xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision 584eab291c67894cb17cc87544b9d086228ea70f)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/pagemap.h>
26 #include <linux/ptrace.h>
27 #include <linux/mman.h>
28 #include <linux/mm.h>
29 #include <linux/interrupt.h>
30 #include <linux/highmem.h>
31 #include <linux/extable.h>
32 #include <linux/kprobes.h>
33 #include <linux/kdebug.h>
34 #include <linux/perf_event.h>
35 #include <linux/ratelimit.h>
36 #include <linux/context_tracking.h>
37 #include <linux/hugetlb.h>
38 #include <linux/uaccess.h>
39 
40 #include <asm/firmware.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/mmu.h>
44 #include <asm/mmu_context.h>
45 #include <asm/siginfo.h>
46 #include <asm/debug.h>
47 
48 static inline bool notify_page_fault(struct pt_regs *regs)
49 {
50 	bool ret = false;
51 
52 #ifdef CONFIG_KPROBES
53 	/* kprobe_running() needs smp_processor_id() */
54 	if (!user_mode(regs)) {
55 		preempt_disable();
56 		if (kprobe_running() && kprobe_fault_handler(regs, 11))
57 			ret = true;
58 		preempt_enable();
59 	}
60 #endif /* CONFIG_KPROBES */
61 
62 	if (unlikely(debugger_fault_handler(regs)))
63 		ret = true;
64 
65 	return ret;
66 }
67 
68 /*
69  * Check whether the instruction inst is a store using
70  * an update addressing form which will update r1.
71  */
72 static bool store_updates_sp(unsigned int inst)
73 {
74 	/* check for 1 in the rA field */
75 	if (((inst >> 16) & 0x1f) != 1)
76 		return false;
77 	/* check major opcode */
78 	switch (inst >> 26) {
79 	case OP_STWU:
80 	case OP_STBU:
81 	case OP_STHU:
82 	case OP_STFSU:
83 	case OP_STFDU:
84 		return true;
85 	case OP_STD:	/* std or stdu */
86 		return (inst & 3) == 1;
87 	case OP_31:
88 		/* check minor opcode */
89 		switch ((inst >> 1) & 0x3ff) {
90 		case OP_31_XOP_STDUX:
91 		case OP_31_XOP_STWUX:
92 		case OP_31_XOP_STBUX:
93 		case OP_31_XOP_STHUX:
94 		case OP_31_XOP_STFSUX:
95 		case OP_31_XOP_STFDUX:
96 			return true;
97 		}
98 	}
99 	return false;
100 }
101 /*
102  * do_page_fault error handling helpers
103  */
104 
105 static int
106 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
107 {
108 	/*
109 	 * If we are in kernel mode, bail out with a SEGV, this will
110 	 * be caught by the assembly which will restore the non-volatile
111 	 * registers before calling bad_page_fault()
112 	 */
113 	if (!user_mode(regs))
114 		return SIGSEGV;
115 
116 	_exception(SIGSEGV, regs, si_code, address);
117 
118 	return 0;
119 }
120 
121 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
122 {
123 	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
124 }
125 
126 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
127 {
128 	struct mm_struct *mm = current->mm;
129 
130 	/*
131 	 * Something tried to access memory that isn't in our memory map..
132 	 * Fix it, but check if it's kernel or user first..
