1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerPC version 4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 5 * 6 * Derived from "arch/i386/mm/fault.c" 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * 9 * Modified by Cort Dougan and Paul Mackerras. 10 * 11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) 12 */ 13 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/errno.h> 19 #include <linux/string.h> 20 #include <linux/types.h> 21 #include <linux/pagemap.h> 22 #include <linux/ptrace.h> 23 #include <linux/mman.h> 24 #include <linux/mm.h> 25 #include <linux/interrupt.h> 26 #include <linux/highmem.h> 27 #include <linux/extable.h> 28 #include <linux/kprobes.h> 29 #include <linux/kdebug.h> 30 #include <linux/perf_event.h> 31 #include <linux/ratelimit.h> 32 #include <linux/context_tracking.h> 33 #include <linux/hugetlb.h> 34 #include <linux/uaccess.h> 35 36 #include <asm/firmware.h> 37 #include <asm/page.h> 38 #include <asm/mmu.h> 39 #include <asm/mmu_context.h> 40 #include <asm/siginfo.h> 41 #include <asm/debug.h> 42 #include <asm/kup.h> 43 #include <asm/inst.h> 44 45 /* 46 * Check whether the instruction inst is a store using 47 * an update addressing form which will update r1. 48 */ 49 static bool store_updates_sp(struct ppc_inst inst) 50 { 51 /* check for 1 in the rA field */ 52 if (((ppc_inst_val(inst) >> 16) & 0x1f) != 1) 53 return false; 54 /* check major opcode */ 55 switch (ppc_inst_primary_opcode(inst)) { 56 case OP_STWU: 57 case OP_STBU: 58 case OP_STHU: 59 case OP_STFSU: 60 case OP_STFDU: 61 return true; 62 case OP_STD: /* std or stdu */ 63 return (ppc_inst_val(inst) & 3) == 1; 64 case OP_31: 65 /* check minor opcode */ 66 switch ((ppc_inst_val(inst) >> 1) & 0x3ff) { 67 case OP_31_XOP_STDUX: 68 case OP_31_XOP_STWUX: 69 case OP_31_XOP_STBUX: 70 case OP_31_XOP_STHUX: 71 case OP_31_XOP_STFSUX: 72 case OP_31_XOP_STFDUX: 73 return true; 74 } 75 } 76 return false; 77 } 78 /* 79 * do_page_fault error handling helpers 80 */ 81 82 static int 83 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code) 84 { 85 /* 86 * If we are in kernel mode, bail out with a SEGV, this will 87 * be caught by the assembly which will restore the non-volatile 88 * registers before calling bad_page_fault() 89 */ 90 if (!user_mode(regs)) 91 return SIGSEGV; 92 93 _exception(SIGSEGV, regs, si_code, address); 94 95 return 0; 96 } 97 98 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address) 99 { 100 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR); 101 } 102 103 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code) 104 { 105 struct mm_struct *mm = current->mm; 106 107 /* 108 * Something tried to access memory that isn't in our memory map.. 109 * Fix it, but check if it's kernel or user first.. 110 */ 111 mmap_read_unlock(mm); 112 113 return __bad_area_nosemaphore(regs, address, si_code); 114 } 115 116 static noinline int bad_area(struct pt_regs *regs, unsigned long address) 117 { 118 return __bad_area(regs, address, SEGV_MAPERR); 119 } 120 121 #ifdef CONFIG_PPC_MEM_KEYS 122 static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address, 123 struct vm_area_struct *vma) 124 { 125 struct mm_struct *mm = current->mm; 126 int pkey; 127 128 /* 129 * We don't try to fetch the pkey from page table because reading 130 * page table without locking doesn't guarantee stable pte value. 131 * Hence the pkey value that we return to userspace can be different 132 * from the pkey that actually caused access error. 133 * 134 * It does *not* guarantee that the VMA we find here 135 * was the one that we faulted on. 136 * 137 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 138 * 2. T1 : set AMR to deny access to pkey=4, touches, page 139 * 3. T1 : faults... 140 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 141 * 5. T1 : enters fault handler, takes mmap_lock, etc... 142 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 143 * faulted on a pte with its pkey=4. 