xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision 54cbac81)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 #include <linux/perf_event.h>
33 #include <linux/magic.h>
34 #include <linux/ratelimit.h>
35 
36 #include <asm/firmware.h>
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/uaccess.h>
42 #include <asm/tlbflush.h>
43 #include <asm/siginfo.h>
44 #include <asm/debug.h>
45 #include <mm/mmu_decl.h>
46 
47 #include "icswx.h"
48 
49 #ifdef CONFIG_KPROBES
50 static inline int notify_page_fault(struct pt_regs *regs)
51 {
52 	int ret = 0;
53 
54 	/* kprobe_running() needs smp_processor_id() */
55 	if (!user_mode(regs)) {
56 		preempt_disable();
57 		if (kprobe_running() && kprobe_fault_handler(regs, 11))
58 			ret = 1;
59 		preempt_enable();
60 	}
61 
62 	return ret;
63 }
64 #else
65 static inline int notify_page_fault(struct pt_regs *regs)
66 {
67 	return 0;
68 }
69 #endif
70 
71 /*
72  * Check whether the instruction at regs->nip is a store using
73  * an update addressing form which will update r1.
74  */
75 static int store_updates_sp(struct pt_regs *regs)
76 {
77 	unsigned int inst;
78 
79 	if (get_user(inst, (unsigned int __user *)regs->nip))
80 		return 0;
81 	/* check for 1 in the rA field */
82 	if (((inst >> 16) & 0x1f) != 1)
83 		return 0;
84 	/* check major opcode */
85 	switch (inst >> 26) {
86 	case 37:	/* stwu */
87 	case 39:	/* stbu */
88 	case 45:	/* sthu */
89 	case 53:	/* stfsu */
90 	case 55:	/* stfdu */
91 		return 1;
92 	case 62:	/* std or stdu */
93 		return (inst & 3) == 1;
94 	case 31:
95 		/* check minor opcode */
96 		switch ((inst >> 1) & 0x3ff) {
97 		case 181:	/* stdux */
98 		case 183:	/* stwux */
99 		case 247:	/* stbux */
100 		case 439:	/* sthux */
101 		case 695:	/* stfsux */
102 		case 759:	/* stfdux */
103 			return 1;
104 		}
105 	}
106 	return 0;
107 }
108 /*
109  * do_page_fault error handling helpers
110  */
111 
112 #define MM_FAULT_RETURN		0
113 #define MM_FAULT_CONTINUE	-1
114 #define MM_FAULT_ERR(sig)	(sig)
115 
116 static int do_sigbus(struct pt_regs *regs, unsigned long address)
117 {
118 	siginfo_t info;
119 
120 	up_read(&current->mm->mmap_sem);
121 
122 	if (user_mode(regs)) {
123 		current->thread.trap_nr = BUS_ADRERR;
124 		info.si_signo = SIGBUS;
125 		info.si_errno = 0;
126 		info.si_code = BUS_ADRERR;
127 		info.si_addr = (void __user *)address;
128 		force_sig_info(SIGBUS, &info, current);
129 		return MM_FAULT_RETURN;
130 	}
131 	return MM_FAULT_ERR(SIGBUS);
132 }
133 
134 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
135 {
136 	/*
137 	 * Pagefault was interrupted by SIGKILL. We have no reason to
138 	 * continue the pagefault.
139 	 */
140 	if (fatal_signal_pending(current)) {
141 		/*
142 		 * If we have retry set, the mmap semaphore will have
143 		 * alrady been released in __lock_page_or_retry(). Else
144 		 * we release it now.
145 		 */
146 		if (!(fault & VM_FAULT_RETRY))
147 			up_read(&current->mm->mmap_sem);
148 		/* Coming from kernel, we need to deal with uaccess fixups */
149 		if (user_mode(regs))
150 			return MM_FAULT_RETURN;
151 		return MM_FAULT_ERR(SIGKILL);
152 	}
153 
154 	/* No fault: be happy */
155 	if (!(fault & VM_FAULT_ERROR))
156 		return MM_FAULT_CONTINUE;
157 
158 	/* Out of memory */
159 	if (fault & VM_FAULT_OOM) {
160 		up_read(&current->mm->mmap_sem);
161 
162 		/*
163 		 * We ran out of memory, or some other thing happened to us that
164 		 * made us unable to handle the page fault gracefully.
