1 /* 2 * PowerPC version 3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 4 * 5 * Derived from "arch/i386/mm/fault.c" 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * Modified by Cort Dougan and Paul Mackerras. 9 * 10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 15 * 2 of the License, or (at your option) any later version. 16 */ 17 18 #include <linux/signal.h> 19 #include <linux/sched.h> 20 #include <linux/sched/task_stack.h> 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/string.h> 24 #include <linux/types.h> 25 #include <linux/pagemap.h> 26 #include <linux/ptrace.h> 27 #include <linux/mman.h> 28 #include <linux/mm.h> 29 #include <linux/interrupt.h> 30 #include <linux/highmem.h> 31 #include <linux/extable.h> 32 #include <linux/kprobes.h> 33 #include <linux/kdebug.h> 34 #include <linux/perf_event.h> 35 #include <linux/ratelimit.h> 36 #include <linux/context_tracking.h> 37 #include <linux/hugetlb.h> 38 #include <linux/uaccess.h> 39 40 #include <asm/firmware.h> 41 #include <asm/page.h> 42 #include <asm/pgtable.h> 43 #include <asm/mmu.h> 44 #include <asm/mmu_context.h> 45 #include <asm/siginfo.h> 46 #include <asm/debug.h> 47 48 static inline bool notify_page_fault(struct pt_regs *regs) 49 { 50 bool ret = false; 51 52 #ifdef CONFIG_KPROBES 53 /* kprobe_running() needs smp_processor_id() */ 54 if (!user_mode(regs)) { 55 preempt_disable(); 56 if (kprobe_running() && kprobe_fault_handler(regs, 11)) 57 ret = true; 58 preempt_enable(); 59 } 60 #endif /* CONFIG_KPROBES */ 61 62 if (unlikely(debugger_fault_handler(regs))) 63 ret = true; 64 65 return ret; 66 } 67 68 /* 69 * Check whether the instruction inst is a store using 70 * an update addressing form which will update r1. 71 */ 72 static bool store_updates_sp(unsigned int inst) 73 { 74 /* check for 1 in the rA field */ 75 if (((inst >> 16) & 0x1f) != 1) 76 return false; 77 /* check major opcode */ 78 switch (inst >> 26) { 79 case OP_STWU: 80 case OP_STBU: 81 case OP_STHU: 82 case OP_STFSU: 83 case OP_STFDU: 84 return true; 85 case OP_STD: /* std or stdu */ 86 return (inst & 3) == 1; 87 case OP_31: 88 /* check minor opcode */ 89 switch ((inst >> 1) & 0x3ff) { 90 case OP_31_XOP_STDUX: 91 case OP_31_XOP_STWUX: 92 case OP_31_XOP_STBUX: 93 case OP_31_XOP_STHUX: 94 case OP_31_XOP_STFSUX: 95 case OP_31_XOP_STFDUX: 96 return true; 97 } 98 } 99 return false; 100 } 101 /* 102 * do_page_fault error handling helpers 103 */ 104 105 static int 106 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code) 107 { 108 /* 109 * If we are in kernel mode, bail out with a SEGV, this will 110 * be caught by the assembly which will restore the non-volatile 111 * registers before calling bad_page_fault() 112 */ 113 if (!user_mode(regs)) 114 return SIGSEGV; 115 116 _exception(SIGSEGV, regs, si_code, address); 117 118 return 0; 119 } 120 121 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address) 122 { 123 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR); 124 } 125 126 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code) 127 { 128 struct mm_struct *mm = current->mm; 129 130 /* 131 * Something tried to access memory that isn't in our memory map.. 132 * Fix it, but check if it's kernel or user first.. 133 */ 134 up_read(&mm->mmap_sem); 135 136 return __bad_area_nosemaphore(regs, address, si_code); 137 } 138 139 static noinline int bad_area(struct pt_regs *regs, unsigned long address) 140 { 141 return __bad_area(regs, address, SEGV_MAPERR); 142 } 143 144 static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address, 145 int pkey) 146 { 147 /* 148 * If we are in kernel mode, bail out with a SEGV, this will 149 * be caught by the assembly which will restore the non-volatile 150 * registers before calling bad_page_fault() 151 */ 152 if (!user_mode(regs)) 153 return SIGSEGV; 154 155 _exception_pkey(regs, address, pkey); 156 157 return 0; 158 } 159 160 static noinline int bad_access(struct pt_regs *regs, unsigned long address) 161 { 162 return __bad_area(regs, address, SEGV_ACCERR); 