xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision 4fc4dca8)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/pagemap.h>
26 #include <linux/ptrace.h>
27 #include <linux/mman.h>
28 #include <linux/mm.h>
29 #include <linux/interrupt.h>
30 #include <linux/highmem.h>
31 #include <linux/extable.h>
32 #include <linux/kprobes.h>
33 #include <linux/kdebug.h>
34 #include <linux/perf_event.h>
35 #include <linux/ratelimit.h>
36 #include <linux/context_tracking.h>
37 #include <linux/hugetlb.h>
38 #include <linux/uaccess.h>
39 
40 #include <asm/firmware.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/mmu.h>
44 #include <asm/mmu_context.h>
45 #include <asm/siginfo.h>
46 #include <asm/debug.h>
47 #include <asm/kup.h>
48 
49 static inline bool notify_page_fault(struct pt_regs *regs)
50 {
51 	bool ret = false;
52 
53 #ifdef CONFIG_KPROBES
54 	/* kprobe_running() needs smp_processor_id() */
55 	if (!user_mode(regs)) {
56 		preempt_disable();
57 		if (kprobe_running() && kprobe_fault_handler(regs, 11))
58 			ret = true;
59 		preempt_enable();
60 	}
61 #endif /* CONFIG_KPROBES */
62 
63 	if (unlikely(debugger_fault_handler(regs)))
64 		ret = true;
65 
66 	return ret;
67 }
68 
69 /*
70  * Check whether the instruction inst is a store using
71  * an update addressing form which will update r1.
72  */
73 static bool store_updates_sp(unsigned int inst)
74 {
75 	/* check for 1 in the rA field */
76 	if (((inst >> 16) & 0x1f) != 1)
77 		return false;
78 	/* check major opcode */
79 	switch (inst >> 26) {
80 	case OP_STWU:
81 	case OP_STBU:
82 	case OP_STHU:
83 	case OP_STFSU:
84 	case OP_STFDU:
85 		return true;
86 	case OP_STD:	/* std or stdu */
87 		return (inst & 3) == 1;
88 	case OP_31:
89 		/* check minor opcode */
90 		switch ((inst >> 1) & 0x3ff) {
91 		case OP_31_XOP_STDUX:
92 		case OP_31_XOP_STWUX:
93 		case OP_31_XOP_STBUX:
94 		case OP_31_XOP_STHUX:
95 		case OP_31_XOP_STFSUX:
96 		case OP_31_XOP_STFDUX:
97 			return true;
98 		}
99 	}
100 	return false;
101 }
102 /*
103  * do_page_fault error handling helpers
104  */
105 
106 static int
107 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
108 {
109 	/*
110 	 * If we are in kernel mode, bail out with a SEGV, this will
111 	 * be caught by the assembly which will restore the non-volatile
112 	 * registers before calling bad_page_fault()
113 	 */
114 	if (!user_mode(regs))
115 		return SIGSEGV;
116 
117 	_exception(SIGSEGV, regs, si_code, address);
118 
119 	return 0;
120 }
121 
122 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
123 {
124 	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
125 }
126 
127 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
128 {
129 	struct mm_struct *mm = current->mm;
130 
131 	/*
132 	 * Something tried to access memory that isn't in our memory map..
133 	 * Fix it, but check if it's kernel or user first..
134 	 */
135 	up_read(&mm->mmap_sem);
136 
137 	return __bad_area_nosemaphore(regs, address, si_code);
138 }
139 
140 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
141 {
142 	return __bad_area(regs, address, SEGV_MAPERR);
143 }
144 
145 static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
146 				    int pkey)
147 {
148 	/*
149 	 * If we are in kernel mode, bail out with a SEGV, this will
150 	 * be caught by the assembly which will restore the non-volatile
151 	 * registers before calling bad_page_fault()
152 	 */
153 	if (!user_mode(regs))
154 		return SIGSEGV;
155 
156 	_exception_pkey(regs, address, pkey);
157 
158 	return 0;
159 }
160 
161 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
162 {
163 	return __bad_area(regs, address, SEGV_ACCERR);
164 }
165 
166 static int do_sigbus(struct pt_regs *regs, unsigned long address,
167 		     vm_fault_t fault)
168 {
169 	if (!user_mode(regs))
170 		return SIGBUS;
171 
172 	current->thread.trap_nr = BUS_ADRERR;
173 #ifdef CONFIG_MEMORY_FAILURE
174 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
175 		unsigned int lsb = 0; /* shutup gcc */
176 
177 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
178 			current->comm, current->pid, address);
179 
180 		if (fault & VM_FAULT_HWPOISON_LARGE)
181 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
182 		if (fault & VM_FAULT_HWPOISON)
183 			lsb = PAGE_SHIFT;
184 
185 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb,
186 				 current);
187 		return 0;
188 	}
189 
190 #endif
191 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address, current);
192 	return 0;
193 }
194 
195 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
196 				vm_fault_t fault)
197 {
198 	/*
199 	 * Kernel page fault interrupted by SIGKILL. We have no reason to
200 	 * continue processing.
