xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision 34f5c1c5)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 #include <linux/perf_event.h>
33 
34 #include <asm/firmware.h>
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu.h>
38 #include <asm/mmu_context.h>
39 #include <asm/system.h>
40 #include <asm/uaccess.h>
41 #include <asm/tlbflush.h>
42 #include <asm/siginfo.h>
43 #include <mm/mmu_decl.h>
44 
45 #ifdef CONFIG_KPROBES
46 static inline int notify_page_fault(struct pt_regs *regs)
47 {
48 	int ret = 0;
49 
50 	/* kprobe_running() needs smp_processor_id() */
51 	if (!user_mode(regs)) {
52 		preempt_disable();
53 		if (kprobe_running() && kprobe_fault_handler(regs, 11))
54 			ret = 1;
55 		preempt_enable();
56 	}
57 
58 	return ret;
59 }
60 #else
61 static inline int notify_page_fault(struct pt_regs *regs)
62 {
63 	return 0;
64 }
65 #endif
66 
67 /*
68  * Check whether the instruction at regs->nip is a store using
69  * an update addressing form which will update r1.
70  */
71 static int store_updates_sp(struct pt_regs *regs)
72 {
73 	unsigned int inst;
74 
75 	if (get_user(inst, (unsigned int __user *)regs->nip))
76 		return 0;
77 	/* check for 1 in the rA field */
78 	if (((inst >> 16) & 0x1f) != 1)
79 		return 0;
80 	/* check major opcode */
81 	switch (inst >> 26) {
82 	case 37:	/* stwu */
83 	case 39:	/* stbu */
84 	case 45:	/* sthu */
85 	case 53:	/* stfsu */
86 	case 55:	/* stfdu */
87 		return 1;
88 	case 62:	/* std or stdu */
89 		return (inst & 3) == 1;
90 	case 31:
91 		/* check minor opcode */
92 		switch ((inst >> 1) & 0x3ff) {
93 		case 181:	/* stdux */
94 		case 183:	/* stwux */
95 		case 247:	/* stbux */
96 		case 439:	/* sthux */
97 		case 695:	/* stfsux */
98 		case 759:	/* stfdux */
99 			return 1;
100 		}
101 	}
102 	return 0;
103 }
104 
105 /*
106  * For 600- and 800-family processors, the error_code parameter is DSISR
107  * for a data fault, SRR1 for an instruction fault. For 400-family processors
108  * the error_code parameter is ESR for a data fault, 0 for an instruction
109  * fault.
110  * For 64-bit processors, the error_code parameter is
111  *  - DSISR for a non-SLB data access fault,
112  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
113  *  - 0 any SLB fault.
114  *
115  * The return value is 0 if the fault was handled, or the signal
116  * number if this is a kernel fault that can't be handled here.
117  */
118 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
119 			    unsigned long error_code)
120 {
121 	struct vm_area_struct * vma;
122 	struct mm_struct *mm = current->mm;
123 	siginfo_t info;
124 	int code = SEGV_MAPERR;
125 	int is_write = 0, ret;
126 	int trap = TRAP(regs);
127  	int is_exec = trap == 0x400;
128 
129 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
130 	/*
131 	 * Fortunately the bit assignments in SRR1 for an instruction
132 	 * fault and DSISR for a data fault are mostly the same for the
133 	 * bits we are interested in.  But there are some bits which
134 	 * indicate errors in DSISR but can validly be set in SRR1.
