xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision ca90578000afb0d8f177ea36f7259a9c3640cf49)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/ptrace.h>
26 #include <linux/mman.h>
27 #include <linux/mm.h>
28 #include <linux/interrupt.h>
29 #include <linux/highmem.h>
30 #include <linux/extable.h>
31 #include <linux/kprobes.h>
32 #include <linux/kdebug.h>
33 #include <linux/perf_event.h>
34 #include <linux/ratelimit.h>
35 #include <linux/context_tracking.h>
36 #include <linux/hugetlb.h>
37 #include <linux/uaccess.h>
38 
39 #include <asm/firmware.h>
40 #include <asm/page.h>
41 #include <asm/pgtable.h>
42 #include <asm/mmu.h>
43 #include <asm/mmu_context.h>
44 #include <asm/tlbflush.h>
45 #include <asm/siginfo.h>
46 #include <asm/debug.h>
47 
48 static inline bool notify_page_fault(struct pt_regs *regs)
49 {
50 	bool ret = false;
51 
52 #ifdef CONFIG_KPROBES
53 	/* kprobe_running() needs smp_processor_id() */
54 	if (!user_mode(regs)) {
55 		preempt_disable();
56 		if (kprobe_running() && kprobe_fault_handler(regs, 11))
57 			ret = true;
58 		preempt_enable();
59 	}
60 #endif /* CONFIG_KPROBES */
61 
62 	if (unlikely(debugger_fault_handler(regs)))
63 		ret = true;
64 
65 	return ret;
66 }
67 
68 /*
69  * Check whether the instruction at regs->nip is a store using
70  * an update addressing form which will update r1.
71  */
72 static bool store_updates_sp(struct pt_regs *regs)
73 {
74 	unsigned int inst;
75 
76 	if (get_user(inst, (unsigned int __user *)regs->nip))
77 		return false;
78 	/* check for 1 in the rA field */
79 	if (((inst >> 16) & 0x1f) != 1)
80 		return false;
81 	/* check major opcode */
82 	switch (inst >> 26) {
83 	case 37:	/* stwu */
84 	case 39:	/* stbu */
85 	case 45:	/* sthu */
86 	case 53:	/* stfsu */
87 	case 55:	/* stfdu */
88 		return true;
89 	case 62:	/* std or stdu */
90 		return (inst & 3) == 1;
91 	case 31:
92 		/* check minor opcode */
93 		switch ((inst >> 1) & 0x3ff) {
94 		case 181:	/* stdux */
95 		case 183:	/* stwux */
96 		case 247:	/* stbux */
97 		case 439:	/* sthux */
98 		case 695:	/* stfsux */
99 		case 759:	/* stfdux */
100 			return true;
101 		}
102 	}
103 	return false;
104 }
105 /*
106  * do_page_fault error handling helpers
107  */
108 
109 static int
110 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code,
111 		int pkey)
112 {
113 	/*
114 	 * If we are in kernel mode, bail out with a SEGV, this will
115 	 * be caught by the assembly which will restore the non-volatile
116 	 * registers before calling bad_page_fault()
117 	 */
118 	if (!user_mode(regs))
119 		return SIGSEGV;
120 
121 	_exception_pkey(SIGSEGV, regs, si_code, address, pkey);
122 
123 	return 0;
124 }
125 
126 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
127 {
128 	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR, 0);
129 }
130 
131 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
132 			int pkey)
133 {
134 	struct mm_struct *mm = current->mm;
135 
136 	/*
137 	 * Something tried to access memory that isn't in our memory map..
138 	 * Fix it, but check if it's kernel or user first..
