xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision cff11abeca78aa782378401ca2800bd2194aa14e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Derived from "arch/i386/mm/fault.c"
7  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *
9  *  Modified by Cort Dougan and Paul Mackerras.
10  *
11  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12  */
13 
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/pagemap.h>
22 #include <linux/ptrace.h>
23 #include <linux/mman.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/highmem.h>
27 #include <linux/extable.h>
28 #include <linux/kprobes.h>
29 #include <linux/kdebug.h>
30 #include <linux/perf_event.h>
31 #include <linux/ratelimit.h>
32 #include <linux/context_tracking.h>
33 #include <linux/hugetlb.h>
34 #include <linux/uaccess.h>
35 
36 #include <asm/firmware.h>
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/siginfo.h>
42 #include <asm/debug.h>
43 #include <asm/kup.h>
44 #include <asm/inst.h>
45 
46 /*
47  * Check whether the instruction inst is a store using
48  * an update addressing form which will update r1.
49  */
50 static bool store_updates_sp(struct ppc_inst inst)
51 {
52 	/* check for 1 in the rA field */
53 	if (((ppc_inst_val(inst) >> 16) & 0x1f) != 1)
54 		return false;
55 	/* check major opcode */
56 	switch (ppc_inst_primary_opcode(inst)) {
57 	case OP_STWU:
58 	case OP_STBU:
59 	case OP_STHU:
60 	case OP_STFSU:
61 	case OP_STFDU:
62 		return true;
63 	case OP_STD:	/* std or stdu */
64 		return (ppc_inst_val(inst) & 3) == 1;
65 	case OP_31:
66 		/* check minor opcode */
67 		switch ((ppc_inst_val(inst) >> 1) & 0x3ff) {
68 		case OP_31_XOP_STDUX:
69 		case OP_31_XOP_STWUX:
70 		case OP_31_XOP_STBUX:
71 		case OP_31_XOP_STHUX:
72 		case OP_31_XOP_STFSUX:
73 		case OP_31_XOP_STFDUX:
74 			return true;
75 		}
76 	}
77 	return false;
78 }
79 /*
80  * do_page_fault error handling helpers
81  */
82 
83 static int
84 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
85 {
86 	/*
87 	 * If we are in kernel mode, bail out with a SEGV, this will
88 	 * be caught by the assembly which will restore the non-volatile
89 	 * registers before calling bad_page_fault()
90 	 */
91 	if (!user_mode(regs))
92 		return SIGSEGV;
93 
94 	_exception(SIGSEGV, regs, si_code, address);
95 
96 	return 0;
97 }
98 
99 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
100 {
101 	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
102 }
103 
104 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
105 {
106 	struct mm_struct *mm = current->mm;
107 
108 	/*
109 	 * Something tried to access memory that isn't in our memory map..
110 	 * Fix it, but check if it's kernel or user first..
111 	 */
112 	up_read(&mm->mmap_sem);
113 
114 	return __bad_area_nosemaphore(regs, address, si_code);
115 }
116 
117 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
118 {
119 	return __bad_area(regs, address, SEGV_MAPERR);
120 }
121 
122 #ifdef CONFIG_PPC_MEM_KEYS
123 static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
124 				    struct vm_area_struct *vma)
125 {
126 	struct mm_struct *mm = current->mm;
127 	int pkey;
128 
129 	/*
130 	 * We don't try to fetch the pkey from page table because reading
131 	 * page table without locking doesn't guarantee stable pte value.
132 	 * Hence the pkey value that we return to userspace can be different
133 	 * from the pkey that actually caused access error.
134 	 *
135 	 * It does *not* guarantee that the VMA we find here
136 	 * was the one that we faulted on.
137 	 *
138 	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
139 	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
140 	 * 3. T1   : faults...
141 	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
142 	 * 5. T1   : enters fault handler, takes mmap_sem, etc...
143 	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
144 	 *	     faulted on a pte with its pkey=4.
