xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Derived from "arch/i386/mm/fault.c"
7  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *
9  *  Modified by Cort Dougan and Paul Mackerras.
10  *
11  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12  */
13 
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/pagemap.h>
22 #include <linux/ptrace.h>
23 #include <linux/mman.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/highmem.h>
27 #include <linux/extable.h>
28 #include <linux/kprobes.h>
29 #include <linux/kdebug.h>
30 #include <linux/perf_event.h>
31 #include <linux/ratelimit.h>
32 #include <linux/context_tracking.h>
33 #include <linux/hugetlb.h>
34 #include <linux/uaccess.h>
35 
36 #include <asm/firmware.h>
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/siginfo.h>
42 #include <asm/debug.h>
43 #include <asm/kup.h>
44 
45 static inline bool notify_page_fault(struct pt_regs *regs)
46 {
47 	bool ret = false;
48 
49 #ifdef CONFIG_KPROBES
50 	/* kprobe_running() needs smp_processor_id() */
51 	if (!user_mode(regs)) {
52 		preempt_disable();
53 		if (kprobe_running() && kprobe_fault_handler(regs, 11))
54 			ret = true;
55 		preempt_enable();
56 	}
57 #endif /* CONFIG_KPROBES */
58 
59 	if (unlikely(debugger_fault_handler(regs)))
60 		ret = true;
61 
62 	return ret;
63 }
64 
65 /*
66  * Check whether the instruction inst is a store using
67  * an update addressing form which will update r1.
68  */
69 static bool store_updates_sp(unsigned int inst)
70 {
71 	/* check for 1 in the rA field */
72 	if (((inst >> 16) & 0x1f) != 1)
73 		return false;
74 	/* check major opcode */
75 	switch (inst >> 26) {
76 	case OP_STWU:
77 	case OP_STBU:
78 	case OP_STHU:
79 	case OP_STFSU:
80 	case OP_STFDU:
81 		return true;
82 	case OP_STD:	/* std or stdu */
83 		return (inst & 3) == 1;
84 	case OP_31:
85 		/* check minor opcode */
86 		switch ((inst >> 1) & 0x3ff) {
87 		case OP_31_XOP_STDUX:
88 		case OP_31_XOP_STWUX:
89 		case OP_31_XOP_STBUX:
90 		case OP_31_XOP_STHUX:
91 		case OP_31_XOP_STFSUX:
92 		case OP_31_XOP_STFDUX:
93 			return true;
94 		}
95 	}
96 	return false;
97 }
98 /*
99  * do_page_fault error handling helpers
100  */
101 
102 static int
103 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
104 {
105 	/*
106 	 * If we are in kernel mode, bail out with a SEGV, this will
107 	 * be caught by the assembly which will restore the non-volatile
108 	 * registers before calling bad_page_fault()
109 	 */
110 	if (!user_mode(regs))
111 		return SIGSEGV;
112 
113 	_exception(SIGSEGV, regs, si_code, address);
114 
115 	return 0;
116 }
117 
118 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
119 {
120 	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
121 }
122 
123 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
124 {
125 	struct mm_struct *mm = current->mm;
126 
127 	/*
128 	 * Something tried to access memory that isn't in our memory map..
129 	 * Fix it, but check if it's kernel or user first..
130 	 */
131 	up_read(&mm->mmap_sem);
132 
133 	return __bad_area_nosemaphore(regs, address, si_code);
134 }
135 
136 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
137 {
138 	return __bad_area(regs, address, SEGV_MAPERR);
139 }
140 
141 static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
142 				    int pkey)
143 {
144 	/*
145 	 * If we are in kernel mode, bail out with a SEGV, this will
146 	 * be caught by the assembly which will restore the non-volatile
147 	 * registers before calling bad_page_fault()
148 	 */
149 	if (!user_mode(regs))
150 		return SIGSEGV;
151 
152 	_exception_pkey(regs, address, pkey);
153 
154 	return 0;
155 }
156 
157 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
158 {
159 	return __bad_area(regs, address, SEGV_ACCERR);
160 }
161 
162 static int do_sigbus(struct pt_regs *regs, unsigned long address,
163 		     vm_fault_t fault)
164 {
165 	if (!user_mode(regs))
166 		return SIGBUS;
167 
168 	current->thread.trap_nr = BUS_ADRERR;
169 #ifdef CONFIG_MEMORY_FAILURE
170 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
171 		unsigned int lsb = 0; /* shutup gcc */
172 
173 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
174 			current->comm, current->pid, address);
175 
176 		if (fault & VM_FAULT_HWPOISON_LARGE)
177 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
178 		if (fault & VM_FAULT_HWPOISON)
179 			lsb = PAGE_SHIFT;
180 
181 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb,
182 				 current);
183 		return 0;
184 	}
185 
186 #endif
187 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address, current);
188 	return 0;
189 }
190 
191 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
192 				vm_fault_t fault)
193 {
194 	/*
195 	 * Kernel page fault interrupted by SIGKILL. We have no reason to
196 	 * continue processing.