133 	 */
134 	up_read(&mm->mmap_sem);
135 
136 	return __bad_area_nosemaphore(regs, address, si_code);
137 }
138 
139 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
140 {
141 	return __bad_area(regs, address, SEGV_MAPERR);
142 }
143 
144 static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
145 				    int pkey)
146 {
147 	/*
148 	 * If we are in kernel mode, bail out with a SEGV, this will
149 	 * be caught by the assembly which will restore the non-volatile
150 	 * registers before calling bad_page_fault()
151 	 */
152 	if (!user_mode(regs))
153 		return SIGSEGV;
154 
155 	_exception_pkey(regs, address, pkey);
156 
157 	return 0;
158 }
159 
160 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
161 {
162 	return __bad_area(regs, address, SEGV_ACCERR);
163 }
164 
165 static int do_sigbus(struct pt_regs *regs, unsigned long address,
166 		     vm_fault_t fault)
167 {
168 	if (!user_mode(regs))
169 		return SIGBUS;
170 
171 	current->thread.trap_nr = BUS_ADRERR;
172 #ifdef CONFIG_MEMORY_FAILURE
173 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
174 		unsigned int lsb = 0; /* shutup gcc */
175 
176 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
177 			current->comm, current->pid, address);
178 
179 		if (fault & VM_FAULT_HWPOISON_LARGE)
180 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
181 		if (fault & VM_FAULT_HWPOISON)
182 			lsb = PAGE_SHIFT;
183 
184 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb,
185 				 current);
186 		return 0;
187 	}
188 
189 #endif
190 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address, current);
191 	return 0;
192 }
193 
194 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
195 				vm_fault_t fault)
196 {
197 	/*
198 	 * Kernel page fault interrupted by SIGKILL. We have no reason to
199 	 * continue processing.
200 	 */
201 	if (fatal_signal_pending(current) && !user_mode(regs))
202 		return SIGKILL;
203 
204 	/* Out of memory */
205 	if (fault & VM_FAULT_OOM) {
206 		/*
207 		 * We ran out of memory, or some other thing happened to us that
208 		 * made us unable to handle the page fault gracefully.
209 		 */
210 		if (!user_mode(regs))
211 			return SIGSEGV;
212 		pagefault_out_of_memory();
213 	} else {
214 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
215 			     VM_FAULT_HWPOISON_LARGE))
216 			return do_sigbus(regs, addr, fault);
217 		else if (fault & VM_FAULT_SIGSEGV)
218 			return bad_area_nosemaphore(regs, addr);
219 		else
220 			BUG();
221 	}
222 	return 0;
223 }
224 
225 /* Is this a bad kernel fault ? */
226 static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
227 			     unsigned long address)
228 {
229 	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
230 		printk_ratelimited(KERN_CRIT "kernel tried to execute"
231 				   " exec-protected page (%lx) -"
232 				   "exploit attempt? (uid: %d)\n",
233 				   address, from_kuid(&init_user_ns,
234 						      current_uid()));
235 	}
236 	return is_exec || (address >= TASK_SIZE);
237 }
238 
239 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
240 				struct vm_area_struct *vma, unsigned int flags,
241 				bool *must_retry)
242 {
243 	/*
244 	 * N.B. The POWER/Open ABI allows programs to access up to
245 	 * 288 bytes below the stack pointer.
246 	 * The kernel signal delivery code writes up to about 1.5kB
247 	 * below the stack pointer (r1) before decrementing it.
248 	 * The exec code can write slightly over 640kB to the stack
249 	 * before setting the user r1.  Thus we allow the stack to
250 	 * expand to 1MB without further checks.
251 	 */
252 	if (address + 0x100000 < vma->vm_end) {
253 		unsigned int __user *nip = (unsigned int __user *)regs->nip;
254 		/* get user regs even if this fault is in kernel mode */
255 		struct pt_regs *uregs = current->thread.regs;
256 		if (uregs == NULL)
257 			return true;
258 
259 		/*
260 		 * A user-mode access to an address a long way below
261 		 * the stack pointer is only valid if the instruction
262 		 * is one which would update the stack pointer to the
263 		 * address accessed if the instruction completed,
264 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
265 		 * (or the byte, halfword, float or double forms).
266 		 *
267 		 * If we don't check this then any write to the area
268 		 * between the last mapped region and the stack will
269 		 * expand the stack rather than segfaulting.
270 		 */
271 		if (address + 2048 >= uregs->gpr[1])
272 			return false;
273 
274 		if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
275 		    access_ok(VERIFY_READ, nip, sizeof(*nip))) {
276 			unsigned int inst;
277 			int res;
278 
279 			pagefault_disable();
280 			res = __get_user_inatomic(inst, nip);
281 			pagefault_enable();
282 			if (!res)
283 				return !store_updates_sp(inst);
284 			*must_retry = true;
285 		}
286 		return true;
287 	}
288 	return false;
289 }
290 
291 static bool access_error(bool is_write, bool is_exec,
292 			 struct vm_area_struct *vma)
293 {
294 	/*
295 	 * Allow execution from readable areas if the MMU does not
296 	 * provide separate controls over reading and executing.
