xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Derived from "arch/i386/mm/fault.c"
7  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *
9  *  Modified by Cort Dougan and Paul Mackerras.
10  *
11  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12  */
13 
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/pagemap.h>
22 #include <linux/ptrace.h>
23 #include <linux/mman.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/highmem.h>
27 #include <linux/extable.h>
28 #include <linux/kprobes.h>
29 #include <linux/kdebug.h>
30 #include <linux/perf_event.h>
31 #include <linux/ratelimit.h>
32 #include <linux/context_tracking.h>
33 #include <linux/hugetlb.h>
34 #include <linux/uaccess.h>
35 
36 #include <asm/firmware.h>
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/siginfo.h>
42 #include <asm/debug.h>
43 #include <asm/kup.h>
44 
45 /*
46  * Check whether the instruction inst is a store using
47  * an update addressing form which will update r1.
48  */
49 static bool store_updates_sp(unsigned int inst)
50 {
51 	/* check for 1 in the rA field */
52 	if (((inst >> 16) & 0x1f) != 1)
53 		return false;
54 	/* check major opcode */
55 	switch (inst >> 26) {
56 	case OP_STWU:
57 	case OP_STBU:
58 	case OP_STHU:
59 	case OP_STFSU:
60 	case OP_STFDU:
61 		return true;
62 	case OP_STD:	/* std or stdu */
63 		return (inst & 3) == 1;
64 	case OP_31:
65 		/* check minor opcode */
66 		switch ((inst >> 1) & 0x3ff) {
67 		case OP_31_XOP_STDUX:
68 		case OP_31_XOP_STWUX:
69 		case OP_31_XOP_STBUX:
70 		case OP_31_XOP_STHUX:
71 		case OP_31_XOP_STFSUX:
72 		case OP_31_XOP_STFDUX:
73 			return true;
74 		}
75 	}
76 	return false;
77 }
78 /*
79  * do_page_fault error handling helpers
80  */
81 
82 static int
83 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
84 {
85 	/*
86 	 * If we are in kernel mode, bail out with a SEGV, this will
87 	 * be caught by the assembly which will restore the non-volatile
88 	 * registers before calling bad_page_fault()
89 	 */
90 	if (!user_mode(regs))
91 		return SIGSEGV;
92 
93 	_exception(SIGSEGV, regs, si_code, address);
94 
95 	return 0;
96 }
97 
98 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
99 {
100 	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
101 }
102 
103 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
104 {
105 	struct mm_struct *mm = current->mm;
106 
107 	/*
108 	 * Something tried to access memory that isn't in our memory map..
109 	 * Fix it, but check if it's kernel or user first..
110 	 */
111 	up_read(&mm->mmap_sem);
112 
113 	return __bad_area_nosemaphore(regs, address, si_code);
114 }
115 
116 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
117 {
118 	return __bad_area(regs, address, SEGV_MAPERR);
119 }
120 
121 static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
122 				    int pkey)
123 {
124 	/*
125 	 * If we are in kernel mode, bail out with a SEGV, this will
126 	 * be caught by the assembly which will restore the non-volatile
127 	 * registers before calling bad_page_fault()
128 	 */
129 	if (!user_mode(regs))
130 		return SIGSEGV;
131 
132 	_exception_pkey(regs, address, pkey);
133 
134 	return 0;
135 }
136 
137 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
138 {
139 	return __bad_area(regs, address, SEGV_ACCERR);
140 }
141 
142 static int do_sigbus(struct pt_regs *regs, unsigned long address,
143 		     vm_fault_t fault)
144 {
145 	if (!user_mode(regs))
146 		return SIGBUS;
147 
148 	current->thread.trap_nr = BUS_ADRERR;
149 #ifdef CONFIG_MEMORY_FAILURE
150 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
151 		unsigned int lsb = 0; /* shutup gcc */
152 
153 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
154 			current->comm, current->pid, address);
155 
156 		if (fault & VM_FAULT_HWPOISON_LARGE)
157 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
158 		if (fault & VM_FAULT_HWPOISON)
159 			lsb = PAGE_SHIFT;
160 
161 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
162 		return 0;
163 	}
164 
165 #endif
166 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
167 	return 0;
168 }
169 
170 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
171 				vm_fault_t fault)
172 {
173 	/*
174 	 * Kernel page fault interrupted by SIGKILL. We have no reason to
175 	 * continue processing.
