1 /* 2 * PowerPC version 3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 4 * 5 * Derived from "arch/i386/mm/fault.c" 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * Modified by Cort Dougan and Paul Mackerras. 9 * 10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 15 * 2 of the License, or (at your option) any later version. 16 */ 17 18 #include <linux/signal.h> 19 #include <linux/sched.h> 20 #include <linux/kernel.h> 21 #include <linux/errno.h> 22 #include <linux/string.h> 23 #include <linux/types.h> 24 #include <linux/ptrace.h> 25 #include <linux/mman.h> 26 #include <linux/mm.h> 27 #include <linux/interrupt.h> 28 #include <linux/highmem.h> 29 #include <linux/module.h> 30 #include <linux/kprobes.h> 31 #include <linux/kdebug.h> 32 #include <linux/perf_event.h> 33 #include <linux/magic.h> 34 #include <linux/ratelimit.h> 35 #include <linux/context_tracking.h> 36 37 #include <asm/firmware.h> 38 #include <asm/page.h> 39 #include <asm/pgtable.h> 40 #include <asm/mmu.h> 41 #include <asm/mmu_context.h> 42 #include <asm/uaccess.h> 43 #include <asm/tlbflush.h> 44 #include <asm/siginfo.h> 45 #include <asm/debug.h> 46 #include <mm/mmu_decl.h> 47 48 #include "icswx.h" 49 50 #ifdef CONFIG_KPROBES 51 static inline int notify_page_fault(struct pt_regs *regs) 52 { 53 int ret = 0; 54 55 /* kprobe_running() needs smp_processor_id() */ 56 if (!user_mode(regs)) { 57 preempt_disable(); 58 if (kprobe_running() && kprobe_fault_handler(regs, 11)) 59 ret = 1; 60 preempt_enable(); 61 } 62 63 return ret; 64 } 65 #else 66 static inline int notify_page_fault(struct pt_regs *regs) 67 { 68 return 0; 69 } 70 #endif 71 72 /* 73 * Check whether the instruction at regs->nip is a store using 74 * an update addressing form which will update r1. 75 */ 76 static int store_updates_sp(struct pt_regs *regs) 77 { 78 unsigned int inst; 79 80 if (get_user(inst, (unsigned int __user *)regs->nip)) 81 return 0; 82 /* check for 1 in the rA field */ 83 if (((inst >> 16) & 0x1f) != 1) 84 return 0; 85 /* check major opcode */ 86 switch (inst >> 26) { 87 case 37: /* stwu */ 88 case 39: /* stbu */ 89 case 45: /* sthu */ 90 case 53: /* stfsu */ 91 case 55: /* stfdu */ 92 return 1; 93 case 62: /* std or stdu */ 94 return (inst & 3) == 1; 95 case 31: 96 /* check minor opcode */ 97 switch ((inst >> 1) & 0x3ff) { 98 case 181: /* stdux */ 99 case 183: /* stwux */ 100 case 247: /* stbux */ 101 case 439: /* sthux */ 102 case 695: /* stfsux */ 103 case 759: /* stfdux */ 104 return 1; 105 } 106 } 107 return 0; 108 } 109 /* 110 * do_page_fault error handling helpers 111 */ 112 113 #define MM_FAULT_RETURN 0 114 #define MM_FAULT_CONTINUE -1 115 #define MM_FAULT_ERR(sig) (sig) 116 117 static int do_sigbus(struct pt_regs *regs, unsigned long address) 118 { 119 siginfo_t info; 120 121 up_read(¤t->mm->mmap_sem); 122 123 if (user_mode(regs)) { 124 current->thread.trap_nr = BUS_ADRERR; 125 info.si_signo = SIGBUS; 126 info.si_errno = 0; 127 info.si_code = BUS_ADRERR; 128 info.si_addr = (void __user *)address; 129 force_sig_info(SIGBUS, &info, current); 130 return MM_FAULT_RETURN; 131 } 132 return MM_FAULT_ERR(SIGBUS); 133 } 134 135 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault) 136 { 137 /* 138 * Pagefault was interrupted by SIGKILL. We have no reason to 139 * continue the pagefault. 140 */ 141 if (fatal_signal_pending(current)) { 142 /* 143 * If we have retry set, the mmap semaphore will have 144 * alrady been released in __lock_page_or_retry(). Else 145 * we release it now. 146 */ 147 if (!(fault & VM_FAULT_RETRY)) 148 up_read(¤t->mm->mmap_sem); 149 /* Coming from kernel, we need to deal with uaccess fixups */ 150 if (user_mode(regs)) 151 return MM_FAULT_RETURN; 152 return MM_FAULT_ERR(SIGKILL); 153 } 154 155 /* No fault: be happy */ 156 if (!(fault & VM_FAULT_ERROR)) 157 return MM_FAULT_CONTINUE; 158 159 /* Out of memory */ 160 if (fault & VM_FAULT_OOM) { 161 up_read(¤t->mm->mmap_sem); 162 163 /* 164 * We ran out of memory, or some other thing happened to us that 165 * made us unable to handle the page fault gracefully. 