165 		 */
166 		if (!user_mode(regs))
167 			return MM_FAULT_ERR(SIGKILL);
168 		pagefault_out_of_memory();
169 		return MM_FAULT_RETURN;
170 	}
171 
172 	/* Bus error. x86 handles HWPOISON here, we'll add this if/when
173 	 * we support the feature in HW
174 	 */
175 	if (fault & VM_FAULT_SIGBUS)
176 		return do_sigbus(regs, addr);
177 
178 	/* We don't understand the fault code, this is fatal */
179 	BUG();
180 	return MM_FAULT_CONTINUE;
181 }
182 
183 /*
184  * For 600- and 800-family processors, the error_code parameter is DSISR
185  * for a data fault, SRR1 for an instruction fault. For 400-family processors
186  * the error_code parameter is ESR for a data fault, 0 for an instruction
187  * fault.
188  * For 64-bit processors, the error_code parameter is
189  *  - DSISR for a non-SLB data access fault,
190  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
191  *  - 0 any SLB fault.
192  *
193  * The return value is 0 if the fault was handled, or the signal
194  * number if this is a kernel fault that can't be handled here.
195  */
196 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
197 			    unsigned long error_code)
198 {
199 	struct vm_area_struct * vma;
200 	struct mm_struct *mm = current->mm;
201 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
202 	int code = SEGV_MAPERR;
203 	int is_write = 0;
204 	int trap = TRAP(regs);
205  	int is_exec = trap == 0x400;
206 	int fault;
207 
208 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
209 	/*
210 	 * Fortunately the bit assignments in SRR1 for an instruction
211 	 * fault and DSISR for a data fault are mostly the same for the
212 	 * bits we are interested in.  But there are some bits which
213 	 * indicate errors in DSISR but can validly be set in SRR1.
214 	 */
215 	if (trap == 0x400)
216 		error_code &= 0x48200000;
217 	else
218 		is_write = error_code & DSISR_ISSTORE;
219 #else
220 	is_write = error_code & ESR_DST;
221 #endif /* CONFIG_4xx || CONFIG_BOOKE */
222 
223 	if (is_write)
224 		flags |= FAULT_FLAG_WRITE;
225 
226 #ifdef CONFIG_PPC_ICSWX
227 	/*
228 	 * we need to do this early because this "data storage
229 	 * interrupt" does not update the DAR/DEAR so we don't want to
230 	 * look at it
231 	 */
232 	if (error_code & ICSWX_DSI_UCT) {
233 		int rc = acop_handle_fault(regs, address, error_code);
234 		if (rc)
235 			return rc;
236 	}
237 #endif /* CONFIG_PPC_ICSWX */
238 
239 	if (notify_page_fault(regs))
240 		return 0;
241 
242 	if (unlikely(debugger_fault_handler(regs)))
243 		return 0;
244 
245 	/* On a kernel SLB miss we can only check for a valid exception entry */
246 	if (!user_mode(regs) && (address >= TASK_SIZE))
247 		return SIGSEGV;
248 
249 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
250 			     defined(CONFIG_PPC_BOOK3S_64))
251   	if (error_code & DSISR_DABRMATCH) {
252 		/* DABR match */
253 		do_dabr(regs, address, error_code);
254 		return 0;
255 	}
256 #endif
257 
258 	/* We restore the interrupt state now */
259 	if (!arch_irq_disabled_regs(regs))
260 		local_irq_enable();
261 
262 	if (in_atomic() || mm == NULL) {
263 		if (!user_mode(regs))
264 			return SIGSEGV;
265 		/* in_atomic() in user mode is really bad,
266 		   as is current->mm == NULL. */
267 		printk(KERN_EMERG "Page fault in user mode with "
268 		       "in_atomic() = %d mm = %p\n", in_atomic(), mm);
269 		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
270 		       regs->nip, regs->msr);
271 		die("Weird page fault", regs, SIGSEGV);
272 	}
273 
274 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
275 
276 	/* When running in the kernel we expect faults to occur only to
277 	 * addresses in user space.  All other faults represent errors in the
278 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
279 	 * erroneous fault occurring in a code path which already holds mmap_sem
280 	 * we will deadlock attempting to validate the fault against the
281 	 * address space.  Luckily the kernel only validly references user
282 	 * space from well defined areas of code, which are listed in the
283 	 * exceptions table.
