1 /* 2 * PowerPC version 3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 4 * 5 * Derived from "arch/i386/mm/fault.c" 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * Modified by Cort Dougan and Paul Mackerras. 9 * 10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 15 * 2 of the License, or (at your option) any later version. 16 */ 17 18 #include <linux/signal.h> 19 #include <linux/sched.h> 20 #include <linux/sched/task_stack.h> 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/string.h> 24 #include <linux/types.h> 25 #include <linux/ptrace.h> 26 #include <linux/mman.h> 27 #include <linux/mm.h> 28 #include <linux/interrupt.h> 29 #include <linux/highmem.h> 30 #include <linux/extable.h> 31 #include <linux/kprobes.h> 32 #include <linux/kdebug.h> 33 #include <linux/perf_event.h> 34 #include <linux/ratelimit.h> 35 #include <linux/context_tracking.h> 36 #include <linux/hugetlb.h> 37 #include <linux/uaccess.h> 38 39 #include <asm/firmware.h> 40 #include <asm/page.h> 41 #include <asm/pgtable.h> 42 #include <asm/mmu.h> 43 #include <asm/mmu_context.h> 44 #include <asm/tlbflush.h> 45 #include <asm/siginfo.h> 46 #include <asm/debug.h> 47 48 #include "icswx.h" 49 50 #ifdef CONFIG_KPROBES 51 static inline int notify_page_fault(struct pt_regs *regs) 52 { 53 int ret = 0; 54 55 /* kprobe_running() needs smp_processor_id() */ 56 if (!user_mode(regs)) { 57 preempt_disable(); 58 if (kprobe_running() && kprobe_fault_handler(regs, 11)) 59 ret = 1; 60 preempt_enable(); 61 } 62 63 return ret; 64 } 65 #else 66 static inline int notify_page_fault(struct pt_regs *regs) 67 { 68 return 0; 69 } 70 #endif 71 72 /* 73 * Check whether the instruction at regs->nip is a store using 74 * an update addressing form which will update r1. 75 */ 76 static int store_updates_sp(struct pt_regs *regs) 77 { 78 unsigned int inst; 79 80 if (get_user(inst, (unsigned int __user *)regs->nip)) 81 return 0; 82 /* check for 1 in the rA field */ 83 if (((inst >> 16) & 0x1f) != 1) 84 return 0; 85 /* check major opcode */ 86 switch (inst >> 26) { 87 case 37: /* stwu */ 88 case 39: /* stbu */ 89 case 45: /* sthu */ 90 case 53: /* stfsu */ 91 case 55: /* stfdu */ 92 return 1; 93 case 62: /* std or stdu */ 94 return (inst & 3) == 1; 95 case 31: 96 /* check minor opcode */ 97 switch ((inst >> 1) & 0x3ff) { 98 case 181: /* stdux */ 99 case 183: /* stwux */ 100 case 247: /* stbux */ 101 case 439: /* sthux */ 102 case 695: /* stfsux */ 103 case 759: /* stfdux */ 104 return 1; 105 } 106 } 107 return 0; 108 } 109 /* 110 * do_page_fault error handling helpers 111 */ 112 113 #define MM_FAULT_RETURN 0 114 #define MM_FAULT_CONTINUE -1 115 #define MM_FAULT_ERR(sig) (sig) 116 117 static int do_sigbus(struct pt_regs *regs, unsigned long address, 118 unsigned int fault) 119 { 120 siginfo_t info; 121 unsigned int lsb = 0; 122 123 if (!user_mode(regs)) 124 return MM_FAULT_ERR(SIGBUS); 125 126 current->thread.trap_nr = BUS_ADRERR; 127 info.si_signo = SIGBUS; 128 info.si_errno = 0; 129 info.si_code = BUS_ADRERR; 130 info.si_addr = (void __user *)address; 131 #ifdef CONFIG_MEMORY_FAILURE 132 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 133 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 134 current->comm, current->pid, address); 135 info.si_code = BUS_MCEERR_AR; 136 } 137 138 if (fault & VM_FAULT_HWPOISON_LARGE) 139 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 140 if (fault & VM_FAULT_HWPOISON) 141 lsb = PAGE_SHIFT; 142 #endif 143 info.si_addr_lsb = lsb; 144 force_sig_info(SIGBUS, &info, current); 145 return MM_FAULT_RETURN; 146 } 147 148 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault) 149 { 150 /* 151 * Pagefault was interrupted by SIGKILL. We have no reason to 152 * continue the pagefault. 153 */ 154 if (fatal_signal_pending(current)) { 155 /* Coming from kernel, we need to deal with uaccess fixups */ 156 if (user_mode(regs)) 157 return MM_FAULT_RETURN; 158 return MM_FAULT_ERR(SIGKILL); 159 } 160 161 /* No fault: be happy */ 162 if (!(fault & VM_FAULT_ERROR)) 163 return MM_FAULT_CONTINUE; 164 165 /* Out of memory */ 166 if (fault & VM_FAULT_OOM) { 167 /* 168 * We ran out of memory, or some other thing happened to us that 169 * made us unable to handle the page fault gracefully. 