176 	 */
177 	if (fatal_signal_pending(current) && !user_mode(regs))
178 		return SIGKILL;
179 
180 	/* Out of memory */
181 	if (fault & VM_FAULT_OOM) {
182 		/*
183 		 * We ran out of memory, or some other thing happened to us that
184 		 * made us unable to handle the page fault gracefully.
185 		 */
186 		if (!user_mode(regs))
187 			return SIGSEGV;
188 		pagefault_out_of_memory();
189 	} else {
190 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
191 			     VM_FAULT_HWPOISON_LARGE))
192 			return do_sigbus(regs, addr, fault);
193 		else if (fault & VM_FAULT_SIGSEGV)
194 			return bad_area_nosemaphore(regs, addr);
195 		else
196 			BUG();
197 	}
198 	return 0;
199 }
200 
201 /* Is this a bad kernel fault ? */
202 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
203 			     unsigned long address, bool is_write)
204 {
205 	int is_exec = TRAP(regs) == 0x400;
206 
207 	/* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
208 	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
209 				      DSISR_PROTFAULT))) {
210 		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
211 				    address >= TASK_SIZE ? "exec-protected" : "user",
212 				    address,
213 				    from_kuid(&init_user_ns, current_uid()));
214 
215 		// Kernel exec fault is always bad
216 		return true;
217 	}
218 
219 	if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) &&
220 	    !search_exception_tables(regs->nip)) {
221 		pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n",
222 				    address,
223 				    from_kuid(&init_user_ns, current_uid()));
224 	}
225 
226 	// Kernel fault on kernel address is bad
227 	if (address >= TASK_SIZE)
228 		return true;
229 
230 	// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
231 	if (!search_exception_tables(regs->nip))
232 		return true;
233 
234 	// Read/write fault in a valid region (the exception table search passed
235 	// above), but blocked by KUAP is bad, it can never succeed.
236 	if (bad_kuap_fault(regs, is_write))
237 		return true;
238 
239 	// What's left? Kernel fault on user in well defined regions (extable
240 	// matched), and allowed by KUAP in the faulting context.
241 	return false;
242 }
243 
244 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
245 				struct vm_area_struct *vma, unsigned int flags,
246 				bool *must_retry)
247 {
248 	/*
249 	 * N.B. The POWER/Open ABI allows programs to access up to
250 	 * 288 bytes below the stack pointer.
251 	 * The kernel signal delivery code writes up to about 1.5kB
252 	 * below the stack pointer (r1) before decrementing it.
253 	 * The exec code can write slightly over 640kB to the stack
254 	 * before setting the user r1.  Thus we allow the stack to
255 	 * expand to 1MB without further checks.
256 	 */
257 	if (address + 0x100000 < vma->vm_end) {
258 		unsigned int __user *nip = (unsigned int __user *)regs->nip;
259 		/* get user regs even if this fault is in kernel mode */
260 		struct pt_regs *uregs = current->thread.regs;
261 		if (uregs == NULL)
262 			return true;
263 
264 		/*
265 		 * A user-mode access to an address a long way below
266 		 * the stack pointer is only valid if the instruction
267 		 * is one which would update the stack pointer to the
268 		 * address accessed if the instruction completed,
269 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
270 		 * (or the byte, halfword, float or double forms).
271 		 *
272 		 * If we don't check this then any write to the area
273 		 * between the last mapped region and the stack will
274 		 * expand the stack rather than segfaulting.
275 		 */
276 		if (address + 2048 >= uregs->gpr[1])
277 			return false;
278 
279 		if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
280 		    access_ok(nip, sizeof(*nip))) {
281 			unsigned int inst;
282 			int res;
283 
284 			pagefault_disable();
285 			res = __get_user_inatomic(inst, nip);
286 			pagefault_enable();
287 			if (!res)
288 				return !store_updates_sp(inst);
289 			*must_retry = true;
290 		}
291 		return true;
292 	}
293 	return false;
294 }
295 
296 static bool access_error(bool is_write, bool is_exec,
297 			 struct vm_area_struct *vma)
298 {
299 	/*
300 	 * Allow execution from readable areas if the MMU does not
301 	 * provide separate controls over reading and executing.
