanity check(s) */ 499 sanity_check_fault(is_write, is_user, error_code, address); 500 501 /* 502 * The kernel should never take an execute fault nor should it 503 * take a page fault to a kernel address or a page fault to a user 504 * address outside of dedicated places 505 */ 506 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) 507 return SIGSEGV; 508 509 /* 510 * If we're in an interrupt, have no user context or are running 511 * in a region with pagefaults disabled then we must not take the fault 512 */ 513 if (unlikely(faulthandler_disabled() || !mm)) { 514 if (is_user) 515 printk_ratelimited(KERN_ERR "Page fault in user mode" 516 " with faulthandler_disabled()=%d" 517 " mm=%p\n", 518 faulthandler_disabled(), mm); 519 return bad_area_nosemaphore(regs, address); 520 } 521 522 /* We restore the interrupt state now */ 523 if (!arch_irq_disabled_regs(regs)) 524 local_irq_enable(); 525 526 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 527 528 /* 529 * We want to do this outside mmap_sem, because reading code around nip 530 * can result in fault, which will cause a deadlock when called with 531 * mmap_sem held 532 */ 533 if (is_user) 534 flags |= FAULT_FLAG_USER; 535 if (is_write) 536 flags |= FAULT_FLAG_WRITE; 537 if (is_exec) 538 flags |= FAULT_FLAG_INSTRUCTION; 539 540 /* When running in the kernel we expect faults to occur only to 541 * addresses in user space. All other faults represent errors in the 542 * kernel and should generate an OOPS. Unfortunately, in the case of an 543 * erroneous fault occurring in a code path which already holds mmap_sem 544 * we will deadlock attempting to validate the fault against the 545 * address space. Luckily the kernel only validly references user 546 * space from well defined areas of code, which are listed in the 547 * exceptions table. 548 * 549 * As the vast majority of faults will be valid we will only perform 550 * the source reference check when there is a possibility of a deadlock. 551 * Attempt to lock the address space, if we cannot we then validate the 552 * source. If this is invalid we can skip the address space check, 553 * thus avoiding the deadlock. 554 */ 555 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 556 if (!is_user && !search_exception_tables(regs->nip)) 557 return bad_area_nosemaphore(regs, address); 558 559 retry: 560 down_read(&mm->mmap_sem); 561 } else { 562 /* 563 * The above down_read_trylock() might have succeeded in 564 * which case we'll have missed the might_sleep() from 565 * down_read(): 566 */ 567 might_sleep(); 568 } 569 570 vma = find_vma(mm, address); 571 if (unlikely(!vma)) 572 return bad_area(regs, address); 573 if (likely(vma->vm_start <= address)) 574 goto good_area; 575 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) 576 return bad_area(regs, address); 577 578 /* The stack is being expanded, check if it's valid */ 579 if (unlikely(bad_stack_expansion(regs, address, vma, flags, 580 &must_retry))) { 581 if (!must_retry) 582 return bad_area(regs, address); 583 584 up_read(&mm->mmap_sem); 585 if (fault_in_pages_readable((const char __user *)regs->nip, 586 sizeof(unsigned int))) 587 return bad_area_nosemaphore(regs, address); 588 goto retry; 589 } 590 591 /* Try to expand it */ 592 if (unlikely(expand_stack(vma, address))) 593 return bad_area(regs, address); 594 595 good_area: 596 597 #ifdef CONFIG_PPC_MEM_KEYS 598 if (unlikely(access_pkey_error(is_write, is_exec, 599 (error_code & DSISR_KEYFAULT), vma))) 600 return bad_access_pkey(regs, address, vma); 601 #endif /* CONFIG_PPC_MEM_KEYS */ 602 603 if (unlikely(access_error(is_write, is_exec, vma))) 604 return bad_access(regs, address); 605 606 /* 607 * If for any reason at all we couldn't handle the fault, 608 * make sure we exit gracefully rather than endlessly redo 609 * the fault. 610 */ 611 fault = handle_mm_fault(vma, address, flags); 612 613 major |= fault & VM_FAULT_MAJOR; 614 615 if (fault_signal_pending(fault, regs)) 616 return user_mode(regs) ? 0 : SIGBUS; 617 618 /* 619 * Handle the retry right now, the mmap_sem has been released in that 620 * case. 621 */ 622 if (unlikely(fault & VM_FAULT_RETRY)) { 623 if (flags & FAULT_FLAG_ALLOW_RETRY) { 624 flags |= FAULT_FLAG_TRIED; 625 goto retry; 626 } 627 } 628 629 up_read(¤t->mm->mmap_sem); 630 631 if (unlikely(fault & VM_FAULT_ERROR)) 632 return mm_fault_error(regs, address, fault); 633 634 /* 635 * Major/minor page fault accounting. 636 */ 637 if (major) { 638 current->maj_flt++; 639 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 640 cmo_account_page_fault(); 641 } else { 642 current->min_flt++; 643 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 644 } 645 return 0; 646 } 647 NOKPROBE_SYMBOL(__do_page_fault); 648 649 int do_page_fault(struct pt_regs *regs, unsigned long address, 650 unsigned long error_code) 651 { 652 enum ctx_state prev_state = exception_enter(); 653 int rc = __do_page_fault(regs, address, error_code); 654 exception_exit(prev_state); 655 return rc; 656 } 657 NOKPROBE_SYMBOL(do_page_fault); 658 659 /* 660 * bad_page_fault is called when we have a bad access from the kernel. 661 * It is called from the DSI and ISI handlers in head.S and from some 662 * of the procedures in traps.c. 663 */ 664 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) 665 { 666 const struct exception_table_entry *entry; 667 int is_write = page_fault_is_write(regs->dsisr); 668 669 /* Are we prepared to handle this fault? */ 670 if ((entry = search_exception_tables(regs->nip)) != NULL) { 671 regs->nip = extable_fixup(entry); 672 return; 673 } 674 675 /* kernel has accessed a bad area */ 676 677 switch (TRAP(regs)) { 678 case 0x300: 679 case 0x380: 680 case 0xe00: 681 pr_alert("BUG: %s on %s at 0x%08lx\n", 682 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" : 683 "Unable to handle kernel data access", 684 is_write ? "write" : "read", regs->dar); 685 break; 686 case 0x400: 687 case 0x480: 688 pr_alert("BUG: Unable to handle kernel instruction fetch%s", 689 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n"); 690 break; 691 case 0x600: 692 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n", 693 regs->dar); 694 break; 695 default: 696 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n", 697 regs->dar); 698 break; 699 } 700 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", 701 regs->nip); 702 703 if (task_stack_end_corrupted(current)) 704 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 705 706 die("Kernel access of bad area", regs, sig); 707 } 708