163 } 164 165 static int do_sigbus(struct pt_regs *regs, unsigned long address, 166 vm_fault_t fault) 167 { 168 if (!user_mode(regs)) 169 return SIGBUS; 170 171 current->thread.trap_nr = BUS_ADRERR; 172 #ifdef CONFIG_MEMORY_FAILURE 173 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 174 unsigned int lsb = 0; /* shutup gcc */ 175 176 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 177 current->comm, current->pid, address); 178 179 if (fault & VM_FAULT_HWPOISON_LARGE) 180 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 181 if (fault & VM_FAULT_HWPOISON) 182 lsb = PAGE_SHIFT; 183 184 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, 185 current); 186 return 0; 187 } 188 189 #endif 190 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address, current); 191 return 0; 192 } 193 194 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, 195 vm_fault_t fault) 196 { 197 /* 198 * Kernel page fault interrupted by SIGKILL. We have no reason to 199 * continue processing. 200 */ 201 if (fatal_signal_pending(current) && !user_mode(regs)) 202 return SIGKILL; 203 204 /* Out of memory */ 205 if (fault & VM_FAULT_OOM) { 206 /* 207 * We ran out of memory, or some other thing happened to us that 208 * made us unable to handle the page fault gracefully. 209 */ 210 if (!user_mode(regs)) 211 return SIGSEGV; 212 pagefault_out_of_memory(); 213 } else { 214 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 215 VM_FAULT_HWPOISON_LARGE)) 216 return do_sigbus(regs, addr, fault); 217 else if (fault & VM_FAULT_SIGSEGV) 218 return bad_area_nosemaphore(regs, addr); 219 else 220 BUG(); 221 } 222 return 0; 223 } 224 225 /* Is this a bad kernel fault ? */ 226 static bool bad_kernel_fault(bool is_exec, unsigned long error_code, 227 unsigned long address) 228 { 229 if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) { 230 printk_ratelimited(KERN_CRIT "kernel tried to execute" 231 " exec-protected page (%lx) -" 232 "exploit attempt? (uid: %d)\n", 233 address, from_kuid(&init_user_ns, 234 current_uid())); 235 } 236 return is_exec || (address >= TASK_SIZE); 237 } 238 239 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address, 240 struct vm_area_struct *vma, unsigned int flags, 241 bool *must_retry) 242 { 243 /* 244 * N.B. The POWER/Open ABI allows programs to access up to 245 * 288 bytes below the stack pointer. 246 * The kernel signal delivery code writes up to about 1.5kB 247 * below the stack pointer (r1) before decrementing it. 248 * The exec code can write slightly over 640kB to the stack 249 * before setting the user r1. Thus we allow the stack to 250 * expand to 1MB without further checks. 251 */ 252 if (address + 0x100000 < vma->vm_end) { 253 unsigned int __user *nip = (unsigned int __user *)regs->nip; 254 /* get user regs even if this fault is in kernel mode */ 255 struct pt_regs *uregs = current->thread.regs; 256 if (uregs == NULL) 257 return true; 258 259 /* 260 * A user-mode access to an address a long way below 261 * the stack pointer is only valid if the instruction 262 * is one which would update the stack pointer to the 263 * address accessed if the instruction completed, 264 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb 265 * (or the byte, halfword, float or double forms). 266 * 267 * If we don't check this then any write to the area 268 * between the last mapped region and the stack will 269 * expand the stack rather than segfaulting. 270 */ 271 if (address + 2048 >= uregs->gpr[1]) 272 return false; 273 274 if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) && 275 access_ok(VERIFY_READ, nip, sizeof(*nip))) { 276 unsigned int inst; 277 int res; 278 279 pagefault_disable(); 280 res = __get_user_inatomic(inst, nip); 281 pagefault_enable(); 282 if (!res) 283 return !store_updates_sp(inst); 284 *must_retry = true; 285 } 286 return true; 287 } 288 return false; 289 } 290 291 static bool access_error(bool is_write, bool is_exec, 292 struct vm_area_struct *vma) 293 { 294 /* 295 * Allow execution from readable areas if the MMU does not 296 * provide separate controls over reading and executing. 