1 /* 2 * PowerPC version 3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 4 * 5 * Derived from "arch/i386/mm/fault.c" 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * Modified by Cort Dougan and Paul Mackerras. 9 * 10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 15 * 2 of the License, or (at your option) any later version. 16 */ 17 18 #include <linux/signal.h> 19 #include <linux/sched.h> 20 #include <linux/kernel.h> 21 #include <linux/errno.h> 22 #include <linux/string.h> 23 #include <linux/types.h> 24 #include <linux/ptrace.h> 25 #include <linux/mman.h> 26 #include <linux/mm.h> 27 #include <linux/interrupt.h> 28 #include <linux/highmem.h> 29 #include <linux/module.h> 30 #include <linux/kprobes.h> 31 #include <linux/kdebug.h> 32 #include <linux/perf_event.h> 33 #include <linux/magic.h> 34 #include <linux/ratelimit.h> 35 36 #include <asm/firmware.h> 37 #include <asm/page.h> 38 #include <asm/pgtable.h> 39 #include <asm/mmu.h> 40 #include <asm/mmu_context.h> 41 #include <asm/uaccess.h> 42 #include <asm/tlbflush.h> 43 #include <asm/siginfo.h> 44 #include <asm/debug.h> 45 #include <mm/mmu_decl.h> 46 47 #include "icswx.h" 48 49 #ifdef CONFIG_KPROBES 50 static inline int notify_page_fault(struct pt_regs *regs) 51 { 52 int ret = 0; 53 54 /* kprobe_running() needs smp_processor_id() */ 55 if (!user_mode(regs)) { 56 preempt_disable(); 57 if (kprobe_running() && kprobe_fault_handler(regs, 11)) 58 ret = 1; 59 preempt_enable(); 60 } 61 62 return ret; 63 } 64 #else 65 static inline int notify_page_fault(struct pt_regs *regs) 66 { 67 return 0; 68 } 69 #endif 70 71 /* 72 * Check whether the instruction at regs->nip is a store using 73 * an update addressing form which will update r1. 74 */ 75 static int store_updates_sp(struct pt_regs *regs) 76 { 77 unsigned int inst; 78 79 if (get_user(inst, (unsigned int __user *)regs->nip)) 80 return 0; 81 /* check for 1 in the rA field */ 82 if (((inst >> 16) & 0x1f) != 1) 83 return 0; 84 /* check major opcode */ 85 switch (inst >> 26) { 86 case 37: /* stwu */ 87 case 39: /* stbu */ 88 case 45: /* sthu */ 89 case 53: /* stfsu */ 90 case 55: /* stfdu */ 91 return 1; 92 case 62: /* std or stdu */ 93 return (inst & 3) == 1; 94 case 31: 95 /* check minor opcode */ 96 switch ((inst >> 1) & 0x3ff) { 97 case 181: /* stdux */ 98 case 183: /* stwux */ 99 case 247: /* stbux */ 100 case 439: /* sthux */ 101 case 695: /* stfsux */ 102 case 759: /* stfdux */ 103 return 1; 104 } 105 } 106 return 0; 107 } 108 /* 109 * do_page_fault error handling helpers 110 */ 111 112 #define MM_FAULT_RETURN 0 113 #define MM_FAULT_CONTINUE -1 114 #define MM_FAULT_ERR(sig) (sig) 115 116 static int do_sigbus(struct pt_regs *regs, unsigned long address) 117 { 118 siginfo_t info; 119 120 up_read(¤t->mm->mmap_sem); 121 122 if (user_mode(regs)) { 123 current->thread.trap_nr = BUS_ADRERR; 124 info.si_signo = SIGBUS; 125 info.si_errno = 0; 126 info.si_code = BUS_ADRERR; 127 info.si_addr = (void __user *)address; 128 force_sig_info(SIGBUS, &info, current); 129 return MM_FAULT_RETURN; 130 } 131 return MM_FAULT_ERR(SIGBUS); 132 } 133 134 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault) 135 { 136 /* 137 * Pagefault was interrupted by SIGKILL. We have no reason to 138 * continue the pagefault. 139 */ 140 if (fatal_signal_pending(current)) { 141 /* 142 * If we have retry set, the mmap semaphore will have 143 * alrady been released in __lock_page_or_retry(). Else 144 * we release it now. 145 */ 146 if (!(fault & VM_FAULT_RETRY)) 147 up_read(¤t->mm->mmap_sem); 148 /* Coming from kernel, we need to deal with uaccess fixups */ 149 if (user_mode(regs)) 150 return MM_FAULT_RETURN; 151 return MM_FAULT_ERR(SIGKILL); 152 } 153 154 /* No fault: be happy */ 155 if (!