139 	 */
140 	up_read(&mm->mmap_sem);
141 
142 	return __bad_area_nosemaphore(regs, address, si_code, pkey);
143 }
144 
145 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
146 {
147 	return __bad_area(regs, address, SEGV_MAPERR, 0);
148 }
149 
150 static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
151 				    int pkey)
152 {
153 	return __bad_area_nosemaphore(regs, address, SEGV_PKUERR, pkey);
154 }
155 
156 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
157 {
158 	return __bad_area(regs, address, SEGV_ACCERR, 0);
159 }
160 
161 static int do_sigbus(struct pt_regs *regs, unsigned long address,
162 		     unsigned int fault)
163 {
164 	siginfo_t info;
165 	unsigned int lsb = 0;
166 
167 	if (!user_mode(regs))
168 		return SIGBUS;
169 
170 	current->thread.trap_nr = BUS_ADRERR;
171 	info.si_signo = SIGBUS;
172 	info.si_errno = 0;
173 	info.si_code = BUS_ADRERR;
174 	info.si_addr = (void __user *)address;
175 #ifdef CONFIG_MEMORY_FAILURE
176 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
177 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
178 			current->comm, current->pid, address);
179 		info.si_code = BUS_MCEERR_AR;
180 	}
181 
182 	if (fault & VM_FAULT_HWPOISON_LARGE)
183 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
184 	if (fault & VM_FAULT_HWPOISON)
185 		lsb = PAGE_SHIFT;
186 #endif
187 	info.si_addr_lsb = lsb;
188 	force_sig_info(SIGBUS, &info, current);
189 	return 0;
190 }
191 
192 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
193 {
194 	/*
195 	 * Kernel page fault interrupted by SIGKILL. We have no reason to
196 	 * continue processing.
197 	 */
198 	if (fatal_signal_pending(current) && !user_mode(regs))
199 		return SIGKILL;
200 
201 	/* Out of memory */
202 	if (fault & VM_FAULT_OOM) {
203 		/*
204 		 * We ran out of memory, or some other thing happened to us that
205 		 * made us unable to handle the page fault gracefully.
206 		 */
207 		if (!user_mode(regs))
208 			return SIGSEGV;
209 		pagefault_out_of_memory();
210 	} else {
211 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
212 			     VM_FAULT_HWPOISON_LARGE))
213 			return do_sigbus(regs, addr, fault);
214 		else if (fault & VM_FAULT_SIGSEGV)
215 			return bad_area_nosemaphore(regs, addr);
216 		else
217 			BUG();
218 	}
219 	return 0;
220 }
221 
222 /* Is this a bad kernel fault ? */
223 static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
224 			     unsigned long address)
225 {
226 	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
227 		printk_ratelimited(KERN_CRIT "kernel tried to execute"
228 				   " exec-protected page (%lx) -"
229 				   "exploit attempt? (uid: %d)\n",
230 				   address, from_kuid(&init_user_ns,
231 						      current_uid()));
232 	}
233 	return is_exec || (address >= TASK_SIZE);
234 }
235 
236 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
237 				struct vm_area_struct *vma,
238 				bool store_update_sp)
239 {
240 	/*
241 	 * N.B. The POWER/Open ABI allows programs to access up to
242 	 * 288 bytes below the stack pointer.
243 	 * The kernel signal delivery code writes up to about 1.5kB
244 	 * below the stack pointer (r1) before decrementing it.
245 	 * The exec code can write slightly over 640kB to the stack
246 	 * before setting the user r1.  Thus we allow the stack to
247 	 * expand to 1MB without further checks.
248 	 */
249 	if (address + 0x100000 < vma->vm_end) {
250 		/* get user regs even if this fault is in kernel mode */
251 		struct pt_regs *uregs = current->thread.regs;
252 		if (uregs == NULL)
253 			return true;
254 
255 		/*
256 		 * A user-mode access to an address a long way below
257 		 * the stack pointer is only valid if the instruction
258 		 * is one which would update the stack pointer to the
259 		 * address accessed if the instruction completed,
260 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
261 		 * (or the byte, halfword, float or double forms).
262 		 *
263 		 * If we don't check this then any write to the area
264 		 * between the last mapped region and the stack will
265 		 * expand the stack rather than segfaulting.
266 		 */
267 		if (address + 2048 < uregs->gpr[1] && !store_update_sp)
268 			return true;
269 	}
270 	return false;
271 }
272 
273 static bool access_error(bool is_write, bool is_exec,
274 			 struct vm_area_struct *vma)
275 {
276 	/*
277 	 * Allow execution from readable areas if the MMU does not
278 	 * provide separate controls over reading and executing.