201 	 */
202 	if (fatal_signal_pending(current) && !user_mode(regs))
203 		return SIGKILL;
204 
205 	/* Out of memory */
206 	if (fault & VM_FAULT_OOM) {
207 		/*
208 		 * We ran out of memory, or some other thing happened to us that
209 		 * made us unable to handle the page fault gracefully.
210 		 */
211 		if (!user_mode(regs))
212 			return SIGSEGV;
213 		pagefault_out_of_memory();
214 	} else {
215 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
216 			     VM_FAULT_HWPOISON_LARGE))
217 			return do_sigbus(regs, addr, fault);
218 		else if (fault & VM_FAULT_SIGSEGV)
219 			return bad_area_nosemaphore(regs, addr);
220 		else
221 			BUG();
222 	}
223 	return 0;
224 }
225 
226 /* Is this a bad kernel fault ? */
227 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
228 			     unsigned long address, bool is_write)
229 {
230 	int is_exec = TRAP(regs) == 0x400;
231 
232 	/* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
233 	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
234 				      DSISR_PROTFAULT))) {
235 		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
236 				    address >= TASK_SIZE ? "exec-protected" : "user",
237 				    address,
238 				    from_kuid(&init_user_ns, current_uid()));
239 
240 		// Kernel exec fault is always bad
241 		return true;
242 	}
243 
244 	if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) &&
245 	    !search_exception_tables(regs->nip)) {
246 		pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n",
247 				    address,
248 				    from_kuid(&init_user_ns, current_uid()));
249 	}
250 
251 	// Kernel fault on kernel address is bad
252 	if (address >= TASK_SIZE)
253 		return true;
254 
255 	// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
256 	if (!search_exception_tables(regs->nip))
257 		return true;
258 
259 	// Read/write fault in a valid region (the exception table search passed
260 	// above), but blocked by KUAP is bad, it can never succeed.
261 	if (bad_kuap_fault(regs, is_write))
262 		return true;
263 
264 	// What's left? Kernel fault on user in well defined regions (extable
265 	// matched), and allowed by KUAP in the faulting context.
266 	return false;
267 }
268 
269 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
270 				struct vm_area_struct *vma, unsigned int flags,
271 				bool *must_retry)
272 {
273 	/*
274 	 * N.B. The POWER/Open ABI allows programs to access up to
275 	 * 288 bytes below the stack pointer.
276 	 * The kernel signal delivery code writes up to about 1.5kB
277 	 * below the stack pointer (r1) before decrementing it.
278 	 * The exec code can write slightly over 640kB to the stack
279 	 * before setting the user r1.  Thus we allow the stack to
280 	 * expand to 1MB without further checks.
281 	 */
282 	if (address + 0x100000 < vma->vm_end) {
283 		unsigned int __user *nip = (unsigned int __user *)regs->nip;
284 		/* get user regs even if this fault is in kernel mode */
285 		struct pt_regs *uregs = current->thread.regs;
286 		if (uregs == NULL)
287 			return true;
288 
289 		/*
290 		 * A user-mode access to an address a long way below
291 		 * the stack pointer is only valid if the instruction
292 		 * is one which would update the stack pointer to the
293 		 * address accessed if the instruction completed,
294 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
295 		 * (or the byte, halfword, float or double forms).
296 		 *
297 		 * If we don't check this then any write to the area
298 		 * between the last mapped region and the stack will
299 		 * expand the stack rather than segfaulting.