170 */ 171 if (!user_mode(regs)) 172 return MM_FAULT_ERR(SIGKILL); 173 pagefault_out_of_memory(); 174 return MM_FAULT_RETURN; 175 } 176 177 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) 178 return do_sigbus(regs, addr, fault); 179 180 /* We don't understand the fault code, this is fatal */ 181 BUG(); 182 return MM_FAULT_CONTINUE; 183 } 184 185 /* 186 * For 600- and 800-family processors, the error_code parameter is DSISR 187 * for a data fault, SRR1 for an instruction fault. For 400-family processors 188 * the error_code parameter is ESR for a data fault, 0 for an instruction 189 * fault. 190 * For 64-bit processors, the error_code parameter is 191 * - DSISR for a non-SLB data access fault, 192 * - SRR1 & 0x08000000 for a non-SLB instruction access fault 193 * - 0 any SLB fault. 194 * 195 * The return value is 0 if the fault was handled, or the signal 196 * number if this is a kernel fault that can't be handled here. 197 */ 198 int do_page_fault(struct pt_regs *regs, unsigned long address, 199 unsigned long error_code) 200 { 201 enum ctx_state prev_state = exception_enter(); 202 struct vm_area_struct * vma; 203 struct mm_struct *mm = current->mm; 204 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 205 int code = SEGV_MAPERR; 206 int is_write = 0; 207 int trap = TRAP(regs); 208 int is_exec = trap == 0x400; 209 int is_user = user_mode(regs); 210 int fault; 211 int rc = 0, store_update_sp = 0; 212 213 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) 214 /* 215 * Fortunately the bit assignments in SRR1 for an instruction 216 * fault and DSISR for a data fault are mostly the same for the 217 * bits we are interested in. But there are some bits which 218 * indicate errors in DSISR but can validly be set in SRR1. 219 */ 220 if (is_exec) 221 error_code &= 0x48200000; 222 else 223 is_write = error_code & DSISR_ISSTORE; 224 #else 225 is_write = error_code & ESR_DST; 226 #endif /* CONFIG_4xx || CONFIG_BOOKE */ 227 228 #ifdef CONFIG_PPC_ICSWX 229 /* 230 * we need to do this early because this "data storage 231 * interrupt" does not update the DAR/DEAR so we don't want to 232 * look at it 233 */ 234 if (error_code & ICSWX_DSI_UCT) { 235 rc = acop_handle_fault(regs, address, error_code); 236 if (rc) 237 goto bail; 238 } 239 #endif /* CONFIG_PPC_ICSWX */ 240 241 if (notify_page_fault(regs)) 242 goto bail; 243 244 if (unlikely(debugger_fault_handler(regs))) 245 goto bail; 246 247 /* 248 * The kernel should never take an execute fault nor should it 249 * take a page fault to a kernel address. 250 */ 251 if (!is_user && (is_exec || (address >= TASK_SIZE))) { 252 rc = SIGSEGV; 253 goto bail; 254 } 255 256 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \ 257 defined(CONFIG_PPC_BOOK3S_64) || defined(CONFIG_PPC_8xx)) 258 if (error_code & DSISR_DABRMATCH) { 259 /* breakpoint match */ 260 do_break(regs, address, error_code); 261 goto bail; 262 } 263 #endif 264 265 /* We restore the interrupt state now */ 266 if (!arch_irq_disabled_regs(regs)) 267 local_irq_enable(); 268 269 if (faulthandler_disabled() || mm == NULL) { 270 if (!is_user) { 271 rc = SIGSEGV; 272 goto bail; 273 } 274 /* faulthandler_disabled() in user mode is really bad, 275 as is current->mm == NULL. */ 276 printk(KERN_EMERG "Page fault in user mode with " 277 "faulthandler_disabled() = %d mm = %p\n", 278 faulthandler_disabled(), mm); 279 printk(KERN_EMERG "NIP = %lx MSR = %lx\n", 280 regs->nip, regs->msr); 281 die("Weird page fault", regs, SIGSEGV); 282 } 283 284 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 285 286 /* 287 * We want to do this outside mmap_sem, because reading code around nip 288 * can result in fault, which will cause a deadlock when called with 289 * mmap_sem held 290 */ 291 if (is_write && is_user) 292 store_update_sp = store_updates_sp(regs); 293 294 if (is_user) 295 flags |= FAULT_FLAG_USER; 296 297 /* When running in the kernel we expect faults to occur only to 298 * addresses in user space. All other faults represent errors in the 299 * kernel and should generate an OOPS. Unfortunately, in the case of an 300 * erroneous fault occurring in a code path which already holds mmap_sem 301 * we will deadlock attempting to validate the fault against the 302 * address space. Luckily the kernel only validly references user 303 * space from well defined areas of code, which are listed in the 304 * exceptions table. 