144 */ 145 pkey = vma_pkey(vma); 146 147 mmap_read_unlock(mm); 148 149 /* 150 * If we are in kernel mode, bail out with a SEGV, this will 151 * be caught by the assembly which will restore the non-volatile 152 * registers before calling bad_page_fault() 153 */ 154 if (!user_mode(regs)) 155 return SIGSEGV; 156 157 _exception_pkey(regs, address, pkey); 158 159 return 0; 160 } 161 #endif 162 163 static noinline int bad_access(struct pt_regs *regs, unsigned long address) 164 { 165 return __bad_area(regs, address, SEGV_ACCERR); 166 } 167 168 static int do_sigbus(struct pt_regs *regs, unsigned long address, 169 vm_fault_t fault) 170 { 171 if (!user_mode(regs)) 172 return SIGBUS; 173 174 current->thread.trap_nr = BUS_ADRERR; 175 #ifdef CONFIG_MEMORY_FAILURE 176 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 177 unsigned int lsb = 0; /* shutup gcc */ 178 179 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 180 current->comm, current->pid, address); 181 182 if (fault & VM_FAULT_HWPOISON_LARGE) 183 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 184 if (fault & VM_FAULT_HWPOISON) 185 lsb = PAGE_SHIFT; 186 187 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); 188 return 0; 189 } 190 191 #endif 192 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); 193 return 0; 194 } 195 196 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, 197 vm_fault_t fault) 198 { 199 /* 200 * Kernel page fault interrupted by SIGKILL. We have no reason to 201 * continue processing. 202 */ 203 if (fatal_signal_pending(current) && !user_mode(regs)) 204 return SIGKILL; 205 206 /* Out of memory */ 207 if (fault & VM_FAULT_OOM) { 208 /* 209 * We ran out of memory, or some other thing happened to us that 210 * made us unable to handle the page fault gracefully. 211 */ 212 if (!user_mode(regs)) 213 return SIGSEGV; 214 pagefault_out_of_memory(); 215 } else { 216 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 217 VM_FAULT_HWPOISON_LARGE)) 218 return do_sigbus(regs, addr, fault); 219 else if (fault & VM_FAULT_SIGSEGV) 220 return bad_area_nosemaphore(regs, addr); 221 else 222 BUG(); 223 } 224 return 0; 225 } 226 227 /* Is this a bad kernel fault ? */ 228 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code, 229 unsigned long address, bool is_write) 230 { 231 int is_exec = TRAP(regs) == 0x400; 232 233 /* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */ 234 if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT | 235 DSISR_PROTFAULT))) { 236 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n", 237 address >= TASK_SIZE ? "exec-protected" : "user", 238 address, 239 from_kuid(&init_user_ns, current_uid())); 240 241 // Kernel exec fault is always bad 242 return true; 243 } 244 245 if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) && 246 !search_exception_tables(regs->nip)) { 247 pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n", 248 address, 249 from_kuid(&init_user_ns, current_uid())); 250 } 251 252 // Kernel fault on kernel address is bad 253 if (address >= TASK_SIZE) 254 return true; 255 256 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad 257 if (!search_exception_tables(regs->nip)) 258 return true; 259 260 // Read/write fault in a valid region (the exception table search passed 261 // above), but blocked by KUAP is bad, it can never succeed. 262 if (bad_kuap_fault(regs, address, is_write)) 263 return true; 264 265 // What's left? Kernel fault on user in well defined regions (extable 266 // matched), and allowed by KUAP in the faulting context. 267 return false; 268 } 269 270 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address, 271 struct vm_area_struct *vma, unsigned int flags, 272 bool *must_retry) 273 { 274 /* 275 * N.B. The POWER/Open ABI allows programs to access up to 276 * 288 bytes below the stack pointer. 277 * The kernel signal delivery code writes up to about 1.5kB 278 * below the stack pointer (r1) before decrementing it. 279 * The exec code can write slightly over 640kB to the stack 280 * before setting the user r1. Thus we allow the stack to 281 * expand to 1MB without further checks. 282 */ 283 if (address + 0x100000 < vma->vm_end) { 284 struct ppc_inst __user *nip = (struct ppc_inst __user *)regs->nip; 285 /* get user regs even if this fault is in kernel mode */ 286 struct pt_regs *uregs = current->thread.regs; 287 if (uregs == NULL) 288 return true; 289 290 /* 291 * A user-mode access to an address a long way below 292 * the stack pointer is only valid if the instruction 293 * is one which would update the stack pointer to the 294 * address accessed if the instruction completed, 295 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb 296 * (or the byte, halfword, float or double forms). 