297 	 *
298 	 * Note: That code used to not be enabled for 4xx/BookE.
299 	 * It is now as I/D cache coherency for these is done at
300 	 * set_pte_at() time and I see no reason why the test
301 	 * below wouldn't be valid on those processors. This -may-
302 	 * break programs compiled with a really old ABI though.
303 	 */
304 	if (is_exec) {
305 		return !(vma->vm_flags & VM_EXEC) &&
306 			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
307 			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
308 	}
309 
310 	if (is_write) {
311 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
312 			return true;
313 		return false;
314 	}
315 
316 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
317 		return true;
318 	/*
319 	 * We should ideally do the vma pkey access check here. But in the
320 	 * fault path, handle_mm_fault() also does the same check. To avoid
321 	 * these multiple checks, we skip it here and handle access error due
322 	 * to pkeys later.
323 	 */
324 	return false;
325 }
326 
327 #ifdef CONFIG_PPC_SMLPAR
328 static inline void cmo_account_page_fault(void)
329 {
330 	if (firmware_has_feature(FW_FEATURE_CMO)) {
331 		u32 page_ins;
332 
333 		preempt_disable();
334 		page_ins = be32_to_cpu(get_lppaca()->page_ins);
335 		page_ins += 1 << PAGE_FACTOR;
336 		get_lppaca()->page_ins = cpu_to_be32(page_ins);
337 		preempt_enable();
338 	}
339 }
340 #else
341 static inline void cmo_account_page_fault(void) { }
342 #endif /* CONFIG_PPC_SMLPAR */
343 
344 #ifdef CONFIG_PPC_STD_MMU
345 static void sanity_check_fault(bool is_write, unsigned long error_code)
346 {
347 	/*
348 	 * For hash translation mode, we should never get a
349 	 * PROTFAULT. Any update to pte to reduce access will result in us
350 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
351 	 * fault instead of DSISR_PROTFAULT.
352 	 *
353 	 * A pte update to relax the access will not result in a hash page table
354 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
355 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
356 	 * the special !is_write in the below conditional.
357 	 *
358 	 * For platforms that doesn't supports coherent icache and do support
359 	 * per page noexec bit, we do setup things such that we do the
360 	 * sync between D/I cache via fault. But that is handled via low level
361 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
362 	 * here in such case.
363 	 *
364 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
365 	 * check should handle those and hence we should fall to the bad_area
366 	 * handling correctly.
367 	 *
368 	 * For embedded with per page exec support that doesn't support coherent
369 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
370 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
371 	 * is conditional for server MMU.
372 	 *
373 	 * For radix, we can get prot fault for autonuma case, because radix
374 	 * page table will have them marked noaccess for user.
375 	 */
376 	if (!radix_enabled() && !is_write)
377 		WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
378 }
379 #else
380 static void sanity_check_fault(bool is_write, unsigned long error_code) { }
381 #endif /* CONFIG_PPC_STD_MMU */
382 
383 /*
384  * Define the correct "is_write" bit in error_code based
385  * on the processor family
386  */
387 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
388 #define page_fault_is_write(__err)	((__err) & ESR_DST)
389 #define page_fault_is_bad(__err)	(0)
390 #else
391 #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
392 #if defined(CONFIG_PPC_8xx)
393 #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
394 #elif defined(CONFIG_PPC64)
395 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
396 #else
397 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
398 #endif
399 #endif
400 
401 /*
402  * For 600- and 800-family processors, the error_code parameter is DSISR
403  * for a data fault, SRR1 for an instruction fault. For 400-family processors
404  * the error_code parameter is ESR for a data fault, 0 for an instruction
405  * fault.
406  * For 64-bit processors, the error_code parameter is
407  *  - DSISR for a non-SLB data access fault,
408  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
409  *  - 0 any SLB fault.
410  *
411  * The return value is 0 if the fault was handled, or the signal
412  * number if this is a kernel fault that can't be handled here.