305 * 306 * As the vast majority of faults will be valid we will only perform 307 * the source reference check when there is a possibility of a deadlock. 308 * Attempt to lock the address space, if we cannot we then validate the 309 * source. If this is invalid we can skip the address space check, 310 * thus avoiding the deadlock. 311 */ 312 if (!down_read_trylock(&mm->mmap_sem)) { 313 if (!is_user && !search_exception_tables(regs->nip)) 314 goto bad_area_nosemaphore; 315 316 retry: 317 down_read(&mm->mmap_sem); 318 } else { 319 /* 320 * The above down_read_trylock() might have succeeded in 321 * which case we'll have missed the might_sleep() from 322 * down_read(): 323 */ 324 might_sleep(); 325 } 326 327 vma = find_vma(mm, address); 328 if (!vma) 329 goto bad_area; 330 if (vma->vm_start <= address) 331 goto good_area; 332 if (!(vma->vm_flags & VM_GROWSDOWN)) 333 goto bad_area; 334 335 /* 336 * N.B. The POWER/Open ABI allows programs to access up to 337 * 288 bytes below the stack pointer. 338 * The kernel signal delivery code writes up to about 1.5kB 339 * below the stack pointer (r1) before decrementing it. 340 * The exec code can write slightly over 640kB to the stack 341 * before setting the user r1. Thus we allow the stack to 342 * expand to 1MB without further checks. 343 */ 344 if (address + 0x100000 < vma->vm_end) { 345 /* get user regs even if this fault is in kernel mode */ 346 struct pt_regs *uregs = current->thread.regs; 347 if (uregs == NULL) 348 goto bad_area; 349 350 /* 351 * A user-mode access to an address a long way below 352 * the stack pointer is only valid if the instruction 353 * is one which would update the stack pointer to the 354 * address accessed if the instruction completed, 355 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb 356 * (or the byte, halfword, float or double forms). 357 * 358 * If we don't check this then any write to the area 359 * between the last mapped region and the stack will 360 * expand the stack rather than segfaulting. 361 */ 362 if (address + 2048 < uregs->gpr[1] && !store_update_sp) 363 goto bad_area; 364 } 365 if (expand_stack(vma, address)) 366 goto bad_area; 367 368 good_area: 369 code = SEGV_ACCERR; 370 #if defined(CONFIG_6xx) 371 if (error_code & 0x95700000) 372 /* an error such as lwarx to I/O controller space, 373 address matching DABR, eciwx, etc. */ 374 goto bad_area; 375 #endif /* CONFIG_6xx */ 376 #if defined(CONFIG_8xx) 377 /* The MPC8xx seems to always set 0x80000000, which is 378 * "undefined". Of those that can be set, this is the only 379 * one which seems bad. 380 */ 381 if (error_code & 0x10000000) 382 /* Guarded storage error. */ 383 goto bad_area; 384 #endif /* CONFIG_8xx */ 385 386 if (is_exec) { 387 /* 388 * Allow execution from readable areas if the MMU does not 389 * provide separate controls over reading and executing. 390 * 391 * Note: That code used to not be enabled for 4xx/BookE. 392 * It is now as I/D cache coherency for these is done at 393 * set_pte_at() time and I see no reason why the test 394 * below wouldn't be valid on those processors. This -may- 395 * break programs compiled with a really old ABI though. 396 */ 397 if (!(vma->vm_flags & VM_EXEC) && 398 (cpu_has_feature(CPU_FTR_NOEXECUTE) || 399 !(vma->vm_flags & (VM_READ | VM_WRITE)))) 400 goto bad_area; 401 /* a write */ 402 } else if (is_write) { 403 if (!(vma->vm_flags & VM_WRITE)) 404 goto bad_area; 405 flags |= FAULT_FLAG_WRITE; 406 /* a read */ 407 } else { 408 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 409 goto bad_area; 410 } 411 #ifdef CONFIG_PPC_STD_MMU 412 /* 413 * For hash translation mode, we should never get a 414 * PROTFAULT. Any update to pte to reduce access will result in us 415 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE 416 * fault instead of DSISR_PROTFAULT. 417 * 418 * A pte update to relax the access will not result in a hash page table 419 * entry invalidate and hence can result in DSISR_PROTFAULT. 420 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have 421 * the special !is_write in the below conditional. 422 * 423 * For platforms that doesn't supports coherent icache and do support 424 * per page noexec bit, we do setup things such that we do the 425 * sync between D/I cache via fault. But that is handled via low level 426 * hash fault code (hash_page_do_lazy_icache()) and we should not reach 427 * here in such case. 428 * 429 * For wrong access that can result in PROTFAULT, the above vma->vm_flags 430 * check should handle those and hence we should fall to the bad_area 431 * handling correctly. 