300 		 */
301 		if (address + 2048 >= uregs->gpr[1])
302 			return false;
303 
304 		if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
305 		    access_ok(nip, sizeof(*nip))) {
306 			unsigned int inst;
307 			int res;
308 
309 			pagefault_disable();
310 			res = __get_user_inatomic(inst, nip);
311 			pagefault_enable();
312 			if (!res)
313 				return !store_updates_sp(inst);
314 			*must_retry = true;
315 		}
316 		return true;
317 	}
318 	return false;
319 }
320 
321 static bool access_error(bool is_write, bool is_exec,
322 			 struct vm_area_struct *vma)
323 {
324 	/*
325 	 * Allow execution from readable areas if the MMU does not
326 	 * provide separate controls over reading and executing.
327 	 *
328 	 * Note: That code used to not be enabled for 4xx/BookE.
329 	 * It is now as I/D cache coherency for these is done at
330 	 * set_pte_at() time and I see no reason why the test
331 	 * below wouldn't be valid on those processors. This -may-
332 	 * break programs compiled with a really old ABI though.
333 	 */
334 	if (is_exec) {
335 		return !(vma->vm_flags & VM_EXEC) &&
336 			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
337 			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
338 	}
339 
340 	if (is_write) {
341 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
342 			return true;
343 		return false;
344 	}
345 
346 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
347 		return true;
348 	/*
349 	 * We should ideally do the vma pkey access check here. But in the
350 	 * fault path, handle_mm_fault() also does the same check. To avoid
351 	 * these multiple checks, we skip it here and handle access error due
352 	 * to pkeys later.
353 	 */
354 	return false;
355 }
356 
357 #ifdef CONFIG_PPC_SMLPAR
358 static inline void cmo_account_page_fault(void)
359 {
360 	if (firmware_has_feature(FW_FEATURE_CMO)) {
361 		u32 page_ins;
362 
363 		preempt_disable();
364 		page_ins = be32_to_cpu(get_lppaca()->page_ins);
365 		page_ins += 1 << PAGE_FACTOR;
366 		get_lppaca()->page_ins = cpu_to_be32(page_ins);
367 		preempt_enable();
368 	}
369 }
370 #else
371 static inline void cmo_account_page_fault(void) { }
372 #endif /* CONFIG_PPC_SMLPAR */
373 
374 #ifdef CONFIG_PPC_BOOK3S
375 static void sanity_check_fault(bool is_write, bool is_user,
376 			       unsigned long error_code, unsigned long address)
377 {
378 	/*
379 	 * Userspace trying to access kernel address, we get PROTFAULT for that.
380 	 */
381 	if (is_user && address >= TASK_SIZE) {
382 		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
383 				   current->comm, current->pid, address,
384 				   from_kuid(&init_user_ns, current_uid()));
385 		return;
386 	}
387 
388 	/*
389 	 * For hash translation mode, we should never get a
390 	 * PROTFAULT. Any update to pte to reduce access will result in us
391 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
392 	 * fault instead of DSISR_PROTFAULT.
393 	 *
394 	 * A pte update to relax the access will not result in a hash page table
395 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
396 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
397 	 * the special !is_write in the below conditional.
398 	 *
399 	 * For platforms that doesn't supports coherent icache and do support
400 	 * per page noexec bit, we do setup things such that we do the
401 	 * sync between D/I cache via fault. But that is handled via low level
402 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
403 	 * here in such case.
404 	 *
405 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
406 	 * check should handle those and hence we should fall to the bad_area
407 	 * handling correctly.
408 	 *
409 	 * For embedded with per page exec support that doesn't support coherent
410 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
411 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
412 	 * is conditional for server MMU.
413 	 *
414 	 * For radix, we can get prot fault for autonuma case, because radix
415 	 * page table will have them marked noaccess for user.
416 	 */
417 	if (radix_enabled() || is_write)
418 		return;
419 
420 	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
421 }
422 #else
423 static void sanity_check_fault(bool is_write, bool is_user,
424 			       unsigned long error_code, unsigned long address) { }
425 #endif /* CONFIG_PPC_BOOK3S */
426 
427 /*
428  * Define the correct "is_write" bit in error_code based
429  * on the processor family
430  */
431 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
432 #define page_fault_is_write(__err)	((__err) & ESR_DST)
433 #define page_fault_is_bad(__err)	(0)
434 #else
435 #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
436 #if defined(CONFIG_PPC_8xx)
437 #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
438 #elif defined(CONFIG_PPC64)
439 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
440 #else
441 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
442 #endif
443 #endif
444 
445 /*
446  * For 600- and 800-family processors, the error_code parameter is DSISR
447  * for a data fault, SRR1 for an instruction fault. For 400-family processors
448  * the error_code parameter is ESR for a data fault, 0 for an instruction
449  * fault.
