xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision 82ced6fd)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 
33 #include <asm/firmware.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/mmu.h>
37 #include <asm/mmu_context.h>
38 #include <asm/system.h>
39 #include <asm/uaccess.h>
40 #include <asm/tlbflush.h>
41 #include <asm/siginfo.h>
42 
43 
44 #ifdef CONFIG_KPROBES
45 static inline int notify_page_fault(struct pt_regs *regs)
46 {
47 	int ret = 0;
48 
49 	/* kprobe_running() needs smp_processor_id() */
50 	if (!user_mode(regs)) {
51 		preempt_disable();
52 		if (kprobe_running() && kprobe_fault_handler(regs, 11))
53 			ret = 1;
54 		preempt_enable();
55 	}
56 
57 	return ret;
58 }
59 #else
60 static inline int notify_page_fault(struct pt_regs *regs)
61 {
62 	return 0;
63 }
64 #endif
65 
66 /*
67  * Check whether the instruction at regs->nip is a store using
68  * an update addressing form which will update r1.
69  */
70 static int store_updates_sp(struct pt_regs *regs)
71 {
72 	unsigned int inst;
73 
74 	if (get_user(inst, (unsigned int __user *)regs->nip))
75 		return 0;
76 	/* check for 1 in the rA field */
77 	if (((inst >> 16) & 0x1f) != 1)
78 		return 0;
79 	/* check major opcode */
80 	switch (inst >> 26) {
81 	case 37:	/* stwu */
82 	case 39:	/* stbu */
83 	case 45:	/* sthu */
84 	case 53:	/* stfsu */
85 	case 55:	/* stfdu */
86 		return 1;
87 	case 62:	/* std or stdu */
88 		return (inst & 3) == 1;
89 	case 31:
90 		/* check minor opcode */
91 		switch ((inst >> 1) & 0x3ff) {
92 		case 181:	/* stdux */
93 		case 183:	/* stwux */
94 		case 247:	/* stbux */
95 		case 439:	/* sthux */
96 		case 695:	/* stfsux */
97 		case 759:	/* stfdux */
98 			return 1;
99 		}
100 	}
101 	return 0;
102 }
103 
104 /*
105  * For 600- and 800-family processors, the error_code parameter is DSISR
106  * for a data fault, SRR1 for an instruction fault. For 400-family processors
107  * the error_code parameter is ESR for a data fault, 0 for an instruction
108  * fault.
109  * For 64-bit processors, the error_code parameter is
110  *  - DSISR for a non-SLB data access fault,
111  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
112  *  - 0 any SLB fault.
113  *
114  * The return value is 0 if the fault was handled, or the signal
115  * number if this is a kernel fault that can't be handled here.
116  */
117 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
118 			    unsigned long error_code)
119 {
120 	struct vm_area_struct * vma;
121 	struct mm_struct *mm = current->mm;
122 	siginfo_t info;
123 	int code = SEGV_MAPERR;
124 	int is_write = 0, ret;
125 	int trap = TRAP(regs);
126  	int is_exec = trap == 0x400;
127 
128 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
129 	/*
130 	 * Fortunately the bit assignments in SRR1 for an instruction
131 	 * fault and DSISR for a data fault are mostly the same for the
132 	 * bits we are interested in.  But there are some bits which
133 	 * indicate errors in DSISR but can validly be set in SRR1.
134 	 */
135 	if (trap == 0x400)
136 		error_code &= 0x48200000;
137 	else
138 		is_write = error_code & DSISR_ISSTORE;
139 #else
140 	is_write = error_code & ESR_DST;
141 #endif /* CONFIG_4xx || CONFIG_BOOKE */
142 
143 	if (notify_page_fault(regs))
144 		return 0;
145 
146 	if (unlikely(debugger_fault_handler(regs)))
147 		return 0;
148 
149 	/* On a kernel SLB miss we can only check for a valid exception entry */
150 	if (!user_mode(regs) && (address >= TASK_SIZE))
151 		return SIGSEGV;
152 
153 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
154   	if (error_code & DSISR_DABRMATCH) {
155 		/* DABR match */
156 		do_dabr(regs, address, error_code);
157 		return 0;
158 	}
159 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
160 
161 	if (in_atomic() || mm == NULL) {
162 		if (!user_mode(regs))
163 			return SIGSEGV;
164 		/* in_atomic() in user mode is really bad,
165 		   as is current->mm == NULL. */
166 		printk(KERN_EMERG "Page fault in user mode with "
167 		       "in_atomic() = %d mm = %p\n", in_atomic(), mm);
168 		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
169 		       regs->nip, regs->msr);
170 		die("Weird page fault", regs, SIGSEGV);
171 	}
172 
173 	/* When running in the kernel we expect faults to occur only to
174 	 * addresses in user space.  All other faults represent errors in the
175 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
176 	 * erroneous fault occurring in a code path which already holds mmap_sem
177 	 * we will deadlock attempting to validate the fault against the
178 	 * address space.  Luckily the kernel only validly references user
179 	 * space from well defined areas of code, which are listed in the
180 	 * exceptions table.