279 	 *
280 	 * Note: That code used to not be enabled for 4xx/BookE.
281 	 * It is now as I/D cache coherency for these is done at
282 	 * set_pte_at() time and I see no reason why the test
283 	 * below wouldn't be valid on those processors. This -may-
284 	 * break programs compiled with a really old ABI though.
285 	 */
286 	if (is_exec) {
287 		return !(vma->vm_flags & VM_EXEC) &&
288 			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
289 			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
290 	}
291 
292 	if (is_write) {
293 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
294 			return true;
295 		return false;
296 	}
297 
298 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
299 		return true;
300 	/*
301 	 * We should ideally do the vma pkey access check here. But in the
302 	 * fault path, handle_mm_fault() also does the same check. To avoid
303 	 * these multiple checks, we skip it here and handle access error due
304 	 * to pkeys later.
305 	 */
306 	return false;
307 }
308 
309 #ifdef CONFIG_PPC_SMLPAR
310 static inline void cmo_account_page_fault(void)
311 {
312 	if (firmware_has_feature(FW_FEATURE_CMO)) {
313 		u32 page_ins;
314 
315 		preempt_disable();
316 		page_ins = be32_to_cpu(get_lppaca()->page_ins);
317 		page_ins += 1 << PAGE_FACTOR;
318 		get_lppaca()->page_ins = cpu_to_be32(page_ins);
319 		preempt_enable();
320 	}
321 }
322 #else
323 static inline void cmo_account_page_fault(void) { }
324 #endif /* CONFIG_PPC_SMLPAR */
325 
326 #ifdef CONFIG_PPC_STD_MMU
327 static void sanity_check_fault(bool is_write, unsigned long error_code)
328 {
329 	/*
330 	 * For hash translation mode, we should never get a
331 	 * PROTFAULT. Any update to pte to reduce access will result in us
332 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
333 	 * fault instead of DSISR_PROTFAULT.
334 	 *
335 	 * A pte update to relax the access will not result in a hash page table
336 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
337 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
338 	 * the special !is_write in the below conditional.
339 	 *
340 	 * For platforms that doesn't supports coherent icache and do support
341 	 * per page noexec bit, we do setup things such that we do the
342 	 * sync between D/I cache via fault. But that is handled via low level
343 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
344 	 * here in such case.
345 	 *
346 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
347 	 * check should handle those and hence we should fall to the bad_area
348 	 * handling correctly.
349 	 *
350 	 * For embedded with per page exec support that doesn't support coherent
351 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
352 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
353 	 * is conditional for server MMU.
354 	 *
355 	 * For radix, we can get prot fault for autonuma case, because radix
356 	 * page table will have them marked noaccess for user.
357 	 */
358 	if (!radix_enabled() && !is_write)
359 		WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
360 }
361 #else
362 static void sanity_check_fault(bool is_write, unsigned long error_code) { }
363 #endif /* CONFIG_PPC_STD_MMU */
364 
365 /*
366  * Define the correct "is_write" bit in error_code based
367  * on the processor family
368  */
369 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
370 #define page_fault_is_write(__err)	((__err) & ESR_DST)
371 #define page_fault_is_bad(__err)	(0)
372 #else
373 #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
374 #if defined(CONFIG_PPC_8xx)
375 #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
376 #elif defined(CONFIG_PPC64)
377 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
378 #else
379 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
380 #endif
381 #endif
382 
383 /*
384  * For 600- and 800-family processors, the error_code parameter is DSISR
385  * for a data fault, SRR1 for an instruction fault. For 400-family processors
386  * the error_code parameter is ESR for a data fault, 0 for an instruction
387  * fault.
388  * For 64-bit processors, the error_code parameter is
389  *  - DSISR for a non-SLB data access fault,
390  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
391  *  - 0 any SLB fault.
392  *
393  * The return value is 0 if the fault was handled, or the signal
394  * number if this is a kernel fault that can't be handled here.