284 	 *
285 	 * As the vast majority of faults will be valid we will only perform
286 	 * the source reference check when there is a possibility of a deadlock.
287 	 * Attempt to lock the address space, if we cannot we then validate the
288 	 * source.  If this is invalid we can skip the address space check,
289 	 * thus avoiding the deadlock.
290 	 */
291 	if (!down_read_trylock(&mm->mmap_sem)) {
292 		if (!user_mode(regs) && !search_exception_tables(regs->nip))
293 			goto bad_area_nosemaphore;
294 
295 retry:
296 		down_read(&mm->mmap_sem);
297 	} else {
298 		/*
299 		 * The above down_read_trylock() might have succeeded in
300 		 * which case we'll have missed the might_sleep() from
301 		 * down_read():
302 		 */
303 		might_sleep();
304 	}
305 
306 	vma = find_vma(mm, address);
307 	if (!vma)
308 		goto bad_area;
309 	if (vma->vm_start <= address)
310 		goto good_area;
311 	if (!(vma->vm_flags & VM_GROWSDOWN))
312 		goto bad_area;
313 
314 	/*
315 	 * N.B. The POWER/Open ABI allows programs to access up to
316 	 * 288 bytes below the stack pointer.
317 	 * The kernel signal delivery code writes up to about 1.5kB
318 	 * below the stack pointer (r1) before decrementing it.
319 	 * The exec code can write slightly over 640kB to the stack
320 	 * before setting the user r1.  Thus we allow the stack to
321 	 * expand to 1MB without further checks.
322 	 */
323 	if (address + 0x100000 < vma->vm_end) {
324 		/* get user regs even if this fault is in kernel mode */
325 		struct pt_regs *uregs = current->thread.regs;
326 		if (uregs == NULL)
327 			goto bad_area;
328 
329 		/*
330 		 * A user-mode access to an address a long way below
331 		 * the stack pointer is only valid if the instruction
332 		 * is one which would update the stack pointer to the
333 		 * address accessed if the instruction completed,
334 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
335 		 * (or the byte, halfword, float or double forms).
336 		 *
337 		 * If we don't check this then any write to the area
338 		 * between the last mapped region and the stack will
339 		 * expand the stack rather than segfaulting.
340 		 */
341 		if (address + 2048 < uregs->gpr[1]
342 		    && (!user_mode(regs) || !store_updates_sp(regs)))
343 			goto bad_area;
344 	}
345 	if (expand_stack(vma, address))
346 		goto bad_area;
347 
348 good_area:
349 	code = SEGV_ACCERR;
350 #if defined(CONFIG_6xx)
351 	if (error_code & 0x95700000)
352 		/* an error such as lwarx to I/O controller space,
353 		   address matching DABR, eciwx, etc. */
354 		goto bad_area;
355 #endif /* CONFIG_6xx */
356 #if defined(CONFIG_8xx)
357 	/* 8xx sometimes need to load a invalid/non-present TLBs.
358 	 * These must be invalidated separately as linux mm don't.
359 	 */
360 	if (error_code & 0x40000000) /* no translation? */
361 		_tlbil_va(address, 0, 0, 0);
362 
363         /* The MPC8xx seems to always set 0x80000000, which is
364          * "undefined".  Of those that can be set, this is the only
365          * one which seems bad.
366          */
367 	if (error_code & 0x10000000)
368                 /* Guarded storage error. */
369 		goto bad_area;
370 #endif /* CONFIG_8xx */
371 
372 	if (is_exec) {
373 #ifdef CONFIG_PPC_STD_MMU
374 		/* Protection fault on exec go straight to failure on
375 		 * Hash based MMUs as they either don't support per-page
376 		 * execute permission, or if they do, it's handled already
377 		 * at the hash level. This test would probably have to
378 		 * be removed if we change the way this works to make hash
379 		 * processors use the same I/D cache coherency mechanism
380 		 * as embedded.
381 		 */
382 		if (error_code & DSISR_PROTFAULT)
383 			goto bad_area;
384 #endif /* CONFIG_PPC_STD_MMU */
385 
386 		/*
387 		 * Allow execution from readable areas if the MMU does not
388 		 * provide separate controls over reading and executing.