297 * 298 * If we don't check this then any write to the area 299 * between the last mapped region and the stack will 300 * expand the stack rather than segfaulting. 301 */ 302 if (address + 2048 >= uregs->gpr[1]) 303 return false; 304 305 if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) && 306 access_ok(nip, sizeof(*nip))) { 307 struct ppc_inst inst; 308 309 if (!probe_user_read_inst(&inst, nip)) 310 return !store_updates_sp(inst); 311 *must_retry = true; 312 } 313 return true; 314 } 315 return false; 316 } 317 318 #ifdef CONFIG_PPC_MEM_KEYS 319 static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey, 320 struct vm_area_struct *vma) 321 { 322 /* 323 * Make sure to check the VMA so that we do not perform 324 * faults just to hit a pkey fault as soon as we fill in a 325 * page. Only called for current mm, hence foreign == 0 326 */ 327 if (!arch_vma_access_permitted(vma, is_write, is_exec, 0)) 328 return true; 329 330 return false; 331 } 332 #endif 333 334 static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma) 335 { 336 /* 337 * Allow execution from readable areas if the MMU does not 338 * provide separate controls over reading and executing. 339 * 340 * Note: That code used to not be enabled for 4xx/BookE. 341 * It is now as I/D cache coherency for these is done at 342 * set_pte_at() time and I see no reason why the test 343 * below wouldn't be valid on those processors. This -may- 344 * break programs compiled with a really old ABI though. 345 */ 346 if (is_exec) { 347 return !(vma->vm_flags & VM_EXEC) && 348 (cpu_has_feature(CPU_FTR_NOEXECUTE) || 349 !(vma->vm_flags & (VM_READ | VM_WRITE))); 350 } 351 352 if (is_write) { 353 if (unlikely(!(vma->vm_flags & VM_WRITE))) 354 return true; 355 return false; 356 } 357 358 if (unlikely(!vma_is_accessible(vma))) 359 return true; 360 /* 361 * We should ideally do the vma pkey access check here. But in the 362 * fault path, handle_mm_fault() also does the same check. To avoid 363 * these multiple checks, we skip it here and handle access error due 364 * to pkeys later. 365 */ 366 return false; 367 } 368 369 #ifdef CONFIG_PPC_SMLPAR 370 static inline void cmo_account_page_fault(void) 371 { 372 if (firmware_has_feature(FW_FEATURE_CMO)) { 373 u32 page_ins; 374 375 preempt_disable(); 376 page_ins = be32_to_cpu(get_lppaca()->page_ins); 377 page_ins += 1 << PAGE_FACTOR; 378 get_lppaca()->page_ins = cpu_to_be32(page_ins); 379 preempt_enable(); 380 } 381 } 382 #else 383 static inline void cmo_account_page_fault(void) { } 384 #endif /* CONFIG_PPC_SMLPAR */ 385 386 #ifdef CONFIG_PPC_BOOK3S 387 static void sanity_check_fault(bool is_write, bool is_user, 388 unsigned long error_code, unsigned long address) 389 { 390 /* 391 * Userspace trying to access kernel address, we get PROTFAULT for that. 392 */ 393 if (is_user && address >= TASK_SIZE) { 394 if ((long)address == -1) 395 return; 396 397 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n", 398 current->comm, current->pid, address, 399 from_kuid(&init_user_ns, current_uid())); 400 return; 401 } 402 403 /* 404 * For hash translation mode, we should never get a 405 * PROTFAULT. Any update to pte to reduce access will result in us 406 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE 407 * fault instead of DSISR_PROTFAULT. 408 * 409 * A pte update to relax the access will not result in a hash page table 410 * entry invalidate and hence can result in DSISR_PROTFAULT. 411 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have 412 * the special !is_write in the below conditional. 413 * 414 * For platforms that doesn't supports coherent icache and do support 415 * per page noexec bit, we do setup things such that we do the 416 * sync between D/I cache via fault. But that is handled via low level 417 * hash fault code (hash_page_do_lazy_icache()) and we should not reach 418 * here in such case. 419 * 420 * For wrong access that can result in PROTFAULT, the above vma->vm_flags 421 * check should handle those and hence we should fall to the bad_area 422 * handling correctly. 