395  */
396 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
397 			   unsigned long error_code)
398 {
399 	struct vm_area_struct * vma;
400 	struct mm_struct *mm = current->mm;
401 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
402  	int is_exec = TRAP(regs) == 0x400;
403 	int is_user = user_mode(regs);
404 	int is_write = page_fault_is_write(error_code);
405 	int fault, major = 0;
406 	bool store_update_sp = false;
407 
408 	if (notify_page_fault(regs))
409 		return 0;
410 
411 	if (unlikely(page_fault_is_bad(error_code))) {
412 		if (is_user) {
413 			_exception(SIGBUS, regs, BUS_OBJERR, address);
414 			return 0;
415 		}
416 		return SIGBUS;
417 	}
418 
419 	/* Additional sanity check(s) */
420 	sanity_check_fault(is_write, error_code);
421 
422 	/*
423 	 * The kernel should never take an execute fault nor should it
424 	 * take a page fault to a kernel address.
425 	 */
426 	if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
427 		return SIGSEGV;
428 
429 	/*
430 	 * If we're in an interrupt, have no user context or are running
431 	 * in a region with pagefaults disabled then we must not take the fault
432 	 */
433 	if (unlikely(faulthandler_disabled() || !mm)) {
434 		if (is_user)
435 			printk_ratelimited(KERN_ERR "Page fault in user mode"
436 					   " with faulthandler_disabled()=%d"
437 					   " mm=%p\n",
438 					   faulthandler_disabled(), mm);
439 		return bad_area_nosemaphore(regs, address);
440 	}
441 
442 	/* We restore the interrupt state now */
443 	if (!arch_irq_disabled_regs(regs))
444 		local_irq_enable();
445 
446 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
447 
448 	if (error_code & DSISR_KEYFAULT)
449 		return bad_key_fault_exception(regs, address,
450 					       get_mm_addr_key(mm, address));
451 
452 	/*
453 	 * We want to do this outside mmap_sem, because reading code around nip
454 	 * can result in fault, which will cause a deadlock when called with
455 	 * mmap_sem held
456 	 */
457 	if (is_write && is_user)
458 		store_update_sp = store_updates_sp(regs);
459 
460 	if (is_user)
461 		flags |= FAULT_FLAG_USER;
462 	if (is_write)
463 		flags |= FAULT_FLAG_WRITE;
464 	if (is_exec)
465 		flags |= FAULT_FLAG_INSTRUCTION;
466 
467 	/* When running in the kernel we expect faults to occur only to
468 	 * addresses in user space.  All other faults represent errors in the
469 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
470 	 * erroneous fault occurring in a code path which already holds mmap_sem
471 	 * we will deadlock attempting to validate the fault against the
472 	 * address space.  Luckily the kernel only validly references user
473 	 * space from well defined areas of code, which are listed in the
474 	 * exceptions table.
475 	 *
476 	 * As the vast majority of faults will be valid we will only perform
477 	 * the source reference check when there is a possibility of a deadlock.
478 	 * Attempt to lock the address space, if we cannot we then validate the
479 	 * source.  If this is invalid we can skip the address space check,
480 	 * thus avoiding the deadlock.
481 	 */
482 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
483 		if (!is_user && !search_exception_tables(regs->nip))
484 			return bad_area_nosemaphore(regs, address);
485 
486 retry:
487 		down_read(&mm->mmap_sem);
488 	} else {
489 		/*
490 		 * The above down_read_trylock() might have succeeded in
491 		 * which case we'll have missed the might_sleep() from
492 		 * down_read():
493 		 */
494 		might_sleep();
495 	}
496 
497 	vma = find_vma(mm, address);
498 	if (unlikely(!vma))
499 		return bad_area(regs, address);
500 	if (likely(vma->vm_start <= address))
501 		goto good_area;
502 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
503 		return bad_area(regs, address);
504 
505 	/* The stack is being expanded, check if it's valid */
506 	if (unlikely(bad_stack_expansion(regs, address, vma, store_update_sp)))
507 		return bad_area(regs, address);
508 
509 	/* Try to expand it */
510 	if (unlikely(expand_stack(vma, address)))
511 		return bad_area(regs, address);
512 
513 good_area:
514 	if (unlikely(access_error(is_write, is_exec, vma)))
515 		return bad_access(regs, address);
516 
517 	/*
518 	 * If for any reason at all we couldn't handle the fault,
519 	 * make sure we exit gracefully rather than endlessly redo
520 	 * the fault.