145 	 */
146 	pkey = vma_pkey(vma);
147 
148 	up_read(&mm->mmap_sem);
149 
150 	/*
151 	 * If we are in kernel mode, bail out with a SEGV, this will
152 	 * be caught by the assembly which will restore the non-volatile
153 	 * registers before calling bad_page_fault()
154 	 */
155 	if (!user_mode(regs))
156 		return SIGSEGV;
157 
158 	_exception_pkey(regs, address, pkey);
159 
160 	return 0;
161 }
162 #endif
163 
164 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
165 {
166 	return __bad_area(regs, address, SEGV_ACCERR);
167 }
168 
169 static int do_sigbus(struct pt_regs *regs, unsigned long address,
170 		     vm_fault_t fault)
171 {
172 	if (!user_mode(regs))
173 		return SIGBUS;
174 
175 	current->thread.trap_nr = BUS_ADRERR;
176 #ifdef CONFIG_MEMORY_FAILURE
177 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
178 		unsigned int lsb = 0; /* shutup gcc */
179 
180 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
181 			current->comm, current->pid, address);
182 
183 		if (fault & VM_FAULT_HWPOISON_LARGE)
184 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
185 		if (fault & VM_FAULT_HWPOISON)
186 			lsb = PAGE_SHIFT;
187 
188 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
189 		return 0;
190 	}
191 
192 #endif
193 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
194 	return 0;
195 }
196 
197 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
198 				vm_fault_t fault)
199 {
200 	/*
201 	 * Kernel page fault interrupted by SIGKILL. We have no reason to
202 	 * continue processing.
203 	 */
204 	if (fatal_signal_pending(current) && !user_mode(regs))
205 		return SIGKILL;
206 
207 	/* Out of memory */
208 	if (fault & VM_FAULT_OOM) {
209 		/*
210 		 * We ran out of memory, or some other thing happened to us that
211 		 * made us unable to handle the page fault gracefully.
212 		 */
213 		if (!user_mode(regs))
214 			return SIGSEGV;
215 		pagefault_out_of_memory();
216 	} else {
217 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
218 			     VM_FAULT_HWPOISON_LARGE))
219 			return do_sigbus(regs, addr, fault);
220 		else if (fault & VM_FAULT_SIGSEGV)
221 			return bad_area_nosemaphore(regs, addr);
222 		else
223 			BUG();
224 	}
225 	return 0;
226 }
227 
228 /* Is this a bad kernel fault ? */
229 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
230 			     unsigned long address, bool is_write)
231 {
232 	int is_exec = TRAP(regs) == 0x400;
233 
234 	/* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
235 	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
236 				      DSISR_PROTFAULT))) {
237 		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
238 				    address >= TASK_SIZE ? "exec-protected" : "user",
239 				    address,
240 				    from_kuid(&init_user_ns, current_uid()));
241 
242 		// Kernel exec fault is always bad
243 		return true;
244 	}
245 
246 	if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) &&
247 	    !search_exception_tables(regs->nip)) {
248 		pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n",
249 				    address,
250 				    from_kuid(&init_user_ns, current_uid()));
251 	}
252 
253 	// Kernel fault on kernel address is bad
254 	if (address >= TASK_SIZE)
255 		return true;
256 
257 	// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
258 	if (!search_exception_tables(regs->nip))
259 		return true;
260 
261 	// Read/write fault in a valid region (the exception table search passed
262 	// above), but blocked by KUAP is bad, it can never succeed.
263 	if (bad_kuap_fault(regs, address, is_write))
264 		return true;
265 
266 	// What's left? Kernel fault on user in well defined regions (extable
267 	// matched), and allowed by KUAP in the faulting context.
268 	return false;
269 }
270 
271 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
272 				struct vm_area_struct *vma, unsigned int flags,
273 				bool *must_retry)
274 {
275 	/*
276 	 * N.B. The POWER/Open ABI allows programs to access up to
277 	 * 288 bytes below the stack pointer.
278 	 * The kernel signal delivery code writes up to about 1.5kB
279 	 * below the stack pointer (r1) before decrementing it.
280 	 * The exec code can write slightly over 640kB to the stack
281 	 * before setting the user r1.  Thus we allow the stack to
282 	 * expand to 1MB without further checks.
283 	 */
284 	if (address + 0x100000 < vma->vm_end) {
285 		struct ppc_inst __user *nip = (struct ppc_inst __user *)regs->nip;
286 		/* get user regs even if this fault is in kernel mode */
287 		struct pt_regs *uregs = current->thread.regs;
288 		if (uregs == NULL)
289 			return true;
290 
291 		/*
292 		 * A user-mode access to an address a long way below
293 		 * the stack pointer is only valid if the instruction
294 		 * is one which would update the stack pointer to the
295 		 * address accessed if the instruction completed,
296 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
297 		 * (or the byte, halfword, float or double forms).
298 		 *
299 		 * If we don't check this then any write to the area
300 		 * between the last mapped region and the stack will
301 		 * expand the stack rather than segfaulting.