423 * 424 * For embedded with per page exec support that doesn't support coherent 425 * icache we do get PROTFAULT and we handle that D/I cache sync in 426 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON 427 * is conditional for server MMU. 428 * 429 * For radix, we can get prot fault for autonuma case, because radix 430 * page table will have them marked noaccess for user. 431 */ 432 if (radix_enabled() || is_write) 433 return; 434 435 WARN_ON_ONCE(error_code & DSISR_PROTFAULT); 436 } 437 #else 438 static void sanity_check_fault(bool is_write, bool is_user, 439 unsigned long error_code, unsigned long address) { } 440 #endif /* CONFIG_PPC_BOOK3S */ 441 442 /* 443 * Define the correct "is_write" bit in error_code based 444 * on the processor family 445 */ 446 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) 447 #define page_fault_is_write(__err) ((__err) & ESR_DST) 448 #define page_fault_is_bad(__err) (0) 449 #else 450 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE) 451 #if defined(CONFIG_PPC_8xx) 452 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G) 453 #elif defined(CONFIG_PPC64) 454 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S) 455 #else 456 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S) 457 #endif 458 #endif 459 460 /* 461 * For 600- and 800-family processors, the error_code parameter is DSISR 462 * for a data fault, SRR1 for an instruction fault. For 400-family processors 463 * the error_code parameter is ESR for a data fault, 0 for an instruction 464 * fault. 465 * For 64-bit processors, the error_code parameter is 466 * - DSISR for a non-SLB data access fault, 467 * - SRR1 & 0x08000000 for a non-SLB instruction access fault 468 * - 0 any SLB fault. 469 * 470 * The return value is 0 if the fault was handled, or the signal 471 * number if this is a kernel fault that can't be handled here. 472 */ 473 static int __do_page_fault(struct pt_regs *regs, unsigned long address, 474 unsigned long error_code) 475 { 476 struct vm_area_struct * vma; 477 struct mm_struct *mm = current->mm; 478 unsigned int flags = FAULT_FLAG_DEFAULT; 479 int is_exec = TRAP(regs) == 0x400; 480 int is_user = user_mode(regs); 481 int is_write = page_fault_is_write(error_code); 482 vm_fault_t fault, major = 0; 483 bool must_retry = false; 484 bool kprobe_fault = kprobe_page_fault(regs, 11); 485 486 if (unlikely(debugger_fault_handler(regs) || kprobe_fault)) 487 return 0; 488 489 if (unlikely(page_fault_is_bad(error_code))) { 490 if (is_user) { 491 _exception(SIGBUS, regs, BUS_OBJERR, address); 492 return 0; 493 } 494 return SIGBUS; 495 } 496 497 /* Additional sanity check(s) */ 498 sanity_check_fault(is_write, is_user, error_code, address); 499 500 /* 501 * The kernel should never take an execute fault nor should it 502 * take a page fault to a kernel address or a page fault to a user 503 * address outside of dedicated places 504 */ 505 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) 506 return SIGSEGV; 507 508 /* 509 * If we're in an interrupt, have no user context or are running 510 * in a region with pagefaults disabled then we must not take the fault 511 */ 512 if (unlikely(faulthandler_disabled() || !mm)) { 513 if (is_user) 514 printk_ratelimited(KERN_ERR "Page fault in user mode" 515 " with faulthandler_disabled()=%d" 516 " mm=%p\n", 517 faulthandler_disabled(), mm); 518 return bad_area_nosemaphore(regs, address); 519 } 520 521 /* We restore the interrupt state now */ 522 if (!arch_irq_disabled_regs(regs)) 523 local_irq_enable(); 524 525 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 526 527 /* 528 * We want to do this outside mmap_lock, because reading code around nip 529 * can result in fault, which will cause a deadlock when called with 530 * mmap_lock held 531 */ 532 if (is_user) 533 flags |= FAULT_FLAG_USER; 534 if (is_write) 535 flags |= FAULT_FLAG_WRITE; 536 if (is_exec) 537 flags |= FAULT_FLAG_INSTRUCTION; 538 539 /* When running in the kernel we expect faults to occur only to 540 * addresses in user space. All other faults represent errors in the 541 * kernel and should generate an OOPS. Unfortunately, in the case of an 542 * erroneous fault occurring in a code path which already holds mmap_lock 543 * we will deadlock attempting to validate the fault against the 544 * address space. Luckily the kernel only validly references user 545 * space from well defined areas of code, which are listed in the 546 * exceptions table. 547 * 548 * As the vast majority of faults will be valid we will only perform 549 * the source reference check when there is a possibility of a deadlock. 550 * Attempt to lock the address space, if we cannot we then validate the 551 * source. If this is invalid we can skip the address space check, 552 * thus avoiding the deadlock. 