(fault & VM_FAULT_ERROR)) 156 return MM_FAULT_CONTINUE; 157 158 /* Out of memory */ 159 if (fault & VM_FAULT_OOM) { 160 up_read(¤t->mm->mmap_sem); 161 162 /* 163 * We ran out of memory, or some other thing happened to us that 164 * made us unable to handle the page fault gracefully. 165 */ 166 if (!user_mode(regs)) 167 return MM_FAULT_ERR(SIGKILL); 168 pagefault_out_of_memory(); 169 return MM_FAULT_RETURN; 170 } 171 172 /* Bus error. x86 handles HWPOISON here, we'll add this if/when 173 * we support the feature in HW 174 */ 175 if (fault & VM_FAULT_SIGBUS) 176 return do_sigbus(regs, addr); 177 178 /* We don't understand the fault code, this is fatal */ 179 BUG(); 180 return MM_FAULT_CONTINUE; 181 } 182 183 /* 184 * For 600- and 800-family processors, the error_code parameter is DSISR 185 * for a data fault, SRR1 for an instruction fault. For 400-family processors 186 * the error_code parameter is ESR for a data fault, 0 for an instruction 187 * fault. 188 * For 64-bit processors, the error_code parameter is 189 * - DSISR for a non-SLB data access fault, 190 * - SRR1 & 0x08000000 for a non-SLB instruction access fault 191 * - 0 any SLB fault. 192 * 193 * The return value is 0 if the fault was handled, or the signal 194 * number if this is a kernel fault that can't be handled here. 195 */ 196 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address, 197 unsigned long error_code) 198 { 199 struct vm_area_struct * vma; 200 struct mm_struct *mm = current->mm; 201 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 202 int code = SEGV_MAPERR; 203 int is_write = 0; 204 int trap = TRAP(regs); 205 int is_exec = trap == 0x400; 206 int fault; 207 208 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) 209 /* 210 * Fortunately the bit assignments in SRR1 for an instruction 211 * fault and DSISR for a data fault are mostly the same for the 212 * bits we are interested in. But there are some bits which 213 * indicate errors in DSISR but can validly be set in SRR1. 214 */ 215 if (trap == 0x400) 216 error_code &= 0x48200000; 217 else 218 is_write = error_code & DSISR_ISSTORE; 219 #else 220 is_write = error_code & ESR_DST; 221 #endif /* CONFIG_4xx || CONFIG_BOOKE */ 222 223 if (is_write) 224 flags |= FAULT_FLAG_WRITE; 225 226 #ifdef CONFIG_PPC_ICSWX 227 /* 228 * we need to do this early because this "data storage 229 * interrupt" does not update the DAR/DEAR so we don't want to 230 * look at it 231 */ 232 if (error_code & ICSWX_DSI_UCT) { 233 int rc = acop_handle_fault(regs, address, error_code); 234 if (rc) 235 return rc; 236 } 237 #endif /* CONFIG_PPC_ICSWX */ 238 239 if (notify_page_fault(regs)) 240 return 0; 241 242 if (unlikely(debugger_fault_handler(regs))) 243 return 0; 244 245 /* On a kernel SLB miss we can only check for a valid exception entry */ 246 if (!user_mode(regs) && (address >= TASK_SIZE)) 247 return SIGSEGV; 248 249 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \ 250 defined(CONFIG_PPC_BOOK3S_64)) 251 if (error_code & DSISR_DABRMATCH) { 252 /* DABR match */ 253 do_dabr(regs, address, error_code); 254 return 0; 255 } 256 #endif 257 258 /* We restore the interrupt state now */ 259 if (!arch_irq_disabled_regs(regs)) 260 local_irq_enable(); 261 262 if (in_atomic() || mm == NULL) { 263 if (!user_mode(regs)) 264 return SIGSEGV; 265 /* in_atomic() in user mode is really bad, 266 as is current->mm == NULL. */ 267 printk(KERN_EMERG "Page fault in user mode with " 268 "in_atomic() = %d mm = %p\n", in_atomic(), mm); 269 printk(KERN_EMERG "NIP = %lx MSR = %lx\n", 270 regs->nip, regs->msr); 271 die("Weird page fault", regs, SIGSEGV); 272 } 273 274 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 275 276 /* When running in the kernel we expect faults to occur only to 277 * addresses in user space. All other faults represent errors in the 278 * kernel and should generate an OOPS. Unfortunately, in the case of an 279 * erroneous fault occurring in a code path which already holds mmap_sem 280 * we will deadlock attempting to validate the fault against the 281 * address space. Luckily the kernel only validly references user 282 * space from well defined areas of code, which are listed in the 283 * exceptions table. 