135 	 */
136 	if (trap == 0x400)
137 		error_code &= 0x48200000;
138 	else
139 		is_write = error_code & DSISR_ISSTORE;
140 #else
141 	is_write = error_code & ESR_DST;
142 #endif /* CONFIG_4xx || CONFIG_BOOKE */
143 
144 	if (notify_page_fault(regs))
145 		return 0;
146 
147 	if (unlikely(debugger_fault_handler(regs)))
148 		return 0;
149 
150 	/* On a kernel SLB miss we can only check for a valid exception entry */
151 	if (!user_mode(regs) && (address >= TASK_SIZE))
152 		return SIGSEGV;
153 
154 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
155 			     defined(CONFIG_PPC_BOOK3S_64))
156   	if (error_code & DSISR_DABRMATCH) {
157 		/* DABR match */
158 		do_dabr(regs, address, error_code);
159 		return 0;
160 	}
161 #endif
162 
163 	if (in_atomic() || mm == NULL) {
164 		if (!user_mode(regs))
165 			return SIGSEGV;
166 		/* in_atomic() in user mode is really bad,
167 		   as is current->mm == NULL. */
168 		printk(KERN_EMERG "Page fault in user mode with "
169 		       "in_atomic() = %d mm = %p\n", in_atomic(), mm);
170 		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
171 		       regs->nip, regs->msr);
172 		die("Weird page fault", regs, SIGSEGV);
173 	}
174 
175 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
176 
177 	/* When running in the kernel we expect faults to occur only to
178 	 * addresses in user space.  All other faults represent errors in the
179 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
180 	 * erroneous fault occurring in a code path which already holds mmap_sem
181 	 * we will deadlock attempting to validate the fault against the
182 	 * address space.  Luckily the kernel only validly references user
183 	 * space from well defined areas of code, which are listed in the
184 	 * exceptions table.
185 	 *
186 	 * As the vast majority of faults will be valid we will only perform
187 	 * the source reference check when there is a possibility of a deadlock.
188 	 * Attempt to lock the address space, if we cannot we then validate the
189 	 * source.  If this is invalid we can skip the address space check,
190 	 * thus avoiding the deadlock.
191 	 */
192 	if (!down_read_trylock(&mm->mmap_sem)) {
193 		if (!user_mode(regs) && !search_exception_tables(regs->nip))
194 			goto bad_area_nosemaphore;
195 
196 		down_read(&mm->mmap_sem);
197 	}
198 
199 	vma = find_vma(mm, address);
200 	if (!vma)
201 		goto bad_area;
202 	if (vma->vm_start <= address)
203 		goto good_area;
204 	if (!(vma->vm_flags & VM_GROWSDOWN))
205 		goto bad_area;
206 
207 	/*
208 	 * N.B. The POWER/Open ABI allows programs to access up to
209 	 * 288 bytes below the stack pointer.
210 	 * The kernel signal delivery code writes up to about 1.5kB
211 	 * below the stack pointer (r1) before decrementing it.
212 	 * The exec code can write slightly over 640kB to the stack
213 	 * before setting the user r1.  Thus we allow the stack to
214 	 * expand to 1MB without further checks.
215 	 */
216 	if (address + 0x100000 < vma->vm_end) {
217 		/* get user regs even if this fault is in kernel mode */
218 		struct pt_regs *uregs = current->thread.regs;
219 		if (uregs == NULL)
220 			goto bad_area;
221 
222 		/*
223 		 * A user-mode access to an address a long way below
224 		 * the stack pointer is only valid if the instruction
225 		 * is one which would update the stack pointer to the
226 		 * address accessed if the instruction completed,
227 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
228 		 * (or the byte, halfword, float or double forms).
229 		 *
230 		 * If we don't check this then any write to the area
231 		 * between the last mapped region and the stack will
232 		 * expand the stack rather than segfaulting.
233 		 */
234 		if (address + 2048 < uregs->gpr[1]
235 		    && (!user_mode(regs) || !store_updates_sp(regs)))
236 			goto bad_area;
237 	}
238 	if (expand_stack(vma, address))
239 		goto bad_area;
240 
241 good_area:
242 	code = SEGV_ACCERR;
243 #if defined(CONFIG_6xx)
244 	if (error_code & 0x95700000)
245 		/* an error such as lwarx to I/O controller space,
246 		   address matching DABR, eciwx, etc. */
247 		goto bad_area;
248 #endif /* CONFIG_6xx */
249 #if defined(CONFIG_8xx)
250 	/* 8xx sometimes need to load a invalid/non-present TLBs.
251 	 * These must be invalidated separately as linux mm don't.