450  * For 64-bit processors, the error_code parameter is
451  *  - DSISR for a non-SLB data access fault,
452  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
453  *  - 0 any SLB fault.
454  *
455  * The return value is 0 if the fault was handled, or the signal
456  * number if this is a kernel fault that can't be handled here.
457  */
458 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
459 			   unsigned long error_code)
460 {
461 	struct vm_area_struct * vma;
462 	struct mm_struct *mm = current->mm;
463 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
464  	int is_exec = TRAP(regs) == 0x400;
465 	int is_user = user_mode(regs);
466 	int is_write = page_fault_is_write(error_code);
467 	vm_fault_t fault, major = 0;
468 	bool must_retry = false;
469 
470 	if (notify_page_fault(regs))
471 		return 0;
472 
473 	if (unlikely(page_fault_is_bad(error_code))) {
474 		if (is_user) {
475 			_exception(SIGBUS, regs, BUS_OBJERR, address);
476 			return 0;
477 		}
478 		return SIGBUS;
479 	}
480 
481 	/* Additional sanity check(s) */
482 	sanity_check_fault(is_write, is_user, error_code, address);
483 
484 	/*
485 	 * The kernel should never take an execute fault nor should it
486 	 * take a page fault to a kernel address or a page fault to a user
487 	 * address outside of dedicated places
488 	 */
489 	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
490 		return SIGSEGV;
491 
492 	/*
493 	 * If we're in an interrupt, have no user context or are running
494 	 * in a region with pagefaults disabled then we must not take the fault
495 	 */
496 	if (unlikely(faulthandler_disabled() || !mm)) {
497 		if (is_user)
498 			printk_ratelimited(KERN_ERR "Page fault in user mode"
499 					   " with faulthandler_disabled()=%d"
500 					   " mm=%p\n",
501 					   faulthandler_disabled(), mm);
502 		return bad_area_nosemaphore(regs, address);
503 	}
504 
505 	/* We restore the interrupt state now */
506 	if (!arch_irq_disabled_regs(regs))
507 		local_irq_enable();
508 
509 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
510 
511 	if (error_code & DSISR_KEYFAULT)
512 		return bad_key_fault_exception(regs, address,
513 					       get_mm_addr_key(mm, address));
514 
515 	/*
516 	 * We want to do this outside mmap_sem, because reading code around nip
517 	 * can result in fault, which will cause a deadlock when called with
518 	 * mmap_sem held
519 	 */
520 	if (is_user)
521 		flags |= FAULT_FLAG_USER;
522 	if (is_write)
523 		flags |= FAULT_FLAG_WRITE;
524 	if (is_exec)
525 		flags |= FAULT_FLAG_INSTRUCTION;
526 
527 	/* When running in the kernel we expect faults to occur only to
528 	 * addresses in user space.  All other faults represent errors in the
529 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
530 	 * erroneous fault occurring in a code path which already holds mmap_sem
531 	 * we will deadlock attempting to validate the fault against the
532 	 * address space.  Luckily the kernel only validly references user
533 	 * space from well defined areas of code, which are listed in the
534 	 * exceptions table.
535 	 *
536 	 * As the vast majority of faults will be valid we will only perform
537 	 * the source reference check when there is a possibility of a deadlock.
538 	 * Attempt to lock the address space, if we cannot we then validate the
539 	 * source.  If this is invalid we can skip the address space check,
540 	 * thus avoiding the deadlock.