284 * 285 * As the vast majority of faults will be valid we will only perform 286 * the source reference check when there is a possibility of a deadlock. 287 * Attempt to lock the address space, if we cannot we then validate the 288 * source. If this is invalid we can skip the address space check, 289 * thus avoiding the deadlock. 290 */ 291 if (!down_read_trylock(&mm->mmap_sem)) { 292 if (!user_mode(regs) && !search_exception_tables(regs->nip)) 293 goto bad_area_nosemaphore; 294 295 retry: 296 down_read(&mm->mmap_sem); 297 } else { 298 /* 299 * The above down_read_trylock() might have succeeded in 300 * which case we'll have missed the might_sleep() from 301 * down_read(): 302 */ 303 might_sleep(); 304 } 305 306 vma = find_vma(mm, address); 307 if (!vma) 308 goto bad_area; 309 if (vma->vm_start <= address) 310 goto good_area; 311 if (!(vma->vm_flags & VM_GROWSDOWN)) 312 goto bad_area; 313 314 /* 315 * N.B. The POWER/Open ABI allows programs to access up to 316 * 288 bytes below the stack pointer. 317 * The kernel signal delivery code writes up to about 1.5kB 318 * below the stack pointer (r1) before decrementing it. 319 * The exec code can write slightly over 640kB to the stack 320 * before setting the user r1. Thus we allow the stack to 321 * expand to 1MB without further checks. 322 */ 323 if (address + 0x100000 < vma->vm_end) { 324 /* get user regs even if this fault is in kernel mode */ 325 struct pt_regs *uregs = current->thread.regs; 326 if (uregs == NULL) 327 goto bad_area; 328 329 /* 330 * A user-mode access to an address a long way below 331 * the stack pointer is only valid if the instruction 332 * is one which would update the stack pointer to the 333 * address accessed if the instruction completed, 334 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb 335 * (or the byte, halfword, float or double forms). 336 * 337 * If we don't check this then any write to the area 338 * between the last mapped region and the stack will 339 * expand the stack rather than segfaulting. 340 */ 341 if (address + 2048 < uregs->gpr[1] 342 && (!user_mode(regs) || !store_updates_sp(regs))) 343 goto bad_area; 344 } 345 if (expand_stack(vma, address)) 346 goto bad_area; 347 348 good_area: 349 code = SEGV_ACCERR; 350 #if defined(CONFIG_6xx) 351 if (error_code & 0x95700000) 352 /* an error such as lwarx to I/O controller space, 353 address matching DABR, eciwx, etc. */ 354 goto bad_area; 355 #endif /* CONFIG_6xx */ 356 #if defined(CONFIG_8xx) 357 /* 8xx sometimes need to load a invalid/non-present TLBs. 358 * These must be invalidated separately as linux mm don't. 359 */ 360 if (error_code & 0x40000000) /* no translation? */ 361 _tlbil_va(address, 0, 0, 0); 362 363 /* The MPC8xx seems to always set 0x80000000, which is 364 * "undefined". Of those that can be set, this is the only 365 * one which seems bad. 366 */ 367 if (error_code & 0x10000000) 368 /* Guarded storage error. */ 369 goto bad_area; 370 #endif /* CONFIG_8xx */ 371 372 if (is_exec) { 373 #ifdef CONFIG_PPC_STD_MMU 374 /* Protection fault on exec go straight to failure on 375 * Hash based MMUs as they either don't support per-page 376 * execute permission, or if they do, it's handled already 377 * at the hash level. This test would probably have to 378 * be removed if we change the way this works to make hash 379 * processors use the same I/D cache coherency mechanism 380 * as embedded. 381 */ 382 if (error_code & DSISR_PROTFAULT) 383 goto bad_area; 384 #endif /* CONFIG_PPC_STD_MMU */ 385 386 /* 387 * Allow execution from readable areas if the MMU does not 388 * provide separate controls over reading and executing. 