389 		 *
390 		 * Note: That code used to not be enabled for 4xx/BookE.
391 		 * It is now as I/D cache coherency for these is done at
392 		 * set_pte_at() time and I see no reason why the test
393 		 * below wouldn't be valid on those processors. This -may-
394 		 * break programs compiled with a really old ABI though.
395 		 */
396 		if (!(vma->vm_flags & VM_EXEC) &&
397 		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
398 		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
399 			goto bad_area;
400 	/* a write */
401 	} else if (is_write) {
402 		if (!(vma->vm_flags & VM_WRITE))
403 			goto bad_area;
404 	/* a read */
405 	} else {
406 		/* protection fault */
407 		if (error_code & 0x08000000)
408 			goto bad_area;
409 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
410 			goto bad_area;
411 	}
412 
413 	/*
414 	 * If for any reason at all we couldn't handle the fault,
415 	 * make sure we exit gracefully rather than endlessly redo
416 	 * the fault.
417 	 */
418 	fault = handle_mm_fault(mm, vma, address, flags);
419 	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
420 		int rc = mm_fault_error(regs, address, fault);
421 		if (rc >= MM_FAULT_RETURN)
422 			return rc;
423 	}
424 
425 	/*
426 	 * Major/minor page fault accounting is only done on the
427 	 * initial attempt. If we go through a retry, it is extremely
428 	 * likely that the page will be found in page cache at that point.
429 	 */
430 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
431 		if (fault & VM_FAULT_MAJOR) {
432 			current->maj_flt++;
433 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
434 				      regs, address);
435 #ifdef CONFIG_PPC_SMLPAR
436 			if (firmware_has_feature(FW_FEATURE_CMO)) {
437 				preempt_disable();
438 				get_lppaca()->page_ins += (1 << PAGE_FACTOR);
439 				preempt_enable();
440 			}
441 #endif /* CONFIG_PPC_SMLPAR */
442 		} else {
443 			current->min_flt++;
444 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
445 				      regs, address);
446 		}
447 		if (fault & VM_FAULT_RETRY) {
448 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
449 			 * of starvation. */
450 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
451 			flags |= FAULT_FLAG_TRIED;
452 			goto retry;
453 		}
454 	}
455 
456 	up_read(&mm->mmap_sem);
457 	return 0;
458 
459 bad_area:
460 	up_read(&mm->mmap_sem);
461 
462 bad_area_nosemaphore:
463 	/* User mode accesses cause a SIGSEGV */
464 	if (user_mode(regs)) {
465 		_exception(SIGSEGV, regs, code, address);
466 		return 0;
467 	}
468 
469 	if (is_exec && (error_code & DSISR_PROTFAULT))
470 		printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
471 				   " page (%lx) - exploit attempt? (uid: %d)\n",
472 				   address, from_kuid(&init_user_ns, current_uid()));
473 
474 	return SIGSEGV;
475 
476 }
477 
478 /*
479  * bad_page_fault is called when we have a bad access from the kernel.
480  * It is called from the DSI and ISI handlers in head.S and from some
481  * of the procedures in traps.c.
482  */
483 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
484 {
485 	const struct exception_table_entry *entry;
486 	unsigned long *stackend;
487 
488 	/* Are we prepared to handle this fault?  */
489 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
490 		regs->nip = entry->fixup;
491 		return;
492 	}
493 
494 	/* kernel has accessed a bad area */
495 
496 	switch (regs->trap) {
497 	case 0x300:
498 	case 0x380:
499 		printk(KERN_ALERT "Unable to handle kernel paging request for "
500 			"data at address 0x%08lx\n", regs->dar);
501 		break;
502 	case 0x400:
503 	case 0x480:
504 		printk(KERN_ALERT "Unable to handle kernel paging request for "
505 			"instruction fetch\n");
506 		break;
507 	default:
508 		printk(KERN_ALERT "Unable to handle kernel paging request for "
509 			"unknown fault\n");
510 		break;
511 	}
512 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
513 		regs->nip);
514 
515 	stackend = end_of_stack(current);
516 	if (current != &init_task && *stackend != STACK_END_MAGIC)
517 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
518 
519 	die("Kernel access of bad area", regs, sig);
520 }
521