166 */ 167 if (!user_mode(regs)) 168 return MM_FAULT_ERR(SIGKILL); 169 pagefault_out_of_memory(); 170 return MM_FAULT_RETURN; 171 } 172 173 /* Bus error. x86 handles HWPOISON here, we'll add this if/when 174 * we support the feature in HW 175 */ 176 if (fault & VM_FAULT_SIGBUS) 177 return do_sigbus(regs, addr); 178 179 /* We don't understand the fault code, this is fatal */ 180 BUG(); 181 return MM_FAULT_CONTINUE; 182 } 183 184 /* 185 * For 600- and 800-family processors, the error_code parameter is DSISR 186 * for a data fault, SRR1 for an instruction fault. For 400-family processors 187 * the error_code parameter is ESR for a data fault, 0 for an instruction 188 * fault. 189 * For 64-bit processors, the error_code parameter is 190 * - DSISR for a non-SLB data access fault, 191 * - SRR1 & 0x08000000 for a non-SLB instruction access fault 192 * - 0 any SLB fault. 193 * 194 * The return value is 0 if the fault was handled, or the signal 195 * number if this is a kernel fault that can't be handled here. 196 */ 197 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address, 198 unsigned long error_code) 199 { 200 enum ctx_state prev_state = exception_enter(); 201 struct vm_area_struct * vma; 202 struct mm_struct *mm = current->mm; 203 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 204 int code = SEGV_MAPERR; 205 int is_write = 0; 206 int trap = TRAP(regs); 207 int is_exec = trap == 0x400; 208 int fault; 209 int rc = 0; 210 211 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) 212 /* 213 * Fortunately the bit assignments in SRR1 for an instruction 214 * fault and DSISR for a data fault are mostly the same for the 215 * bits we are interested in. But there are some bits which 216 * indicate errors in DSISR but can validly be set in SRR1. 217 */ 218 if (trap == 0x400) 219 error_code &= 0x48200000; 220 else 221 is_write = error_code & DSISR_ISSTORE; 222 #else 223 is_write = error_code & ESR_DST; 224 #endif /* CONFIG_4xx || CONFIG_BOOKE */ 225 226 if (is_write) 227 flags |= FAULT_FLAG_WRITE; 228 229 #ifdef CONFIG_PPC_ICSWX 230 /* 231 * we need to do this early because this "data storage 232 * interrupt" does not update the DAR/DEAR so we don't want to 233 * look at it 234 */ 235 if (error_code & ICSWX_DSI_UCT) { 236 rc = acop_handle_fault(regs, address, error_code); 237 if (rc) 238 goto bail; 239 } 240 #endif /* CONFIG_PPC_ICSWX */ 241 242 if (notify_page_fault(regs)) 243 goto bail; 244 245 if (unlikely(debugger_fault_handler(regs))) 246 goto bail; 247 248 /* On a kernel SLB miss we can only check for a valid exception entry */ 249 if (!user_mode(regs) && (address >= TASK_SIZE)) { 250 rc = SIGSEGV; 251 goto bail; 252 } 253 254 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \ 255 defined(CONFIG_PPC_BOOK3S_64)) 256 if (error_code & DSISR_DABRMATCH) { 257 /* breakpoint match */ 258 do_break(regs, address, error_code); 259 goto bail; 260 } 261 #endif 262 263 /* We restore the interrupt state now */ 264 if (!arch_irq_disabled_regs(regs)) 265 local_irq_enable(); 266 267 if (in_atomic() || mm == NULL) { 268 if (!user_mode(regs)) { 269 rc = SIGSEGV; 270 goto bail; 271 } 272 /* in_atomic() in user mode is really bad, 273 as is current->mm == NULL. */ 274 printk(KERN_EMERG "Page fault in user mode with " 275 "in_atomic() = %d mm = %p\n", in_atomic(), mm); 276 printk(KERN_EMERG "NIP = %lx MSR = %lx\n", 277 regs->nip, regs->msr); 278 die("Weird page fault", regs, SIGSEGV); 279 } 280 281 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 282 283 /* When running in the kernel we expect faults to occur only to 284 * addresses in user space. All other faults represent errors in the 285 * kernel and should generate an OOPS. Unfortunately, in the case of an 286 * erroneous fault occurring in a code path which already holds mmap_sem 287 * we will deadlock attempting to validate the fault against the 288 * address space. Luckily the kernel only validly references user 289 * space from well defined areas of code, which are listed in the 290 * exceptions table. 