302 		 */
303 		if (address + 2048 >= uregs->gpr[1])
304 			return false;
305 
306 		if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
307 		    access_ok(nip, sizeof(*nip))) {
308 			struct ppc_inst inst;
309 
310 			if (!probe_user_read_inst(&inst, nip))
311 				return !store_updates_sp(inst);
312 			*must_retry = true;
313 		}
314 		return true;
315 	}
316 	return false;
317 }
318 
319 #ifdef CONFIG_PPC_MEM_KEYS
320 static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
321 			      struct vm_area_struct *vma)
322 {
323 	/*
324 	 * Make sure to check the VMA so that we do not perform
325 	 * faults just to hit a pkey fault as soon as we fill in a
326 	 * page. Only called for current mm, hence foreign == 0
327 	 */
328 	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
329 		return true;
330 
331 	return false;
332 }
333 #endif
334 
335 static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
336 {
337 	/*
338 	 * Allow execution from readable areas if the MMU does not
339 	 * provide separate controls over reading and executing.
340 	 *
341 	 * Note: That code used to not be enabled for 4xx/BookE.
342 	 * It is now as I/D cache coherency for these is done at
343 	 * set_pte_at() time and I see no reason why the test
344 	 * below wouldn't be valid on those processors. This -may-
345 	 * break programs compiled with a really old ABI though.
346 	 */
347 	if (is_exec) {
348 		return !(vma->vm_flags & VM_EXEC) &&
349 			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
350 			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
351 	}
352 
353 	if (is_write) {
354 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
355 			return true;
356 		return false;
357 	}
358 
359 	if (unlikely(!vma_is_accessible(vma)))
360 		return true;
361 	/*
362 	 * We should ideally do the vma pkey access check here. But in the
363 	 * fault path, handle_mm_fault() also does the same check. To avoid
364 	 * these multiple checks, we skip it here and handle access error due
365 	 * to pkeys later.
366 	 */
367 	return false;
368 }
369 
370 #ifdef CONFIG_PPC_SMLPAR
371 static inline void cmo_account_page_fault(void)
372 {
373 	if (firmware_has_feature(FW_FEATURE_CMO)) {
374 		u32 page_ins;
375 
376 		preempt_disable();
377 		page_ins = be32_to_cpu(get_lppaca()->page_ins);
378 		page_ins += 1 << PAGE_FACTOR;
379 		get_lppaca()->page_ins = cpu_to_be32(page_ins);
380 		preempt_enable();
381 	}
382 }
383 #else
384 static inline void cmo_account_page_fault(void) { }
385 #endif /* CONFIG_PPC_SMLPAR */
386 
387 #ifdef CONFIG_PPC_BOOK3S
388 static void sanity_check_fault(bool is_write, bool is_user,
389 			       unsigned long error_code, unsigned long address)
390 {
391 	/*
392 	 * Userspace trying to access kernel address, we get PROTFAULT for that.
393 	 */
394 	if (is_user && address >= TASK_SIZE) {
395 		if ((long)address == -1)
396 			return;
397 
398 		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
399 				   current->comm, current->pid, address,
400 				   from_kuid(&init_user_ns, current_uid()));
401 		return;
402 	}
403 
404 	/*
405 	 * For hash translation mode, we should never get a
406 	 * PROTFAULT. Any update to pte to reduce access will result in us
407 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
408 	 * fault instead of DSISR_PROTFAULT.
409 	 *
410 	 * A pte update to relax the access will not result in a hash page table
411 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
412 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
413 	 * the special !is_write in the below conditional.
414 	 *
415 	 * For platforms that doesn't supports coherent icache and do support
416 	 * per page noexec bit, we do setup things such that we do the
417 	 * sync between D/I cache via fault. But that is handled via low level
418 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
419 	 * here in such case.
420 	 *
421 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
422 	 * check should handle those and hence we should fall to the bad_area
423 	 * handling correctly.
424 	 *
425 	 * For embedded with per page exec support that doesn't support coherent
426 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
427 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
428 	 * is conditional for server MMU.
429 	 *
430 	 * For radix, we can get prot fault for autonuma case, because radix
431 	 * page table will have them marked noaccess for user.