389 * 390 * Note: That code used to not be enabled for 4xx/BookE. 391 * It is now as I/D cache coherency for these is done at 392 * set_pte_at() time and I see no reason why the test 393 * below wouldn't be valid on those processors. This -may- 394 * break programs compiled with a really old ABI though. 395 */ 396 if (!(vma->vm_flags & VM_EXEC) && 397 (cpu_has_feature(CPU_FTR_NOEXECUTE) || 398 !(vma->vm_flags & (VM_READ | VM_WRITE)))) 399 goto bad_area; 400 /* a write */ 401 } else if (is_write) { 402 if (!(vma->vm_flags & VM_WRITE)) 403 goto bad_area; 404 /* a read */ 405 } else { 406 /* protection fault */ 407 if (error_code & 0x08000000) 408 goto bad_area; 409 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 410 goto bad_area; 411 } 412 413 /* 414 * If for any reason at all we couldn't handle the fault, 415 * make sure we exit gracefully rather than endlessly redo 416 * the fault. 417 */ 418 fault = handle_mm_fault(mm, vma, address, flags); 419 if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) { 420 int rc = mm_fault_error(regs, address, fault); 421 if (rc >= MM_FAULT_RETURN) 422 return rc; 423 } 424 425 /* 426 * Major/minor page fault accounting is only done on the 427 * initial attempt. If we go through a retry, it is extremely 428 * likely that the page will be found in page cache at that point. 429 */ 430 if (flags & FAULT_FLAG_ALLOW_RETRY) { 431 if (fault & VM_FAULT_MAJOR) { 432 current->maj_flt++; 433 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 434 regs, address); 435 #ifdef CONFIG_PPC_SMLPAR 436 if (firmware_has_feature(FW_FEATURE_CMO)) { 437 preempt_disable(); 438 get_lppaca()->page_ins += (1 << PAGE_FACTOR); 439 preempt_enable(); 440 } 441 #endif /* CONFIG_PPC_SMLPAR */ 442 } else { 443 current->min_flt++; 444 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 445 regs, address); 446 } 447 if (fault & VM_FAULT_RETRY) { 448 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk 449 * of starvation. */ 450 flags &= ~FAULT_FLAG_ALLOW_RETRY; 451 flags |= FAULT_FLAG_TRIED; 452 goto retry; 453 } 454 } 455 456 up_read(&mm->mmap_sem); 457 return 0; 458 459 bad_area: 460 up_read(&mm->mmap_sem); 461 462 bad_area_nosemaphore: 463 /* User mode accesses cause a SIGSEGV */ 464 if (user_mode(regs)) { 465 _exception(SIGSEGV, regs, code, address); 466 return 0; 467 } 468 469 if (is_exec && (error_code & DSISR_PROTFAULT)) 470 printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected" 471 " page (%lx) - exploit attempt? (uid: %d)\n", 472 address, from_kuid(&init_user_ns, current_uid())); 473 474 return SIGSEGV; 475 476 } 477 478 /* 479 * bad_page_fault is called when we have a bad access from the kernel. 480 * It is called from the DSI and ISI handlers in head.S and from some 481 * of the procedures in traps.c. 482 */ 483 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) 484 { 485 const struct exception_table_entry *entry; 486 unsigned long *stackend; 487 488 /* Are we prepared to handle this fault? */ 489 if ((entry = search_exception_tables(regs->nip)) != NULL) { 490 regs->nip = entry->fixup; 491 return; 492 } 493 494 /* kernel has accessed a bad area */ 495 496 switch (regs->trap) { 497 case 0x300: 498 case 0x380: 499 printk(KERN_ALERT "Unable to handle kernel paging request for " 500 "data at address 0x%08lx\n", regs->dar); 501 break; 502 case 0x400: 503 case 0x480: 504 printk(KERN_ALERT "Unable to handle kernel paging request for " 505 "instruction fetch\n"); 506 break; 507 default: 508 printk(KERN_ALERT "Unable to handle kernel paging request for " 509 "unknown fault\n"); 510 break; 511 } 512 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", 513 regs->nip); 514 515 stackend = end_of_stack(current); 516 if (current != &init_task && *stackend != STACK_END_MAGIC) 517 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 518 519 die("Kernel access of bad area", regs, sig); 520 } 521