197 	 */
198 	if (fatal_signal_pending(current) && !user_mode(regs))
199 		return SIGKILL;
200 
201 	/* Out of memory */
202 	if (fault & VM_FAULT_OOM) {
203 		/*
204 		 * We ran out of memory, or some other thing happened to us that
205 		 * made us unable to handle the page fault gracefully.
206 		 */
207 		if (!user_mode(regs))
208 			return SIGSEGV;
209 		pagefault_out_of_memory();
210 	} else {
211 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
212 			     VM_FAULT_HWPOISON_LARGE))
213 			return do_sigbus(regs, addr, fault);
214 		else if (fault & VM_FAULT_SIGSEGV)
215 			return bad_area_nosemaphore(regs, addr);
216 		else
217 			BUG();
218 	}
219 	return 0;
220 }
221 
222 /* Is this a bad kernel fault ? */
223 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
224 			     unsigned long address, bool is_write)
225 {
226 	int is_exec = TRAP(regs) == 0x400;
227 
228 	/* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
229 	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
230 				      DSISR_PROTFAULT))) {
231 		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
232 				    address >= TASK_SIZE ? "exec-protected" : "user",
233 				    address,
234 				    from_kuid(&init_user_ns, current_uid()));
235 
236 		// Kernel exec fault is always bad
237 		return true;
238 	}
239 
240 	if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) &&
241 	    !search_exception_tables(regs->nip)) {
242 		pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n",
243 				    address,
244 				    from_kuid(&init_user_ns, current_uid()));
245 	}
246 
247 	// Kernel fault on kernel address is bad
248 	if (address >= TASK_SIZE)
249 		return true;
250 
251 	// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
252 	if (!search_exception_tables(regs->nip))
253 		return true;
254 
255 	// Read/write fault in a valid region (the exception table search passed
256 	// above), but blocked by KUAP is bad, it can never succeed.
257 	if (bad_kuap_fault(regs, is_write))
258 		return true;
259 
260 	// What's left? Kernel fault on user in well defined regions (extable
261 	// matched), and allowed by KUAP in the faulting context.
262 	return false;
263 }
264 
265 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
266 				struct vm_area_struct *vma, unsigned int flags,
267 				bool *must_retry)
268 {
269 	/*
270 	 * N.B. The POWER/Open ABI allows programs to access up to
271 	 * 288 bytes below the stack pointer.
272 	 * The kernel signal delivery code writes up to about 1.5kB
273 	 * below the stack pointer (r1) before decrementing it.
274 	 * The exec code can write slightly over 640kB to the stack
275 	 * before setting the user r1.  Thus we allow the stack to
276 	 * expand to 1MB without further checks.
277 	 */
278 	if (address + 0x100000 < vma->vm_end) {
279 		unsigned int __user *nip = (unsigned int __user *)regs->nip;
280 		/* get user regs even if this fault is in kernel mode */
281 		struct pt_regs *uregs = current->thread.regs;
282 		if (uregs == NULL)
283 			return true;
284 
285 		/*
286 		 * A user-mode access to an address a long way below
287 		 * the stack pointer is only valid if the instruction
288 		 * is one which would update the stack pointer to the
289 		 * address accessed if the instruction completed,
290 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
291 		 * (or the byte, halfword, float or double forms).
292 		 *
293 		 * If we don't check this then any write to the area
294 		 * between the last mapped region and the stack will
295 		 * expand the stack rather than segfaulting.