181 	 *
182 	 * As the vast majority of faults will be valid we will only perform
183 	 * the source reference check when there is a possibility of a deadlock.
184 	 * Attempt to lock the address space, if we cannot we then validate the
185 	 * source.  If this is invalid we can skip the address space check,
186 	 * thus avoiding the deadlock.
187 	 */
188 	if (!down_read_trylock(&mm->mmap_sem)) {
189 		if (!user_mode(regs) && !search_exception_tables(regs->nip))
190 			goto bad_area_nosemaphore;
191 
192 		down_read(&mm->mmap_sem);
193 	}
194 
195 	vma = find_vma(mm, address);
196 	if (!vma)
197 		goto bad_area;
198 	if (vma->vm_start <= address)
199 		goto good_area;
200 	if (!(vma->vm_flags & VM_GROWSDOWN))
201 		goto bad_area;
202 
203 	/*
204 	 * N.B. The POWER/Open ABI allows programs to access up to
205 	 * 288 bytes below the stack pointer.
206 	 * The kernel signal delivery code writes up to about 1.5kB
207 	 * below the stack pointer (r1) before decrementing it.
208 	 * The exec code can write slightly over 640kB to the stack
209 	 * before setting the user r1.  Thus we allow the stack to
210 	 * expand to 1MB without further checks.
211 	 */
212 	if (address + 0x100000 < vma->vm_end) {
213 		/* get user regs even if this fault is in kernel mode */
214 		struct pt_regs *uregs = current->thread.regs;
215 		if (uregs == NULL)
216 			goto bad_area;
217 
218 		/*
219 		 * A user-mode access to an address a long way below
220 		 * the stack pointer is only valid if the instruction
221 		 * is one which would update the stack pointer to the
222 		 * address accessed if the instruction completed,
223 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
224 		 * (or the byte, halfword, float or double forms).
225 		 *
226 		 * If we don't check this then any write to the area
227 		 * between the last mapped region and the stack will
228 		 * expand the stack rather than segfaulting.
229 		 */
230 		if (address + 2048 < uregs->gpr[1]
231 		    && (!user_mode(regs) || !store_updates_sp(regs)))
232 			goto bad_area;
233 	}
234 	if (expand_stack(vma, address))
235 		goto bad_area;
236 
237 good_area:
238 	code = SEGV_ACCERR;
239 #if defined(CONFIG_6xx)
240 	if (error_code & 0x95700000)
241 		/* an error such as lwarx to I/O controller space,
242 		   address matching DABR, eciwx, etc. */
243 		goto bad_area;
244 #endif /* CONFIG_6xx */
245 #if defined(CONFIG_8xx)
246         /* The MPC8xx seems to always set 0x80000000, which is
247          * "undefined".  Of those that can be set, this is the only
248          * one which seems bad.
249          */
250 	if (error_code & 0x10000000)
251                 /* Guarded storage error. */
252 		goto bad_area;
253 #endif /* CONFIG_8xx */
254 
255 	if (is_exec) {
256 #ifdef CONFIG_PPC_STD_MMU
257 		/* Protection fault on exec go straight to failure on
258 		 * Hash based MMUs as they either don't support per-page
259 		 * execute permission, or if they do, it's handled already
260 		 * at the hash level. This test would probably have to
261 		 * be removed if we change the way this works to make hash
262 		 * processors use the same I/D cache coherency mechanism
263 		 * as embedded.
264 		 */
265 		if (error_code & DSISR_PROTFAULT)
266 			goto bad_area;
267 #endif /* CONFIG_PPC_STD_MMU */
268 
269 		/*
270 		 * Allow execution from readable areas if the MMU does not
271 		 * provide separate controls over reading and executing.
272 		 *
273 		 * Note: That code used to not be enabled for 4xx/BookE.