413  */
414 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
415 			   unsigned long error_code)
416 {
417 	struct vm_area_struct * vma;
418 	struct mm_struct *mm = current->mm;
419 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
420  	int is_exec = TRAP(regs) == 0x400;
421 	int is_user = user_mode(regs);
422 	int is_write = page_fault_is_write(error_code);
423 	vm_fault_t fault, major = 0;
424 	bool must_retry = false;
425 
426 	if (notify_page_fault(regs))
427 		return 0;
428 
429 	if (unlikely(page_fault_is_bad(error_code))) {
430 		if (is_user) {
431 			_exception(SIGBUS, regs, BUS_OBJERR, address);
432 			return 0;
433 		}
434 		return SIGBUS;
435 	}
436 
437 	/* Additional sanity check(s) */
438 	sanity_check_fault(is_write, error_code);
439 
440 	/*
441 	 * The kernel should never take an execute fault nor should it
442 	 * take a page fault to a kernel address.
443 	 */
444 	if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
445 		return SIGSEGV;
446 
447 	/*
448 	 * If we're in an interrupt, have no user context or are running
449 	 * in a region with pagefaults disabled then we must not take the fault
450 	 */
451 	if (unlikely(faulthandler_disabled() || !mm)) {
452 		if (is_user)
453 			printk_ratelimited(KERN_ERR "Page fault in user mode"
454 					   " with faulthandler_disabled()=%d"
455 					   " mm=%p\n",
456 					   faulthandler_disabled(), mm);
457 		return bad_area_nosemaphore(regs, address);
458 	}
459 
460 	/* We restore the interrupt state now */
461 	if (!arch_irq_disabled_regs(regs))
462 		local_irq_enable();
463 
464 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
465 
466 	if (error_code & DSISR_KEYFAULT)
467 		return bad_key_fault_exception(regs, address,
468 					       get_mm_addr_key(mm, address));
469 
470 	/*
471 	 * We want to do this outside mmap_sem, because reading code around nip
472 	 * can result in fault, which will cause a deadlock when called with
473 	 * mmap_sem held
474 	 */
475 	if (is_user)
476 		flags |= FAULT_FLAG_USER;
477 	if (is_write)
478 		flags |= FAULT_FLAG_WRITE;
479 	if (is_exec)
480 		flags |= FAULT_FLAG_INSTRUCTION;
481 
482 	/* When running in the kernel we expect faults to occur only to
483 	 * addresses in user space.  All other faults represent errors in the
484 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
485 	 * erroneous fault occurring in a code path which already holds mmap_sem
486 	 * we will deadlock attempting to validate the fault against the
487 	 * address space.  Luckily the kernel only validly references user
488 	 * space from well defined areas of code, which are listed in the
489 	 * exceptions table.
490 	 *
491 	 * As the vast majority of faults will be valid we will only perform
492 	 * the source reference check when there is a possibility of a deadlock.
493 	 * Attempt to lock the address space, if we cannot we then validate the
494 	 * source.  If this is invalid we can skip the address space check,
495 	 * thus avoiding the deadlock.
496 	 */
497 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
498 		if (!is_user && !search_exception_tables(regs->nip))
499 			return bad_area_nosemaphore(regs, address);
500 
501 retry:
502 		down_read(&mm->mmap_sem);
503 	} else {
504 		/*
505 		 * The above down_read_trylock() might have succeeded in
506 		 * which case we'll have missed the might_sleep() from
507 		 * down_read():
508 		 */
509 		might_sleep();
510 	}
511 
512 	vma = find_vma(mm, address);
513 	if (unlikely(!vma))
514 		return bad_area(regs, address);
515 	if (likely(vma->vm_start <= address))
516 		goto good_area;
517 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
518 		return bad_area(regs, address);
519 
520 	/* The stack is being expanded, check if it's valid */
521 	if (unlikely(bad_stack_expansion(regs, address, vma, flags,
522 					 &must_retry))) {
523 		if (!must_retry)
524 			return bad_area(regs, address);
525 
526 		up_read(&mm->mmap_sem);
527 		if (fault_in_pages_readable((const char __user *)regs->nip,
528 					    sizeof(unsigned int)))
529 			return bad_area_nosemaphore(regs, address);
530 		goto retry;
531 	}
532 
533 	/* Try to expand it */
534 	if (unlikely(expand_stack(vma, address)))
535 		return bad_area(regs, address);
536 
537 good_area:
538 	if (unlikely(access_error(is_write, is_exec, vma)))
539 		return bad_access(regs, address);
540 
541 	/*
542 	 * If for any reason at all we couldn't handle the fault,
543 	 * make sure we exit gracefully rather than endlessly redo
544 	 * the fault.