302 	 *
303 	 * Note: That code used to not be enabled for 4xx/BookE.
304 	 * It is now as I/D cache coherency for these is done at
305 	 * set_pte_at() time and I see no reason why the test
306 	 * below wouldn't be valid on those processors. This -may-
307 	 * break programs compiled with a really old ABI though.
308 	 */
309 	if (is_exec) {
310 		return !(vma->vm_flags & VM_EXEC) &&
311 			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
312 			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
313 	}
314 
315 	if (is_write) {
316 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
317 			return true;
318 		return false;
319 	}
320 
321 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
322 		return true;
323 	/*
324 	 * We should ideally do the vma pkey access check here. But in the
325 	 * fault path, handle_mm_fault() also does the same check. To avoid
326 	 * these multiple checks, we skip it here and handle access error due
327 	 * to pkeys later.
328 	 */
329 	return false;
330 }
331 
332 #ifdef CONFIG_PPC_SMLPAR
333 static inline void cmo_account_page_fault(void)
334 {
335 	if (firmware_has_feature(FW_FEATURE_CMO)) {
336 		u32 page_ins;
337 
338 		preempt_disable();
339 		page_ins = be32_to_cpu(get_lppaca()->page_ins);
340 		page_ins += 1 << PAGE_FACTOR;
341 		get_lppaca()->page_ins = cpu_to_be32(page_ins);
342 		preempt_enable();
343 	}
344 }
345 #else
346 static inline void cmo_account_page_fault(void) { }
347 #endif /* CONFIG_PPC_SMLPAR */
348 
349 #ifdef CONFIG_PPC_BOOK3S
350 static void sanity_check_fault(bool is_write, bool is_user,
351 			       unsigned long error_code, unsigned long address)
352 {
353 	/*
354 	 * Userspace trying to access kernel address, we get PROTFAULT for that.
355 	 */
356 	if (is_user && address >= TASK_SIZE) {
357 		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
358 				   current->comm, current->pid, address,
359 				   from_kuid(&init_user_ns, current_uid()));
360 		return;
361 	}
362 
363 	/*
364 	 * For hash translation mode, we should never get a
365 	 * PROTFAULT. Any update to pte to reduce access will result in us
366 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
367 	 * fault instead of DSISR_PROTFAULT.
368 	 *
369 	 * A pte update to relax the access will not result in a hash page table
370 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
371 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
372 	 * the special !is_write in the below conditional.
373 	 *
374 	 * For platforms that doesn't supports coherent icache and do support
375 	 * per page noexec bit, we do setup things such that we do the
376 	 * sync between D/I cache via fault. But that is handled via low level
377 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
378 	 * here in such case.
379 	 *
380 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
381 	 * check should handle those and hence we should fall to the bad_area
382 	 * handling correctly.
383 	 *
384 	 * For embedded with per page exec support that doesn't support coherent
385 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
386 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
387 	 * is conditional for server MMU.
388 	 *
389 	 * For radix, we can get prot fault for autonuma case, because radix
390 	 * page table will have them marked noaccess for user.
391 	 */
392 	if (radix_enabled() || is_write)
393 		return;
394 
395 	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
396 }
397 #else
398 static void sanity_check_fault(bool is_write, bool is_user,
399 			       unsigned long error_code, unsigned long address) { }
400 #endif /* CONFIG_PPC_BOOK3S */
401 
402 /*
403  * Define the correct "is_write" bit in error_code based
404  * on the processor family
405  */
406 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
407 #define page_fault_is_write(__err)	((__err) & ESR_DST)
408 #define page_fault_is_bad(__err)	(0)
409 #else
410 #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
411 #if defined(CONFIG_PPC_8xx)
412 #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
413 #elif defined(CONFIG_PPC64)
414 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
415 #else
416 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
417 #endif
418 #endif
419 
420 /*
421  * For 600- and 800-family processors, the error_code parameter is DSISR
422  * for a data fault, SRR1 for an instruction fault. For 400-family processors
423  * the error_code parameter is ESR for a data fault, 0 for an instruction
424  * fault.
425  * For 64-bit processors, the error_code parameter is
426  *  - DSISR for a non-SLB data access fault,
427  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
428  *  - 0 any SLB fault.