553 */ 554 if (unlikely(!mmap_read_trylock(mm))) { 555 if (!is_user && !search_exception_tables(regs->nip)) 556 return bad_area_nosemaphore(regs, address); 557 558 retry: 559 mmap_read_lock(mm); 560 } else { 561 /* 562 * The above down_read_trylock() might have succeeded in 563 * which case we'll have missed the might_sleep() from 564 * down_read(): 565 */ 566 might_sleep(); 567 } 568 569 vma = find_vma(mm, address); 570 if (unlikely(!vma)) 571 return bad_area(regs, address); 572 if (likely(vma->vm_start <= address)) 573 goto good_area; 574 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) 575 return bad_area(regs, address); 576 577 /* The stack is being expanded, check if it's valid */ 578 if (unlikely(bad_stack_expansion(regs, address, vma, flags, 579 &must_retry))) { 580 if (!must_retry) 581 return bad_area(regs, address); 582 583 mmap_read_unlock(mm); 584 if (fault_in_pages_readable((const char __user *)regs->nip, 585 sizeof(unsigned int))) 586 return bad_area_nosemaphore(regs, address); 587 goto retry; 588 } 589 590 /* Try to expand it */ 591 if (unlikely(expand_stack(vma, address))) 592 return bad_area(regs, address); 593 594 good_area: 595 596 #ifdef CONFIG_PPC_MEM_KEYS 597 if (unlikely(access_pkey_error(is_write, is_exec, 598 (error_code & DSISR_KEYFAULT), vma))) 599 return bad_access_pkey(regs, address, vma); 600 #endif /* CONFIG_PPC_MEM_KEYS */ 601 602 if (unlikely(access_error(is_write, is_exec, vma))) 603 return bad_access(regs, address); 604 605 /* 606 * If for any reason at all we couldn't handle the fault, 607 * make sure we exit gracefully rather than endlessly redo 608 * the fault. 609 */ 610 fault = handle_mm_fault(vma, address, flags); 611 612 major |= fault & VM_FAULT_MAJOR; 613 614 if (fault_signal_pending(fault, regs)) 615 return user_mode(regs) ? 0 : SIGBUS; 616 617 /* 618 * Handle the retry right now, the mmap_lock has been released in that 619 * case. 620 */ 621 if (unlikely(fault & VM_FAULT_RETRY)) { 622 if (flags & FAULT_FLAG_ALLOW_RETRY) { 623 flags |= FAULT_FLAG_TRIED; 624 goto retry; 625 } 626 } 627 628 mmap_read_unlock(current->mm); 629 630 if (unlikely(fault & VM_FAULT_ERROR)) 631 return mm_fault_error(regs, address, fault); 632 633 /* 634 * Major/minor page fault accounting. 635 */ 636 if (major) { 637 current->maj_flt++; 638 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 639 cmo_account_page_fault(); 640 } else { 641 current->min_flt++; 642 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 643 } 644 return 0; 645 } 646 NOKPROBE_SYMBOL(__do_page_fault); 647 648 int do_page_fault(struct pt_regs *regs, unsigned long address, 649 unsigned long error_code) 650 { 651 enum ctx_state prev_state = exception_enter(); 652 int rc = __do_page_fault(regs, address, error_code); 653 exception_exit(prev_state); 654 return rc; 655 } 656 NOKPROBE_SYMBOL(do_page_fault); 657 658 /* 659 * bad_page_fault is called when we have a bad access from the kernel. 660 * It is called from the DSI and ISI handlers in head.S and from some 661 * of the procedures in traps.c. 662 */ 663 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) 664 { 665 const struct exception_table_entry *entry; 666 int is_write = page_fault_is_write(regs->dsisr); 667 668 /* Are we prepared to handle this fault? */ 669 if ((entry = search_exception_tables(regs->nip)) != NULL) { 670 regs->nip = extable_fixup(entry); 671 return; 672 } 673 674 /* kernel has accessed a bad area */ 675 676 switch (TRAP(regs)) { 677 case 0x300: 678 case 0x380: 679 case 0xe00: 680 pr_alert("BUG: %s on %s at 0x%08lx\n", 681 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" : 682 "Unable to handle kernel data access", 683 is_write ? "write" : "read", regs->dar); 684 break; 685 case 0x400: 686 case 0x480: 687 pr_alert("BUG: Unable to handle kernel instruction fetch%s", 688 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n"); 689 break; 690 case 0x600: 691 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n", 692 regs->dar); 693 break; 694 default: 695 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n", 696 regs->dar); 697 break; 698 } 699 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", 700 regs->nip); 701 702 if (task_stack_end_corrupted(current)) 703 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 704 705 die("Kernel access of bad area", regs, sig); 706 } 707