432 	 */
433 	if (radix_enabled() || is_write)
434 		return;
435 
436 	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
437 }
438 #else
439 static void sanity_check_fault(bool is_write, bool is_user,
440 			       unsigned long error_code, unsigned long address) { }
441 #endif /* CONFIG_PPC_BOOK3S */
442 
443 /*
444  * Define the correct "is_write" bit in error_code based
445  * on the processor family
446  */
447 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
448 #define page_fault_is_write(__err)	((__err) & ESR_DST)
449 #define page_fault_is_bad(__err)	(0)
450 #else
451 #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
452 #if defined(CONFIG_PPC_8xx)
453 #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
454 #elif defined(CONFIG_PPC64)
455 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
456 #else
457 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
458 #endif
459 #endif
460 
461 /*
462  * For 600- and 800-family processors, the error_code parameter is DSISR
463  * for a data fault, SRR1 for an instruction fault. For 400-family processors
464  * the error_code parameter is ESR for a data fault, 0 for an instruction
465  * fault.
466  * For 64-bit processors, the error_code parameter is
467  *  - DSISR for a non-SLB data access fault,
468  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
469  *  - 0 any SLB fault.
470  *
471  * The return value is 0 if the fault was handled, or the signal
472  * number if this is a kernel fault that can't be handled here.
473  */
474 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
475 			   unsigned long error_code)
476 {
477 	struct vm_area_struct * vma;
478 	struct mm_struct *mm = current->mm;
479 	unsigned int flags = FAULT_FLAG_DEFAULT;
480  	int is_exec = TRAP(regs) == 0x400;
481 	int is_user = user_mode(regs);
482 	int is_write = page_fault_is_write(error_code);
483 	vm_fault_t fault, major = 0;
484 	bool must_retry = false;
485 	bool kprobe_fault = kprobe_page_fault(regs, 11);
486 
487 	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
488 		return 0;
489 
490 	if (unlikely(page_fault_is_bad(error_code))) {
491 		if (is_user) {
492 			_exception(SIGBUS, regs, BUS_OBJERR, address);
493 			return 0;
494 		}
495 		return SIGBUS;
496 	}
497 
498 	/* Additional sanity check(s) */
499 	sanity_check_fault(is_write, is_user, error_code, address);
500 
501 	/*
502 	 * The kernel should never take an execute fault nor should it
503 	 * take a page fault to a kernel address or a page fault to a user
504 	 * address outside of dedicated places
505 	 */
506 	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
507 		return SIGSEGV;
508 
509 	/*
510 	 * If we're in an interrupt, have no user context or are running
511 	 * in a region with pagefaults disabled then we must not take the fault
512 	 */
513 	if (unlikely(faulthandler_disabled() || !mm)) {
514 		if (is_user)
515 			printk_ratelimited(KERN_ERR "Page fault in user mode"
516 					   " with faulthandler_disabled()=%d"
517 					   " mm=%p\n",
518 					   faulthandler_disabled(), mm);
519 		return bad_area_nosemaphore(regs, address);
520 	}
521 
522 	/* We restore the interrupt state now */
523 	if (!arch_irq_disabled_regs(regs))
524 		local_irq_enable();
525 
526 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
527 
528 	/*
529 	 * We want to do this outside mmap_sem, because reading code around nip
530 	 * can result in fault, which will cause a deadlock when called with
531 	 * mmap_sem held
532 	 */
533 	if (is_user)
534 		flags |= FAULT_FLAG_USER;
535 	if (is_write)
536 		flags |= FAULT_FLAG_WRITE;
537 	if (is_exec)
538 		flags |= FAULT_FLAG_INSTRUCTION;
539 
540 	/* When running in the kernel we expect faults to occur only to
541 	 * addresses in user space.  All other faults represent errors in the
542 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
543 	 * erroneous fault occurring in a code path which already holds mmap_sem
544 	 * we will deadlock attempting to validate the fault against the
545 	 * address space.  Luckily the kernel only validly references user
546 	 * space from well defined areas of code, which are listed in the
547 	 * exceptions table.
548 	 *
549 	 * As the vast majority of faults will be valid we will only perform
550 	 * the source reference check when there is a possibility of a deadlock.
551 	 * Attempt to lock the address space, if we cannot we then validate the
552 	 * source.  If this is invalid we can skip the address space check,
553 	 * thus avoiding the deadlock.