545 	 */
546 	fault = handle_mm_fault(vma, address, flags);
547 
548 #ifdef CONFIG_PPC_MEM_KEYS
549 	/*
550 	 * we skipped checking for access error due to key earlier.
551 	 * Check that using handle_mm_fault error return.
552 	 */
553 	if (unlikely(fault & VM_FAULT_SIGSEGV) &&
554 		!arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
555 
556 		int pkey = vma_pkey(vma);
557 
558 		up_read(&mm->mmap_sem);
559 		return bad_key_fault_exception(regs, address, pkey);
560 	}
561 #endif /* CONFIG_PPC_MEM_KEYS */
562 
563 	major |= fault & VM_FAULT_MAJOR;
564 
565 	/*
566 	 * Handle the retry right now, the mmap_sem has been released in that
567 	 * case.
568 	 */
569 	if (unlikely(fault & VM_FAULT_RETRY)) {
570 		/* We retry only once */
571 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
572 			/*
573 			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
574 			 * of starvation.
575 			 */
576 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
577 			flags |= FAULT_FLAG_TRIED;
578 			if (!fatal_signal_pending(current))
579 				goto retry;
580 		}
581 
582 		/*
583 		 * User mode? Just return to handle the fatal exception otherwise
584 		 * return to bad_page_fault
585 		 */
586 		return is_user ? 0 : SIGBUS;
587 	}
588 
589 	up_read(&current->mm->mmap_sem);
590 
591 	if (unlikely(fault & VM_FAULT_ERROR))
592 		return mm_fault_error(regs, address, fault);
593 
594 	/*
595 	 * Major/minor page fault accounting.
596 	 */
597 	if (major) {
598 		current->maj_flt++;
599 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
600 		cmo_account_page_fault();
601 	} else {
602 		current->min_flt++;
603 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
604 	}
605 	return 0;
606 }
607 NOKPROBE_SYMBOL(__do_page_fault);
608 
609 int do_page_fault(struct pt_regs *regs, unsigned long address,
610 		  unsigned long error_code)
611 {
612 	enum ctx_state prev_state = exception_enter();
613 	int rc = __do_page_fault(regs, address, error_code);
614 	exception_exit(prev_state);
615 	return rc;
616 }
617 NOKPROBE_SYMBOL(do_page_fault);
618 
619 /*
620  * bad_page_fault is called when we have a bad access from the kernel.
621  * It is called from the DSI and ISI handlers in head.S and from some
622  * of the procedures in traps.c.
623  */
624 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
625 {
626 	const struct exception_table_entry *entry;
627 
628 	/* Are we prepared to handle this fault?  */
629 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
630 		regs->nip = extable_fixup(entry);
631 		return;
632 	}
633 
634 	/* kernel has accessed a bad area */
635 
636 	switch (TRAP(regs)) {
637 	case 0x300:
638 	case 0x380:
639 		printk(KERN_ALERT "Unable to handle kernel paging request for "
640 			"data at address 0x%08lx\n", regs->dar);
641 		break;
642 	case 0x400:
643 	case 0x480:
644 		printk(KERN_ALERT "Unable to handle kernel paging request for "
645 			"instruction fetch\n");
646 		break;
647 	case 0x600:
648 		printk(KERN_ALERT "Unable to handle kernel paging request for "
649 			"unaligned access at address 0x%08lx\n", regs->dar);
650 		break;
651 	default:
652 		printk(KERN_ALERT "Unable to handle kernel paging request for "
653 			"unknown fault\n");
654 		break;
655 	}
656 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
657 		regs->nip);
658 
659 	if (task_stack_end_corrupted(current))
660 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
661 
662 	die("Kernel access of bad area", regs, sig);
663 }
664