291 * 292 * As the vast majority of faults will be valid we will only perform 293 * the source reference check when there is a possibility of a deadlock. 294 * Attempt to lock the address space, if we cannot we then validate the 295 * source. If this is invalid we can skip the address space check, 296 * thus avoiding the deadlock. 297 */ 298 if (!down_read_trylock(&mm->mmap_sem)) { 299 if (!user_mode(regs) && !search_exception_tables(regs->nip)) 300 goto bad_area_nosemaphore; 301 302 retry: 303 down_read(&mm->mmap_sem); 304 } else { 305 /* 306 * The above down_read_trylock() might have succeeded in 307 * which case we'll have missed the might_sleep() from 308 * down_read(): 309 */ 310 might_sleep(); 311 } 312 313 vma = find_vma(mm, address); 314 if (!vma) 315 goto bad_area; 316 if (vma->vm_start <= address) 317 goto good_area; 318 if (!(vma->vm_flags & VM_GROWSDOWN)) 319 goto bad_area; 320 321 /* 322 * N.B. The POWER/Open ABI allows programs to access up to 323 * 288 bytes below the stack pointer. 324 * The kernel signal delivery code writes up to about 1.5kB 325 * below the stack pointer (r1) before decrementing it. 326 * The exec code can write slightly over 640kB to the stack 327 * before setting the user r1. Thus we allow the stack to 328 * expand to 1MB without further checks. 329 */ 330 if (address + 0x100000 < vma->vm_end) { 331 /* get user regs even if this fault is in kernel mode */ 332 struct pt_regs *uregs = current->thread.regs; 333 if (uregs == NULL) 334 goto bad_area; 335 336 /* 337 * A user-mode access to an address a long way below 338 * the stack pointer is only valid if the instruction 339 * is one which would update the stack pointer to the 340 * address accessed if the instruction completed, 341 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb 342 * (or the byte, halfword, float or double forms). 343 * 344 * If we don't check this then any write to the area 345 * between the last mapped region and the stack will 346 * expand the stack rather than segfaulting. 347 */ 348 if (address + 2048 < uregs->gpr[1] 349 && (!user_mode(regs) || !store_updates_sp(regs))) 350 goto bad_area; 351 } 352 if (expand_stack(vma, address)) 353 goto bad_area; 354 355 good_area: 356 code = SEGV_ACCERR; 357 #if defined(CONFIG_6xx) 358 if (error_code & 0x95700000) 359 /* an error such as lwarx to I/O controller space, 360 address matching DABR, eciwx, etc. */ 361 goto bad_area; 362 #endif /* CONFIG_6xx */ 363 #if defined(CONFIG_8xx) 364 /* 8xx sometimes need to load a invalid/non-present TLBs. 365 * These must be invalidated separately as linux mm don't. 366 */ 367 if (error_code & 0x40000000) /* no translation? */ 368 _tlbil_va(address, 0, 0, 0); 369 370 /* The MPC8xx seems to always set 0x80000000, which is 371 * "undefined". Of those that can be set, this is the only 372 * one which seems bad. 373 */ 374 if (error_code & 0x10000000) 375 /* Guarded storage error. */ 376 goto bad_area; 377 #endif /* CONFIG_8xx */ 378 379 if (is_exec) { 380 #ifdef CONFIG_PPC_STD_MMU 381 /* Protection fault on exec go straight to failure on 382 * Hash based MMUs as they either don't support per-page 383 * execute permission, or if they do, it's handled already 384 * at the hash level. This test would probably have to 385 * be removed if we change the way this works to make hash 386 * processors use the same I/D cache coherency mechanism 387 * as embedded. 388 */ 389 if (error_code & DSISR_PROTFAULT) 390 goto bad_area; 391 #endif /* CONFIG_PPC_STD_MMU */ 392 393 /* 394 * Allow execution from readable areas if the MMU does not 395 * provide separate controls over reading and executing. 396 * 397 * Note: That code used to not be enabled for 4xx/BookE. 