297 * 298 * Note: That code used to not be enabled for 4xx/BookE. 299 * It is now as I/D cache coherency for these is done at 300 * set_pte_at() time and I see no reason why the test 301 * below wouldn't be valid on those processors. This -may- 302 * break programs compiled with a really old ABI though. 303 */ 304 if (is_exec) { 305 return !(vma->vm_flags & VM_EXEC) && 306 (cpu_has_feature(CPU_FTR_NOEXECUTE) || 307 !(vma->vm_flags & (VM_READ | VM_WRITE))); 308 } 309 310 if (is_write) { 311 if (unlikely(!(vma->vm_flags & VM_WRITE))) 312 return true; 313 return false; 314 } 315 316 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) 317 return true; 318 /* 319 * We should ideally do the vma pkey access check here. But in the 320 * fault path, handle_mm_fault() also does the same check. To avoid 321 * these multiple checks, we skip it here and handle access error due 322 * to pkeys later. 323 */ 324 return false; 325 } 326 327 #ifdef CONFIG_PPC_SMLPAR 328 static inline void cmo_account_page_fault(void) 329 { 330 if (firmware_has_feature(FW_FEATURE_CMO)) { 331 u32 page_ins; 332 333 preempt_disable(); 334 page_ins = be32_to_cpu(get_lppaca()->page_ins); 335 page_ins += 1 << PAGE_FACTOR; 336 get_lppaca()->page_ins = cpu_to_be32(page_ins); 337 preempt_enable(); 338 } 339 } 340 #else 341 static inline void cmo_account_page_fault(void) { } 342 #endif /* CONFIG_PPC_SMLPAR */ 343 344 #ifdef CONFIG_PPC_STD_MMU 345 static void sanity_check_fault(bool is_write, unsigned long error_code) 346 { 347 /* 348 * For hash translation mode, we should never get a 349 * PROTFAULT. Any update to pte to reduce access will result in us 350 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE 351 * fault instead of DSISR_PROTFAULT. 352 * 353 * A pte update to relax the access will not result in a hash page table 354 * entry invalidate and hence can result in DSISR_PROTFAULT. 355 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have 356 * the special !is_write in the below conditional. 357 * 358 * For platforms that doesn't supports coherent icache and do support 359 * per page noexec bit, we do setup things such that we do the 360 * sync between D/I cache via fault. But that is handled via low level 361 * hash fault code (hash_page_do_lazy_icache()) and we should not reach 362 * here in such case. 363 * 364 * For wrong access that can result in PROTFAULT, the above vma->vm_flags 365 * check should handle those and hence we should fall to the bad_area 366 * handling correctly. 367 * 368 * For embedded with per page exec support that doesn't support coherent 369 * icache we do get PROTFAULT and we handle that D/I cache sync in 370 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON 371 * is conditional for server MMU. 372 * 373 * For radix, we can get prot fault for autonuma case, because radix 374 * page table will have them marked noaccess for user. 375 */ 376 if (!radix_enabled() && !is_write) 377 WARN_ON_ONCE(error_code & DSISR_PROTFAULT); 378 } 379 #else 380 static void sanity_check_fault(bool is_write, unsigned long error_code) { } 381 #endif /* CONFIG_PPC_STD_MMU */ 382 383 /* 384 * Define the correct "is_write" bit in error_code based 385 * on the processor family 386 */ 387 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) 388 #define page_fault_is_write(__err) ((__err) & ESR_DST) 389 #define page_fault_is_bad(__err) (0) 390 #else 391 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE) 392 #if defined(CONFIG_PPC_8xx) 393 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G) 394 #elif defined(CONFIG_PPC64) 395 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S) 396 #else 397 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S) 398 #endif 399 #endif 400 401 /* 402 * For 600- and 800-family processors, the error_code parameter is DSISR 403 * for a data fault, SRR1 for an instruction fault. For 400-family processors 404 * the error_code parameter is ESR for a data fault, 0 for an instruction 405 * fault. 