554 	 */
555 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
556 		if (!is_user && !search_exception_tables(regs->nip))
557 			return bad_area_nosemaphore(regs, address);
558 
559 retry:
560 		down_read(&mm->mmap_sem);
561 	} else {
562 		/*
563 		 * The above down_read_trylock() might have succeeded in
564 		 * which case we'll have missed the might_sleep() from
565 		 * down_read():
566 		 */
567 		might_sleep();
568 	}
569 
570 	vma = find_vma(mm, address);
571 	if (unlikely(!vma))
572 		return bad_area(regs, address);
573 	if (likely(vma->vm_start <= address))
574 		goto good_area;
575 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
576 		return bad_area(regs, address);
577 
578 	/* The stack is being expanded, check if it's valid */
579 	if (unlikely(bad_stack_expansion(regs, address, vma, flags,
580 					 &must_retry))) {
581 		if (!must_retry)
582 			return bad_area(regs, address);
583 
584 		up_read(&mm->mmap_sem);
585 		if (fault_in_pages_readable((const char __user *)regs->nip,
586 					    sizeof(unsigned int)))
587 			return bad_area_nosemaphore(regs, address);
588 		goto retry;
589 	}
590 
591 	/* Try to expand it */
592 	if (unlikely(expand_stack(vma, address)))
593 		return bad_area(regs, address);
594 
595 good_area:
596 
597 #ifdef CONFIG_PPC_MEM_KEYS
598 	if (unlikely(access_pkey_error(is_write, is_exec,
599 				       (error_code & DSISR_KEYFAULT), vma)))
600 		return bad_access_pkey(regs, address, vma);
601 #endif /* CONFIG_PPC_MEM_KEYS */
602 
603 	if (unlikely(access_error(is_write, is_exec, vma)))
604 		return bad_access(regs, address);
605 
606 	/*
607 	 * If for any reason at all we couldn't handle the fault,
608 	 * make sure we exit gracefully rather than endlessly redo
609 	 * the fault.
610 	 */
611 	fault = handle_mm_fault(vma, address, flags);
612 
613 	major |= fault & VM_FAULT_MAJOR;
614 
615 	if (fault_signal_pending(fault, regs))
616 		return user_mode(regs) ? 0 : SIGBUS;
617 
618 	/*
619 	 * Handle the retry right now, the mmap_sem has been released in that
620 	 * case.
621 	 */
622 	if (unlikely(fault & VM_FAULT_RETRY)) {
623 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
624 			flags |= FAULT_FLAG_TRIED;
625 			goto retry;
626 		}
627 	}
628 
629 	up_read(&current->mm->mmap_sem);
630 
631 	if (unlikely(fault & VM_FAULT_ERROR))
632 		return mm_fault_error(regs, address, fault);
633 
634 	/*
635 	 * Major/minor page fault accounting.
636 	 */
637 	if (major) {
638 		current->maj_flt++;
639 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
640 		cmo_account_page_fault();
641 	} else {
642 		current->min_flt++;
643 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
644 	}
645 	return 0;
646 }
647 NOKPROBE_SYMBOL(__do_page_fault);
648 
649 int do_page_fault(struct pt_regs *regs, unsigned long address,
650 		  unsigned long error_code)
651 {
652 	enum ctx_state prev_state = exception_enter();
653 	int rc = __do_page_fault(regs, address, error_code);
654 	exception_exit(prev_state);
655 	return rc;
656 }
657 NOKPROBE_SYMBOL(do_page_fault);
658 
659 /*
660  * bad_page_fault is called when we have a bad access from the kernel.
661  * It is called from the DSI and ISI handlers in head.S and from some
662  * of the procedures in traps.c.
663  */
664 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
665 {
666 	const struct exception_table_entry *entry;
667 	int is_write = page_fault_is_write(regs->dsisr);
668 
669 	/* Are we prepared to handle this fault?  */
670 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
671 		regs->nip = extable_fixup(entry);
672 		return;
673 	}
674 
675 	/* kernel has accessed a bad area */
676 
677 	switch (TRAP(regs)) {
678 	case 0x300:
679 	case 0x380:
680 	case 0xe00:
681 		pr_alert("BUG: %s on %s at 0x%08lx\n",
682 			 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
683 			 "Unable to handle kernel data access",
684 			 is_write ? "write" : "read", regs->dar);
685 		break;
686 	case 0x400:
687 	case 0x480:
688 		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
689 			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
690 		break;
691 	case 0x600:
692 		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
693 			 regs->dar);
694 		break;
695 	default:
696 		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
697 			 regs->dar);
698 		break;
699 	}
700 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
701 		regs->nip);
702 
703 	if (task_stack_end_corrupted(current))
704 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
705 
706 	die("Kernel access of bad area", regs, sig);
707 }
708