541 	 */
542 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
543 		if (!is_user && !search_exception_tables(regs->nip))
544 			return bad_area_nosemaphore(regs, address);
545 
546 retry:
547 		down_read(&mm->mmap_sem);
548 	} else {
549 		/*
550 		 * The above down_read_trylock() might have succeeded in
551 		 * which case we'll have missed the might_sleep() from
552 		 * down_read():
553 		 */
554 		might_sleep();
555 	}
556 
557 	vma = find_vma(mm, address);
558 	if (unlikely(!vma))
559 		return bad_area(regs, address);
560 	if (likely(vma->vm_start <= address))
561 		goto good_area;
562 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
563 		return bad_area(regs, address);
564 
565 	/* The stack is being expanded, check if it's valid */
566 	if (unlikely(bad_stack_expansion(regs, address, vma, flags,
567 					 &must_retry))) {
568 		if (!must_retry)
569 			return bad_area(regs, address);
570 
571 		up_read(&mm->mmap_sem);
572 		if (fault_in_pages_readable((const char __user *)regs->nip,
573 					    sizeof(unsigned int)))
574 			return bad_area_nosemaphore(regs, address);
575 		goto retry;
576 	}
577 
578 	/* Try to expand it */
579 	if (unlikely(expand_stack(vma, address)))
580 		return bad_area(regs, address);
581 
582 good_area:
583 	if (unlikely(access_error(is_write, is_exec, vma)))
584 		return bad_access(regs, address);
585 
586 	/*
587 	 * If for any reason at all we couldn't handle the fault,
588 	 * make sure we exit gracefully rather than endlessly redo
589 	 * the fault.
590 	 */
591 	fault = handle_mm_fault(vma, address, flags);
592 
593 #ifdef CONFIG_PPC_MEM_KEYS
594 	/*
595 	 * we skipped checking for access error due to key earlier.
596 	 * Check that using handle_mm_fault error return.
597 	 */
598 	if (unlikely(fault & VM_FAULT_SIGSEGV) &&
599 		!arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
600 
601 		int pkey = vma_pkey(vma);
602 
603 		up_read(&mm->mmap_sem);
604 		return bad_key_fault_exception(regs, address, pkey);
605 	}
606 #endif /* CONFIG_PPC_MEM_KEYS */
607 
608 	major |= fault & VM_FAULT_MAJOR;
609 
610 	/*
611 	 * Handle the retry right now, the mmap_sem has been released in that
612 	 * case.
613 	 */
614 	if (unlikely(fault & VM_FAULT_RETRY)) {
615 		/* We retry only once */
616 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
617 			/*
618 			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
619 			 * of starvation.
620 			 */
621 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
622 			flags |= FAULT_FLAG_TRIED;
623 			if (!fatal_signal_pending(current))
624 				goto retry;
625 		}
626 
627 		/*
628 		 * User mode? Just return to handle the fatal exception otherwise
629 		 * return to bad_page_fault
630 		 */
631 		return is_user ? 0 : SIGBUS;
632 	}
633 
634 	up_read(&current->mm->mmap_sem);
635 
636 	if (unlikely(fault & VM_FAULT_ERROR))
637 		return mm_fault_error(regs, address, fault);
638 
639 	/*
640 	 * Major/minor page fault accounting.
641 	 */
642 	if (major) {
643 		current->maj_flt++;
644 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
645 		cmo_account_page_fault();
646 	} else {
647 		current->min_flt++;
648 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
649 	}
650 	return 0;
651 }
652 NOKPROBE_SYMBOL(__do_page_fault);
653 
654 int do_page_fault(struct pt_regs *regs, unsigned long address,
655 		  unsigned long error_code)
656 {
657 	enum ctx_state prev_state = exception_enter();
658 	int rc = __do_page_fault(regs, address, error_code);
659 	exception_exit(prev_state);
660 	return rc;
661 }
662 NOKPROBE_SYMBOL(do_page_fault);
663 
664 /*
665  * bad_page_fault is called when we have a bad access from the kernel.
666  * It is called from the DSI and ISI handlers in head.S and from some
667  * of the procedures in traps.c.
668  */
669 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
670 {
671 	const struct exception_table_entry *entry;
672 
673 	/* Are we prepared to handle this fault?  */
674 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
675 		regs->nip = extable_fixup(entry);
676 		return;
677 	}
678 
679 	/* kernel has accessed a bad area */
680 
681 	switch (TRAP(regs)) {
682 	case 0x300:
683 	case 0x380:
684 	case 0xe00:
685 		pr_alert("BUG: %s at 0x%08lx\n",
686 			 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
687 			 "Unable to handle kernel data access", regs->dar);
688 		break;
689 	case 0x400:
690 	case 0x480:
691 		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
692 			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
693 		break;
694 	case 0x600:
695 		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
696 			 regs->dar);
697 		break;
698 	default:
699 		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
700 			 regs->dar);
701 		break;
702 	}
703 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
704 		regs->nip);
705 
706 	if (task_stack_end_corrupted(current))
707 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
708 
709 	die("Kernel access of bad area", regs, sig);
710 }
711