406 * For 64-bit processors, the error_code parameter is 407 * - DSISR for a non-SLB data access fault, 408 * - SRR1 & 0x08000000 for a non-SLB instruction access fault 409 * - 0 any SLB fault. 410 * 411 * The return value is 0 if the fault was handled, or the signal 412 * number if this is a kernel fault that can't be handled here. 413 */ 414 static int __do_page_fault(struct pt_regs *regs, unsigned long address, 415 unsigned long error_code) 416 { 417 struct vm_area_struct * vma; 418 struct mm_struct *mm = current->mm; 419 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 420 int is_exec = TRAP(regs) == 0x400; 421 int is_user = user_mode(regs); 422 int is_write = page_fault_is_write(error_code); 423 vm_fault_t fault, major = 0; 424 bool must_retry = false; 425 426 if (notify_page_fault(regs)) 427 return 0; 428 429 if (unlikely(page_fault_is_bad(error_code))) { 430 if (is_user) { 431 _exception(SIGBUS, regs, BUS_OBJERR, address); 432 return 0; 433 } 434 return SIGBUS; 435 } 436 437 /* Additional sanity check(s) */ 438 sanity_check_fault(is_write, error_code); 439 440 /* 441 * The kernel should never take an execute fault nor should it 442 * take a page fault to a kernel address. 443 */ 444 if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address))) 445 return SIGSEGV; 446 447 /* 448 * If we're in an interrupt, have no user context or are running 449 * in a region with pagefaults disabled then we must not take the fault 450 */ 451 if (unlikely(faulthandler_disabled() || !mm)) { 452 if (is_user) 453 printk_ratelimited(KERN_ERR "Page fault in user mode" 454 " with faulthandler_disabled()=%d" 455 " mm=%p\n", 456 faulthandler_disabled(), mm); 457 return bad_area_nosemaphore(regs, address); 458 } 459 460 /* We restore the interrupt state now */ 461 if (!arch_irq_disabled_regs(regs)) 462 local_irq_enable(); 463 464 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 465 466 if (error_code & DSISR_KEYFAULT) 467 return bad_key_fault_exception(regs, address, 468 get_mm_addr_key(mm, address)); 469 470 /* 471 * We want to do this outside mmap_sem, because reading code around nip 472 * can result in fault, which will cause a deadlock when called with 473 * mmap_sem held 474 */ 475 if (is_user) 476 flags |= FAULT_FLAG_USER; 477 if (is_write) 478 flags |= FAULT_FLAG_WRITE; 479 if (is_exec) 480 flags |= FAULT_FLAG_INSTRUCTION; 481 482 /* When running in the kernel we expect faults to occur only to 483 * addresses in user space. All other faults represent errors in the 484 * kernel and should generate an OOPS. Unfortunately, in the case of an 485 * erroneous fault occurring in a code path which already holds mmap_sem 486 * we will deadlock attempting to validate the fault against the 487 * address space. Luckily the kernel only validly references user 488 * space from well defined areas of code, which are listed in the 489 * exceptions table. 490 * 491 * As the vast majority of faults will be valid we will only perform 492 * the source reference check when there is a possibility of a deadlock. 493 * Attempt to lock the address space, if we cannot we then validate the 494 * source. If this is invalid we can skip the address space check, 495 * thus avoiding the deadlock. 496 */ 497 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 498 if (!is_user && !search_exception_tables(regs->nip)) 499 return bad_area_nosemaphore(regs, address); 500 501 retry: 502 down_read(&mm->mmap_sem); 503 } else { 504 /* 505 * The above down_read_trylock() might have succeeded in 506 * which case we'll have missed the might_sleep() from 507 * down_read(): 508 */ 509 might_sleep(); 510 } 511 512 vma = find_vma(mm, address); 513 if (unlikely(!vma)) 514 return bad_area(regs, address); 515 if (likely(vma->vm_start <= address)) 516 goto good_area; 517 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) 518 return bad_area(regs, address); 519 520 /* The stack is being expanded, check if it's