521 	 */
522 	fault = handle_mm_fault(vma, address, flags);
523 
524 #ifdef CONFIG_PPC_MEM_KEYS
525 	/*
526 	 * we skipped checking for access error due to key earlier.
527 	 * Check that using handle_mm_fault error return.
528 	 */
529 	if (unlikely(fault & VM_FAULT_SIGSEGV) &&
530 		!arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
531 
532 		int pkey = vma_pkey(vma);
533 
534 		up_read(&mm->mmap_sem);
535 		return bad_key_fault_exception(regs, address, pkey);
536 	}
537 #endif /* CONFIG_PPC_MEM_KEYS */
538 
539 	major |= fault & VM_FAULT_MAJOR;
540 
541 	/*
542 	 * Handle the retry right now, the mmap_sem has been released in that
543 	 * case.
544 	 */
545 	if (unlikely(fault & VM_FAULT_RETRY)) {
546 		/* We retry only once */
547 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
548 			/*
549 			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
550 			 * of starvation.
551 			 */
552 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
553 			flags |= FAULT_FLAG_TRIED;
554 			if (!fatal_signal_pending(current))
555 				goto retry;
556 		}
557 
558 		/*
559 		 * User mode? Just return to handle the fatal exception otherwise
560 		 * return to bad_page_fault
561 		 */
562 		return is_user ? 0 : SIGBUS;
563 	}
564 
565 	up_read(&current->mm->mmap_sem);
566 
567 	if (unlikely(fault & VM_FAULT_ERROR))
568 		return mm_fault_error(regs, address, fault);
569 
570 	/*
571 	 * Major/minor page fault accounting.
572 	 */
573 	if (major) {
574 		current->maj_flt++;
575 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
576 		cmo_account_page_fault();
577 	} else {
578 		current->min_flt++;
579 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
580 	}
581 	return 0;
582 }
583 NOKPROBE_SYMBOL(__do_page_fault);
584 
585 int do_page_fault(struct pt_regs *regs, unsigned long address,
586 		  unsigned long error_code)
587 {
588 	enum ctx_state prev_state = exception_enter();
589 	int rc = __do_page_fault(regs, address, error_code);
590 	exception_exit(prev_state);
591 	return rc;
592 }
593 NOKPROBE_SYMBOL(do_page_fault);
594 
595 /*
596  * bad_page_fault is called when we have a bad access from the kernel.
597  * It is called from the DSI and ISI handlers in head.S and from some
598  * of the procedures in traps.c.
599  */
600 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
601 {
602 	const struct exception_table_entry *entry;
603 
604 	/* Are we prepared to handle this fault?  */
605 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
606 		regs->nip = extable_fixup(entry);
607 		return;
608 	}
609 
610 	/* kernel has accessed a bad area */
611 
612 	switch (TRAP(regs)) {
613 	case 0x300:
614 	case 0x380:
615 		printk(KERN_ALERT "Unable to handle kernel paging request for "
616 			"data at address 0x%08lx\n", regs->dar);
617 		break;
618 	case 0x400:
619 	case 0x480:
620 		printk(KERN_ALERT "Unable to handle kernel paging request for "
621 			"instruction fetch\n");
622 		break;
623 	case 0x600:
624 		printk(KERN_ALERT "Unable to handle kernel paging request for "
625 			"unaligned access at address 0x%08lx\n", regs->dar);
626 		break;
627 	default:
628 		printk(KERN_ALERT "Unable to handle kernel paging request for "
629 			"unknown fault\n");
630 		break;
631 	}
632 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
633 		regs->nip);
634 
635 	if (task_stack_end_corrupted(current))
636 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
637 
638 	die("Kernel access of bad area", regs, sig);
639 }
640