429  *
430  * The return value is 0 if the fault was handled, or the signal
431  * number if this is a kernel fault that can't be handled here.
432  */
433 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
434 			   unsigned long error_code)
435 {
436 	struct vm_area_struct * vma;
437 	struct mm_struct *mm = current->mm;
438 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
439  	int is_exec = TRAP(regs) == 0x400;
440 	int is_user = user_mode(regs);
441 	int is_write = page_fault_is_write(error_code);
442 	vm_fault_t fault, major = 0;
443 	bool must_retry = false;
444 	bool kprobe_fault = kprobe_page_fault(regs, 11);
445 
446 	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
447 		return 0;
448 
449 	if (unlikely(page_fault_is_bad(error_code))) {
450 		if (is_user) {
451 			_exception(SIGBUS, regs, BUS_OBJERR, address);
452 			return 0;
453 		}
454 		return SIGBUS;
455 	}
456 
457 	/* Additional sanity check(s) */
458 	sanity_check_fault(is_write, is_user, error_code, address);
459 
460 	/*
461 	 * The kernel should never take an execute fault nor should it
462 	 * take a page fault to a kernel address or a page fault to a user
463 	 * address outside of dedicated places
464 	 */
465 	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
466 		return SIGSEGV;
467 
468 	/*
469 	 * If we're in an interrupt, have no user context or are running
470 	 * in a region with pagefaults disabled then we must not take the fault
471 	 */
472 	if (unlikely(faulthandler_disabled() || !mm)) {
473 		if (is_user)
474 			printk_ratelimited(KERN_ERR "Page fault in user mode"
475 					   " with faulthandler_disabled()=%d"
476 					   " mm=%p\n",
477 					   faulthandler_disabled(), mm);
478 		return bad_area_nosemaphore(regs, address);
479 	}
480 
481 	/* We restore the interrupt state now */
482 	if (!arch_irq_disabled_regs(regs))
483 		local_irq_enable();
484 
485 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
486 
487 	if (error_code & DSISR_KEYFAULT)
488 		return bad_key_fault_exception(regs, address,
489 					       get_mm_addr_key(mm, address));
490 
491 	/*
492 	 * We want to do this outside mmap_sem, because reading code around nip
493 	 * can result in fault, which will cause a deadlock when called with
494 	 * mmap_sem held
495 	 */
496 	if (is_user)
497 		flags |= FAULT_FLAG_USER;
498 	if (is_write)
499 		flags |= FAULT_FLAG_WRITE;
500 	if (is_exec)
501 		flags |= FAULT_FLAG_INSTRUCTION;
502 
503 	/* When running in the kernel we expect faults to occur only to
504 	 * addresses in user space.  All other faults represent errors in the
505 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
506 	 * erroneous fault occurring in a code path which already holds mmap_sem
507 	 * we will deadlock attempting to validate the fault against the
508 	 * address space.  Luckily the kernel only validly references user
509 	 * space from well defined areas of code, which are listed in the
510 	 * exceptions table.
511 	 *
512 	 * As the vast majority of faults will be valid we will only perform
513 	 * the source reference check when there is a possibility of a deadlock.
514 	 * Attempt to lock the address space, if we cannot we then validate the
515 	 * source.  If this is invalid we can skip the address space check,
516 	 * thus avoiding the deadlock.
517 	 */
518 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
519 		if (!is_user && !search_exception_tables(regs->nip))
520 			return bad_area_nosemaphore(regs, address);
521 
522 retry:
523 		down_read(&mm->mmap_sem);
524 	} else {
525 		/*
526 		 * The above down_read_trylock() might have succeeded in
527 		 * which case we'll have missed the might_sleep() from
528 		 * down_read():
529 		 */
530 		might_sleep();
531 	}
532 
533 	vma = find_vma(mm, address);
534 	if (unlikely(!vma))
535 		return bad_area(regs, address);
536 	if (likely(vma->vm_start <= address))
537 		goto good_area;
538 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
539 		return bad_area(regs, address);
540 
541 	/* The stack is being expanded, check if it's valid */
542 	if (unlikely(bad_stack_expansion(regs, address, vma, flags,
543 					 &must_retry))) {
544 		if (!must_retry)
545 			return bad_area(regs, address);
546 
547 		up_read(&mm->mmap_sem);
548 		if (fault_in_pages_readable((const char __user *)regs->nip,
549 					    sizeof(unsigned int)))
550 			return bad_area_nosemaphore(regs, address);
551 		goto retry;
552 	}
553 
554 	/* Try to expand it */
555 	if (unlikely(expand_stack(vma, address)))
556 		return bad_area(regs, address);
557 
558 good_area:
559 	if (unlikely(access_error(is_write, is_exec, vma)))
560 		return bad_access(regs, address);
561 
562 	/*
563 	 * If for any reason at all we couldn't handle the fault,
564 	 * make sure we exit gracefully rather than endlessly redo
565 	 * the fault.