valid */ 521 if (unlikely(bad_stack_expansion(regs, address, vma, flags, 522 &must_retry))) { 523 if (!must_retry) 524 return bad_area(regs, address); 525 526 up_read(&mm->mmap_sem); 527 if (fault_in_pages_readable((const char __user *)regs->nip, 528 sizeof(unsigned int))) 529 return bad_area_nosemaphore(regs, address); 530 goto retry; 531 } 532 533 /* Try to expand it */ 534 if (unlikely(expand_stack(vma, address))) 535 return bad_area(regs, address); 536 537 good_area: 538 if (unlikely(access_error(is_write, is_exec, vma))) 539 return bad_access(regs, address); 540 541 /* 542 * If for any reason at all we couldn't handle the fault, 543 * make sure we exit gracefully rather than endlessly redo 544 * the fault. 545 */ 546 fault = handle_mm_fault(vma, address, flags); 547 548 #ifdef CONFIG_PPC_MEM_KEYS 549 /* 550 * we skipped checking for access error due to key earlier. 551 * Check that using handle_mm_fault error return. 552 */ 553 if (unlikely(fault & VM_FAULT_SIGSEGV) && 554 !arch_vma_access_permitted(vma, is_write, is_exec, 0)) { 555 556 int pkey = vma_pkey(vma); 557 558 up_read(&mm->mmap_sem); 559 return bad_key_fault_exception(regs, address, pkey); 560 } 561 #endif /* CONFIG_PPC_MEM_KEYS */ 562 563 major |= fault & VM_FAULT_MAJOR; 564 565 /* 566 * Handle the retry right now, the mmap_sem has been released in that 567 * case. 568 */ 569 if (unlikely(fault & VM_FAULT_RETRY)) { 570 /* We retry only once */ 571 if (flags & FAULT_FLAG_ALLOW_RETRY) { 572 /* 573 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk 574 * of starvation. 575 */ 576 flags &= ~FAULT_FLAG_ALLOW_RETRY; 577 flags |= FAULT_FLAG_TRIED; 578 if (!fatal_signal_pending(current)) 579 goto retry; 580 } 581 582 /* 583 * User mode? Just return to handle the fatal exception otherwise 584 * return to bad_page_fault 585 */ 586 return is_user ? 0 : SIGBUS; 587 } 588 589 up_read(¤t->mm->mmap_sem); 590 591 if (unlikely(fault & VM_FAULT_ERROR)) 592 return mm_fault_error(regs, address, fault); 593 594 /* 595 * Major/minor page fault accounting. 596 */ 597 if (major) { 598 current->maj_flt++; 599 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 600 cmo_account_page_fault(); 601 } else { 602 current->min_flt++; 603 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 604 } 605 return 0; 606 } 607 NOKPROBE_SYMBOL(__do_page_fault); 608 609 int do_page_fault(struct pt_regs *regs, unsigned long address, 610 unsigned long error_code) 611 { 612 enum ctx_state prev_state = exception_enter(); 613 int rc = __do_page_fault(regs, address, error_code); 614 exception_exit(prev_state); 615 return rc; 616 } 617 NOKPROBE_SYMBOL(do_page_fault); 618 619 /* 620 * bad_page_fault is called when we have a bad access from the kernel. 621 * It is called from the DSI and ISI handlers in head.S and from some 622 * of the procedures in traps.c. 623 */ 624 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) 625 { 626 const struct exception_table_entry *entry; 627 628 /* Are we prepared to handle this fault? */ 629 if ((entry = search_exception_tables(regs->nip)) != NULL) { 630 regs->nip = extable_fixup(entry); 631 return; 632 } 633 634 /* kernel has accessed a bad area */ 635 636 switch (TRAP(regs)) { 637 case 0x300: 638 case 0x380: 639 printk(KERN_ALERT "Unable to handle kernel paging request for " 640 "data at address 0x%08lx\n", regs->dar); 641 break; 642 case 0x400: 643 case 0x480: 644 printk(KERN_ALERT "Unable to handle kernel paging request for " 645 "instruction fetch\n"); 646 break; 647 case 0x600: 648 printk(KERN_ALERT "Unable to handle kernel paging request for " 649 "unaligned access at address 0x%08lx\n", regs->dar); 650 break; 651 default: 652 printk(KERN_ALERT "Unable to handle kernel paging request for " 653 "unknown fault\n"); 654 break; 655 } 656 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", 657 regs->nip); 658 659 if (task_stack_end_corrupted(current)) 660 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 661 662 die("Kernel access of bad area", regs, sig); 663 } 664