398 * It is now as I/D cache coherency for these is done at 399 * set_pte_at() time and I see no reason why the test 400 * below wouldn't be valid on those processors. This -may- 401 * break programs compiled with a really old ABI though. 402 */ 403 if (!(vma->vm_flags & VM_EXEC) && 404 (cpu_has_feature(CPU_FTR_NOEXECUTE) || 405 !(vma->vm_flags & (VM_READ | VM_WRITE)))) 406 goto bad_area; 407 /* a write */ 408 } else if (is_write) { 409 if (!(vma->vm_flags & VM_WRITE)) 410 goto bad_area; 411 /* a read */ 412 } else { 413 /* protection fault */ 414 if (error_code & 0x08000000) 415 goto bad_area; 416 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 417 goto bad_area; 418 } 419 420 /* 421 * If for any reason at all we couldn't handle the fault, 422 * make sure we exit gracefully rather than endlessly redo 423 * the fault. 424 */ 425 fault = handle_mm_fault(mm, vma, address, flags); 426 if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) { 427 rc = mm_fault_error(regs, address, fault); 428 if (rc >= MM_FAULT_RETURN) 429 goto bail; 430 else 431 rc = 0; 432 } 433 434 /* 435 * Major/minor page fault accounting is only done on the 436 * initial attempt. If we go through a retry, it is extremely 437 * likely that the page will be found in page cache at that point. 438 */ 439 if (flags & FAULT_FLAG_ALLOW_RETRY) { 440 if (fault & VM_FAULT_MAJOR) { 441 current->maj_flt++; 442 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 443 regs, address); 444 #ifdef CONFIG_PPC_SMLPAR 445 if (firmware_has_feature(FW_FEATURE_CMO)) { 446 preempt_disable(); 447 get_lppaca()->page_ins += (1 << PAGE_FACTOR); 448 preempt_enable(); 449 } 450 #endif /* CONFIG_PPC_SMLPAR */ 451 } else { 452 current->min_flt++; 453 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 454 regs, address); 455 } 456 if (fault & VM_FAULT_RETRY) { 457 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk 458 * of starvation. */ 459 flags &= ~FAULT_FLAG_ALLOW_RETRY; 460 flags |= FAULT_FLAG_TRIED; 461 goto retry; 462 } 463 } 464 465 up_read(&mm->mmap_sem); 466 goto bail; 467 468 bad_area: 469 up_read(&mm->mmap_sem); 470 471 bad_area_nosemaphore: 472 /* User mode accesses cause a SIGSEGV */ 473 if (user_mode(regs)) { 474 _exception(SIGSEGV, regs, code, address); 475 goto bail; 476 } 477 478 if (is_exec && (error_code & DSISR_PROTFAULT)) 479 printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected" 480 " page (%lx) - exploit attempt? (uid: %d)\n", 481 address, from_kuid(&init_user_ns, current_uid())); 482 483 rc = SIGSEGV; 484 485 bail: 486 exception_exit(prev_state); 487 return rc; 488 489 } 490 491 /* 492 * bad_page_fault is called when we have a bad access from the kernel. 493 * It is called from the DSI and ISI handlers in head.S and from some 494 * of the procedures in traps.c. 495 */ 496 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) 497 { 498 const struct exception_table_entry *entry; 499 unsigned long *stackend; 500 501 /* Are we prepared to handle this fault? */ 502 if ((entry = search_exception_tables(regs->nip)) != NULL) { 503 regs->nip = entry->fixup; 504 return; 505 } 506 507 /* kernel has accessed a bad area */ 508 509 switch (regs->trap) { 510 case 0x300: 511 case 0x380: 512 printk(KERN_ALERT "Unable to handle kernel paging request for " 513 "data at address 0x%08lx\n", regs->dar); 514 break; 515 case 0x400: 516 case 0x480: 517 printk(KERN_ALERT "Unable to handle kernel paging request for " 518 "instruction fetch\n"); 519 break; 520 default: 521 printk(KERN_ALERT "Unable to handle kernel paging request for " 522 "unknown fault\n"); 523 break; 524 } 525 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", 526 regs->nip); 527 528 stackend = end_of_stack(current); 529 if (current != &init_task && *stackend != STACK_END_MAGIC) 530 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 531 532 die("Kernel access of bad area", regs, sig); 533 } 534