296 		 */
297 		if (address + 2048 >= uregs->gpr[1])
298 			return false;
299 
300 		if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
301 		    access_ok(nip, sizeof(*nip))) {
302 			unsigned int inst;
303 			int res;
304 
305 			pagefault_disable();
306 			res = __get_user_inatomic(inst, nip);
307 			pagefault_enable();
308 			if (!res)
309 				return !store_updates_sp(inst);
310 			*must_retry = true;
311 		}
312 		return true;
313 	}
314 	return false;
315 }
316 
317 static bool access_error(bool is_write, bool is_exec,
318 			 struct vm_area_struct *vma)
319 {
320 	/*
321 	 * Allow execution from readable areas if the MMU does not
322 	 * provide separate controls over reading and executing.
323 	 *
324 	 * Note: That code used to not be enabled for 4xx/BookE.
325 	 * It is now as I/D cache coherency for these is done at
326 	 * set_pte_at() time and I see no reason why the test
327 	 * below wouldn't be valid on those processors. This -may-
328 	 * break programs compiled with a really old ABI though.
329 	 */
330 	if (is_exec) {
331 		return !(vma->vm_flags & VM_EXEC) &&
332 			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
333 			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
334 	}
335 
336 	if (is_write) {
337 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
338 			return true;
339 		return false;
340 	}
341 
342 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
343 		return true;
344 	/*
345 	 * We should ideally do the vma pkey access check here. But in the
346 	 * fault path, handle_mm_fault() also does the same check. To avoid
347 	 * these multiple checks, we skip it here and handle access error due
348 	 * to pkeys later.
349 	 */
350 	return false;
351 }
352 
353 #ifdef CONFIG_PPC_SMLPAR
354 static inline void cmo_account_page_fault(void)
355 {
356 	if (firmware_has_feature(FW_FEATURE_CMO)) {
357 		u32 page_ins;
358 
359 		preempt_disable();
360 		page_ins = be32_to_cpu(get_lppaca()->page_ins);
361 		page_ins += 1 << PAGE_FACTOR;
362 		get_lppaca()->page_ins = cpu_to_be32(page_ins);
363 		preempt_enable();
364 	}
365 }
366 #else
367 static inline void cmo_account_page_fault(void) { }
368 #endif /* CONFIG_PPC_SMLPAR */
369 
370 #ifdef CONFIG_PPC_BOOK3S
371 static void sanity_check_fault(bool is_write, bool is_user,
372 			       unsigned long error_code, unsigned long address)
373 {
374 	/*
375 	 * Userspace trying to access kernel address, we get PROTFAULT for that.
376 	 */
377 	if (is_user && address >= TASK_SIZE) {
378 		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
379 				   current->comm, current->pid, address,
380 				   from_kuid(&init_user_ns, current_uid()));
381 		return;
382 	}
383 
384 	/*
385 	 * For hash translation mode, we should never get a
386 	 * PROTFAULT. Any update to pte to reduce access will result in us
387 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
388 	 * fault instead of DSISR_PROTFAULT.
389 	 *
390 	 * A pte update to relax the access will not result in a hash page table
391 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
392 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
393 	 * the special !is_write in the below conditional.
394 	 *
395 	 * For platforms that doesn't supports coherent icache and do support
396 	 * per page noexec bit, we do setup things such that we do the
397 	 * sync between D/I cache via fault. But that is handled via low level
398 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
399 	 * here in such case.
400 	 *
401 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
402 	 * check should handle those and hence we should fall to the bad_area
403 	 * handling correctly.
404 	 *
405 	 * For embedded with per page exec support that doesn't support coherent
406 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
407 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
408 	 * is conditional for server MMU.
409 	 *
410 	 * For radix, we can get prot fault for autonuma case, because radix
411 	 * page table will have them marked noaccess for user.
412 	 */
413 	if (radix_enabled() || is_write)
414 		return;
415 
416 	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
417 }
418 #else
419 static void sanity_check_fault(bool is_write, bool is_user,
420 			       unsigned long error_code, unsigned long address) { }
421 #endif /* CONFIG_PPC_BOOK3S */
422 
423 /*
424  * Define the correct "is_write" bit in error_code based
425  * on the processor family
426  */
427 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
428 #define page_fault_is_write(__err)	((__err) & ESR_DST)
429 #define page_fault_is_bad(__err)	(0)
430 #else
431 #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
432 #if defined(CONFIG_PPC_8xx)
433 #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
434 #elif defined(CONFIG_PPC64)
435 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
436 #else
437 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
438 #endif
439 #endif
440 
441 /*
442  * For 600- and 800-family processors, the error_code parameter is DSISR
443  * for a data fault, SRR1 for an instruction fault. For 400-family processors
444  * the error_code parameter is ESR for a data fault, 0 for an instruction
445  * fault.