566 	 */
567 	fault = handle_mm_fault(vma, address, flags);
568 
569 #ifdef CONFIG_PPC_MEM_KEYS
570 	/*
571 	 * we skipped checking for access error due to key earlier.
572 	 * Check that using handle_mm_fault error return.
573 	 */
574 	if (unlikely(fault & VM_FAULT_SIGSEGV) &&
575 		!arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
576 
577 		int pkey = vma_pkey(vma);
578 
579 		up_read(&mm->mmap_sem);
580 		return bad_key_fault_exception(regs, address, pkey);
581 	}
582 #endif /* CONFIG_PPC_MEM_KEYS */
583 
584 	major |= fault & VM_FAULT_MAJOR;
585 
586 	/*
587 	 * Handle the retry right now, the mmap_sem has been released in that
588 	 * case.
589 	 */
590 	if (unlikely(fault & VM_FAULT_RETRY)) {
591 		/* We retry only once */
592 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
593 			/*
594 			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
595 			 * of starvation.
596 			 */
597 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
598 			flags |= FAULT_FLAG_TRIED;
599 			if (!fatal_signal_pending(current))
600 				goto retry;
601 		}
602 
603 		/*
604 		 * User mode? Just return to handle the fatal exception otherwise
605 		 * return to bad_page_fault
606 		 */
607 		return is_user ? 0 : SIGBUS;
608 	}
609 
610 	up_read(&current->mm->mmap_sem);
611 
612 	if (unlikely(fault & VM_FAULT_ERROR))
613 		return mm_fault_error(regs, address, fault);
614 
615 	/*
616 	 * Major/minor page fault accounting.
617 	 */
618 	if (major) {
619 		current->maj_flt++;
620 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
621 		cmo_account_page_fault();
622 	} else {
623 		current->min_flt++;
624 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
625 	}
626 	return 0;
627 }
628 NOKPROBE_SYMBOL(__do_page_fault);
629 
630 int do_page_fault(struct pt_regs *regs, unsigned long address,
631 		  unsigned long error_code)
632 {
633 	enum ctx_state prev_state = exception_enter();
634 	int rc = __do_page_fault(regs, address, error_code);
635 	exception_exit(prev_state);
636 	return rc;
637 }
638 NOKPROBE_SYMBOL(do_page_fault);
639 
640 /*
641  * bad_page_fault is called when we have a bad access from the kernel.
642  * It is called from the DSI and ISI handlers in head.S and from some
643  * of the procedures in traps.c.
644  */
645 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
646 {
647 	const struct exception_table_entry *entry;
648 
649 	/* Are we prepared to handle this fault?  */
650 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
651 		regs->nip = extable_fixup(entry);
652 		return;
653 	}
654 
655 	/* kernel has accessed a bad area */
656 
657 	switch (TRAP(regs)) {
658 	case 0x300:
659 	case 0x380:
660 	case 0xe00:
661 		pr_alert("BUG: %s at 0x%08lx\n",
662 			 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
663 			 "Unable to handle kernel data access", regs->dar);
664 		break;
665 	case 0x400:
666 	case 0x480:
667 		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
668 			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
669 		break;
670 	case 0x600:
671 		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
672 			 regs->dar);
673 		break;
674 	default:
675 		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
676 			 regs->dar);
677 		break;
678 	}
679 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
680 		regs->nip);
681 
682 	if (task_stack_end_corrupted(current))
683 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
684 
685 	die("Kernel access of bad area", regs, sig);
686 }
687