432 * 433 * For embedded with per page exec support that doesn't support coherent 434 * icache we do get PROTFAULT and we handle that D/I cache sync in 435 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON 436 * is conditional for server MMU. 437 * 438 * For radix, we can get prot fault for autonuma case, because radix 439 * page table will have them marked noaccess for user. 440 */ 441 if (!radix_enabled() && !is_write) 442 WARN_ON_ONCE(error_code & DSISR_PROTFAULT); 443 #endif /* CONFIG_PPC_STD_MMU */ 444 445 /* 446 * If for any reason at all we couldn't handle the fault, 447 * make sure we exit gracefully rather than endlessly redo 448 * the fault. 449 */ 450 fault = handle_mm_fault(vma, address, flags); 451 452 /* 453 * Handle the retry right now, the mmap_sem has been released in that 454 * case. 455 */ 456 if (unlikely(fault & VM_FAULT_RETRY)) { 457 /* We retry only once */ 458 if (flags & FAULT_FLAG_ALLOW_RETRY) { 459 /* 460 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk 461 * of starvation. 462 */ 463 flags &= ~FAULT_FLAG_ALLOW_RETRY; 464 flags |= FAULT_FLAG_TRIED; 465 if (!fatal_signal_pending(current)) 466 goto retry; 467 } 468 /* We will enter mm_fault_error() below */ 469 } else 470 up_read(¤t->mm->mmap_sem); 471 472 if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) { 473 if (fault & VM_FAULT_SIGSEGV) 474 goto bad_area_nosemaphore; 475 rc = mm_fault_error(regs, address, fault); 476 if (rc >= MM_FAULT_RETURN) 477 goto bail; 478 else 479 rc = 0; 480 } 481 482 /* 483 * Major/minor page fault accounting. 484 */ 485 if (fault & VM_FAULT_MAJOR) { 486 current->maj_flt++; 487 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 488 regs, address); 489 #ifdef CONFIG_PPC_SMLPAR 490 if (firmware_has_feature(FW_FEATURE_CMO)) { 491 u32 page_ins; 492 493 preempt_disable(); 494 page_ins = be32_to_cpu(get_lppaca()->page_ins); 495 page_ins += 1 << PAGE_FACTOR; 496 get_lppaca()->page_ins = cpu_to_be32(page_ins); 497 preempt_enable(); 498 } 499 #endif /* CONFIG_PPC_SMLPAR */ 500 } else { 501 current->min_flt++; 502 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 503 regs, address); 504 } 505 506 goto bail; 507 508 bad_area: 509 up_read(&mm->mmap_sem); 510 511 bad_area_nosemaphore: 512 /* User mode accesses cause a SIGSEGV */ 513 if (is_user) { 514 _exception(SIGSEGV, regs, code, address); 515 goto bail; 516 } 517 518 if (is_exec && (error_code & DSISR_PROTFAULT)) 519 printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected" 520 " page (%lx) - exploit attempt? (uid: %d)\n", 521 address, from_kuid(&init_user_ns, current_uid())); 522 523 rc = SIGSEGV; 524 525 bail: 526 exception_exit(prev_state); 527 return rc; 528 } 529 NOKPROBE_SYMBOL(do_page_fault); 530 531 /* 532 * bad_page_fault is called when we have a bad access from the kernel. 533 * It is called from the DSI and ISI handlers in head.S and from some 534 * of the procedures in traps.c. 535 */ 536 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) 537 { 538 const struct exception_table_entry *entry; 539 540 /* Are we prepared to handle this fault? */ 541 if ((entry = search_exception_tables(regs->nip)) != NULL) { 542 regs->nip = extable_fixup(entry); 543 return; 544 } 545 546 /* kernel has accessed a bad area */ 547 548 switch (regs->trap) { 549 case 0x300: 550 case 0x380: 551 printk(KERN_ALERT "Unable to handle kernel paging request for " 552 "data at address 0x%08lx\n", regs->dar); 553 break; 554 case 0x400: 555 case 0x480: 556 printk(KERN_ALERT "Unable to handle kernel paging request for " 557 "instruction fetch\n"); 558 break; 559 case 0x600: 560 printk(KERN_ALERT "Unable to handle kernel paging request for " 561 "unaligned access at address 0x%08lx\n", regs->dar); 562 break; 563 default: 564 printk(KERN_ALERT "Unable to handle kernel paging request for " 565 "unknown fault\n"); 566 break; 567 } 568 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", 569 regs->nip); 570 571 if (task_stack_end_corrupted(current)) 572 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 573 574 die("Kernel access of bad area", regs, sig); 575 } 576