446  * For 64-bit processors, the error_code parameter is
447  *  - DSISR for a non-SLB data access fault,
448  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
449  *  - 0 any SLB fault.
450  *
451  * The return value is 0 if the fault was handled, or the signal
452  * number if this is a kernel fault that can't be handled here.
453  */
454 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
455 			   unsigned long error_code)
456 {
457 	struct vm_area_struct * vma;
458 	struct mm_struct *mm = current->mm;
459 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
460  	int is_exec = TRAP(regs) == 0x400;
461 	int is_user = user_mode(regs);
462 	int is_write = page_fault_is_write(error_code);
463 	vm_fault_t fault, major = 0;
464 	bool must_retry = false;
465 
466 	if (notify_page_fault(regs))
467 		return 0;
468 
469 	if (unlikely(page_fault_is_bad(error_code))) {
470 		if (is_user) {
471 			_exception(SIGBUS, regs, BUS_OBJERR, address);
472 			return 0;
473 		}
474 		return SIGBUS;
475 	}
476 
477 	/* Additional sanity check(s) */
478 	sanity_check_fault(is_write, is_user, error_code, address);
479 
480 	/*
481 	 * The kernel should never take an execute fault nor should it
482 	 * take a page fault to a kernel address or a page fault to a user
483 	 * address outside of dedicated places
484 	 */
485 	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
486 		return SIGSEGV;
487 
488 	/*
489 	 * If we're in an interrupt, have no user context or are running
490 	 * in a region with pagefaults disabled then we must not take the fault
491 	 */
492 	if (unlikely(faulthandler_disabled() || !mm)) {
493 		if (is_user)
494 			printk_ratelimited(KERN_ERR "Page fault in user mode"
495 					   " with faulthandler_disabled()=%d"
496 					   " mm=%p\n",
497 					   faulthandler_disabled(), mm);
498 		return bad_area_nosemaphore(regs, address);
499 	}
500 
501 	/* We restore the interrupt state now */
502 	if (!arch_irq_disabled_regs(regs))
503 		local_irq_enable();
504 
505 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
506 
507 	if (error_code & DSISR_KEYFAULT)
508 		return bad_key_fault_exception(regs, address,
509 					       get_mm_addr_key(mm, address));
510 
511 	/*
512 	 * We want to do this outside mmap_sem, because reading code around nip
513 	 * can result in fault, which will cause a deadlock when called with
514 	 * mmap_sem held
515 	 */
516 	if (is_user)
517 		flags |= FAULT_FLAG_USER;
518 	if (is_write)
519 		flags |= FAULT_FLAG_WRITE;
520 	if (is_exec)
521 		flags |= FAULT_FLAG_INSTRUCTION;
522 
523 	/* When running in the kernel we expect faults to occur only to
524 	 * addresses in user space.  All other faults represent errors in the
525 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
526 	 * erroneous fault occurring in a code path which already holds mmap_sem
527 	 * we will deadlock attempting to validate the fault against the
528 	 * address space.  Luckily the kernel only validly references user
529 	 * space from well defined areas of code, which are listed in the
530 	 * exceptions table.
531 	 *
532 	 * As the vast majority of faults will be valid we will only perform
533 	 * the source reference check when there is a possibility of a deadlock.
534 	 * Attempt to lock the address space, if we cannot we then validate the
535 	 * source.  If this is invalid we can skip the address space check,
536 	 * thus avoiding the deadlock.