274 		 * It is now as I/D cache coherency for these is done at
275 		 * set_pte_at() time and I see no reason why the test
276 		 * below wouldn't be valid on those processors. This -may-
277 		 * break programs compiled with a really old ABI though.
278 		 */
279 		if (!(vma->vm_flags & VM_EXEC) &&
280 		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
281 		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
282 			goto bad_area;
283 	/* a write */
284 	} else if (is_write) {
285 		if (!(vma->vm_flags & VM_WRITE))
286 			goto bad_area;
287 	/* a read */
288 	} else {
289 		/* protection fault */
290 		if (error_code & 0x08000000)
291 			goto bad_area;
292 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
293 			goto bad_area;
294 	}
295 
296 	/*
297 	 * If for any reason at all we couldn't handle the fault,
298 	 * make sure we exit gracefully rather than endlessly redo
299 	 * the fault.
300 	 */
301  survive:
302 	ret = handle_mm_fault(mm, vma, address, is_write);
303 	if (unlikely(ret & VM_FAULT_ERROR)) {
304 		if (ret & VM_FAULT_OOM)
305 			goto out_of_memory;
306 		else if (ret & VM_FAULT_SIGBUS)
307 			goto do_sigbus;
308 		BUG();
309 	}
310 	if (ret & VM_FAULT_MAJOR) {
311 		current->maj_flt++;
312 #ifdef CONFIG_PPC_SMLPAR
313 		if (firmware_has_feature(FW_FEATURE_CMO)) {
314 			preempt_disable();
315 			get_lppaca()->page_ins += (1 << PAGE_FACTOR);
316 			preempt_enable();
317 		}
318 #endif
319 	} else
320 		current->min_flt++;
321 	up_read(&mm->mmap_sem);
322 	return 0;
323 
324 bad_area:
325 	up_read(&mm->mmap_sem);
326 
327 bad_area_nosemaphore:
328 	/* User mode accesses cause a SIGSEGV */
329 	if (user_mode(regs)) {
330 		_exception(SIGSEGV, regs, code, address);
331 		return 0;
332 	}
333 
334 	if (is_exec && (error_code & DSISR_PROTFAULT)
335 	    && printk_ratelimit())
336 		printk(KERN_CRIT "kernel tried to execute NX-protected"
337 		       " page (%lx) - exploit attempt? (uid: %d)\n",
338 		       address, current_uid());
339 
340 	return SIGSEGV;
341 
342 /*
343  * We ran out of memory, or some other thing happened to us that made
344  * us unable to handle the page fault gracefully.
345  */
346 out_of_memory:
347 	up_read(&mm->mmap_sem);
348 	if (is_global_init(current)) {
349 		yield();
350 		down_read(&mm->mmap_sem);
351 		goto survive;
352 	}
353 	printk("VM: killing process %s\n", current->comm);
354 	if (user_mode(regs))
355 		do_group_exit(SIGKILL);
356 	return SIGKILL;
357 
358 do_sigbus:
359 	up_read(&mm->mmap_sem);
360 	if (user_mode(regs)) {
361 		info.si_signo = SIGBUS;
362 		info.si_errno = 0;
363 		info.si_code = BUS_ADRERR;
364 		info.si_addr = (void __user *)address;
365 		force_sig_info(SIGBUS, &info, current);
366 		return 0;
367 	}
368 	return SIGBUS;
369 }
370 
371 /*
372  * bad_page_fault is called when we have a bad access from the kernel.
373  * It is called from the DSI and ISI handlers in head.S and from some
374  * of the procedures in traps.c.
375  */
376 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
377 {
378 	const struct exception_table_entry *entry;
379 
380 	/* Are we prepared to handle this fault?  */
381 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
382 		regs->nip = entry->fixup;
383 		return;
384 	}
385 
386 	/* kernel has accessed a bad area */
387 
388 	switch (regs->trap) {
389 	case 0x300:
390 	case 0x380:
391 		printk(KERN_ALERT "Unable to handle kernel paging request for "
392 			"data at address 0x%08lx\n", regs->dar);
393 		break;
394 	case 0x400:
395 	case 0x480:
396 		printk(KERN_ALERT "Unable to handle kernel paging request for "
397 			"instruction fetch\n");
398 		break;
399 	default:
400 		printk(KERN_ALERT "Unable to handle kernel paging request for "
401 			"unknown fault\n");
402 		break;
403 	}
404 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
405 		regs->nip);
406 
407 	die("Kernel access of bad area", regs, sig);
408 }
409