537 	 */
538 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
539 		if (!is_user && !search_exception_tables(regs->nip))
540 			return bad_area_nosemaphore(regs, address);
541 
542 retry:
543 		down_read(&mm->mmap_sem);
544 	} else {
545 		/*
546 		 * The above down_read_trylock() might have succeeded in
547 		 * which case we'll have missed the might_sleep() from
548 		 * down_read():
549 		 */
550 		might_sleep();
551 	}
552 
553 	vma = find_vma(mm, address);
554 	if (unlikely(!vma))
555 		return bad_area(regs, address);
556 	if (likely(vma->vm_start <= address))
557 		goto good_area;
558 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
559 		return bad_area(regs, address);
560 
561 	/* The stack is being expanded, check if it's valid */
562 	if (unlikely(bad_stack_expansion(regs, address, vma, flags,
563 					 &must_retry))) {
564 		if (!must_retry)
565 			return bad_area(regs, address);
566 
567 		up_read(&mm->mmap_sem);
568 		if (fault_in_pages_readable((const char __user *)regs->nip,
569 					    sizeof(unsigned int)))
570 			return bad_area_nosemaphore(regs, address);
571 		goto retry;
572 	}
573 
574 	/* Try to expand it */
575 	if (unlikely(expand_stack(vma, address)))
576 		return bad_area(regs, address);
577 
578 good_area:
579 	if (unlikely(access_error(is_write, is_exec, vma)))
580 		return bad_access(regs, address);
581 
582 	/*
583 	 * If for any reason at all we couldn't handle the fault,
584 	 * make sure we exit gracefully rather than endlessly redo
585 	 * the fault.
586 	 */
587 	fault = handle_mm_fault(vma, address, flags);
588 
589 #ifdef CONFIG_PPC_MEM_KEYS
590 	/*
591 	 * we skipped checking for access error due to key earlier.
592 	 * Check that using handle_mm_fault error return.
593 	 */
594 	if (unlikely(fault & VM_FAULT_SIGSEGV) &&
595 		!arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
596 
597 		int pkey = vma_pkey(vma);
598 
599 		up_read(&mm->mmap_sem);
600 		return bad_key_fault_exception(regs, address, pkey);
601 	}
602 #endif /* CONFIG_PPC_MEM_KEYS */
603 
604 	major |= fault & VM_FAULT_MAJOR;
605 
606 	/*
607 	 * Handle the retry right now, the mmap_sem has been released in that
608 	 * case.
609 	 */
610 	if (unlikely(fault & VM_FAULT_RETRY)) {
611 		/* We retry only once */
612 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
613 			/*
614 			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
615 			 * of starvation.
616 			 */
617 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
618 			flags |= FAULT_FLAG_TRIED;
619 			if (!fatal_signal_pending(current))
620 				goto retry;
621 		}
622 
623 		/*
624 		 * User mode? Just return to handle the fatal exception otherwise
625 		 * return to bad_page_fault
626 		 */
627 		return is_user ? 0 : SIGBUS;
628 	}
629 
630 	up_read(&current->mm->mmap_sem);
631 
632 	if (unlikely(fault & VM_FAULT_ERROR))
633 		return mm_fault_error(regs, address, fault);
634 
635 	/*
636 	 * Major/minor page fault accounting.
637 	 */
638 	if (major) {
639 		current->maj_flt++;
640 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
641 		cmo_account_page_fault();
642 	} else {
643 		current->min_flt++;
644 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
645 	}
646 	return 0;
647 }
648 NOKPROBE_SYMBOL(__do_page_fault);
649 
650 int do_page_fault(struct pt_regs *regs, unsigned long address,
651 		  unsigned long error_code)
652 {
653 	enum ctx_state prev_state = exception_enter();
654 	int rc = __do_page_fault(regs, address, error_code);
655 	exception_exit(prev_state);
656 	return rc;
657 }
658 NOKPROBE_SYMBOL(do_page_fault);
659 
660 /*
661  * bad_page_fault is called when we have a bad access from the kernel.
662  * It is called from the DSI and ISI handlers in head.S and from some
663  * of the procedures in traps.c.
664  */
665 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
666 {
667 	const struct exception_table_entry *entry;
668 
669 	/* Are we prepared to handle this fault?  */
670 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
671 		regs->nip = extable_fixup(entry);
672 		return;
673 	}
674 
675 	/* kernel has accessed a bad area */
676 
677 	switch (TRAP(regs)) {
678 	case 0x300:
679 	case 0x380:
680 	case 0xe00:
681 		pr_alert("BUG: %s at 0x%08lx\n",
682 			 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
683 			 "Unable to handle kernel data access", regs->dar);
684 		break;
685 	case 0x400:
686 	case 0x480:
687 		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
688 			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
689 		break;
690 	case 0x600:
691 		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
692 			 regs->dar);
693 		break;
694 	default:
695 		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
696 			 regs->dar);
697 		break;
698 	}
699 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
700 		regs->nip);
701 
702 	if (task_stack_end_corrupted(current))
703 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
704 
705 	die("Kernel access of bad area", regs, sig);
706 }
707