252 	 */
253 	if (error_code & 0x40000000) /* no translation? */
254 		_tlbil_va(address, 0, 0, 0);
255 
256         /* The MPC8xx seems to always set 0x80000000, which is
257          * "undefined".  Of those that can be set, this is the only
258          * one which seems bad.
259          */
260 	if (error_code & 0x10000000)
261                 /* Guarded storage error. */
262 		goto bad_area;
263 #endif /* CONFIG_8xx */
264 
265 	if (is_exec) {
266 #ifdef CONFIG_PPC_STD_MMU
267 		/* Protection fault on exec go straight to failure on
268 		 * Hash based MMUs as they either don't support per-page
269 		 * execute permission, or if they do, it's handled already
270 		 * at the hash level. This test would probably have to
271 		 * be removed if we change the way this works to make hash
272 		 * processors use the same I/D cache coherency mechanism
273 		 * as embedded.
274 		 */
275 		if (error_code & DSISR_PROTFAULT)
276 			goto bad_area;
277 #endif /* CONFIG_PPC_STD_MMU */
278 
279 		/*
280 		 * Allow execution from readable areas if the MMU does not
281 		 * provide separate controls over reading and executing.
282 		 *
283 		 * Note: That code used to not be enabled for 4xx/BookE.
284 		 * It is now as I/D cache coherency for these is done at
285 		 * set_pte_at() time and I see no reason why the test
286 		 * below wouldn't be valid on those processors. This -may-
287 		 * break programs compiled with a really old ABI though.
288 		 */
289 		if (!(vma->vm_flags & VM_EXEC) &&
290 		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
291 		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
292 			goto bad_area;
293 	/* a write */
294 	} else if (is_write) {
295 		if (!(vma->vm_flags & VM_WRITE))
296 			goto bad_area;
297 	/* a read */
298 	} else {
299 		/* protection fault */
300 		if (error_code & 0x08000000)
301 			goto bad_area;
302 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
303 			goto bad_area;
304 	}
305 
306 	/*
307 	 * If for any reason at all we couldn't handle the fault,
308 	 * make sure we exit gracefully rather than endlessly redo
309 	 * the fault.
310 	 */
311 	ret = handle_mm_fault(mm, vma, address, is_write ? FAULT_FLAG_WRITE : 0);
312 	if (unlikely(ret & VM_FAULT_ERROR)) {
313 		if (ret & VM_FAULT_OOM)
314 			goto out_of_memory;
315 		else if (ret & VM_FAULT_SIGBUS)
316 			goto do_sigbus;
317 		BUG();
318 	}
319 	if (ret & VM_FAULT_MAJOR) {
320 		current->maj_flt++;
321 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
322 				     regs, address);
323 #ifdef CONFIG_PPC_SMLPAR
324 		if (firmware_has_feature(FW_FEATURE_CMO)) {
325 			preempt_disable();
326 			get_lppaca()->page_ins += (1 << PAGE_FACTOR);
327 			preempt_enable();
328 		}
329 #endif
330 	} else {
331 		current->min_flt++;
332 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
333 				     regs, address);
334 	}
335 	up_read(&mm->mmap_sem);
336 	return 0;
337 
338 bad_area:
339 	up_read(&mm->mmap_sem);
340 
341 bad_area_nosemaphore:
342 	/* User mode accesses cause a SIGSEGV */
343 	if (user_mode(regs)) {
344 		_exception(SIGSEGV, regs, code, address);
345 		return 0;
346 	}
347 
348 	if (is_exec && (error_code & DSISR_PROTFAULT)
349 	    && printk_ratelimit())
350 		printk(KERN_CRIT "kernel tried to execute NX-protected"
351 		       " page (%lx) - exploit attempt? (uid: %d)\n",
352 		       address, current_uid());
353 
354 	return SIGSEGV;
355 
356 /*
357  * We ran out of memory, or some other thing happened to us that made
358  * us unable to handle the page fault gracefully.
359  */
360 out_of_memory:
361 	up_read(&mm->mmap_sem);
362 	if (!user_mode(regs))
363 		return SIGKILL;
364 	pagefault_out_of_memory();
365 	return 0;
366 
367 do_sigbus:
368 	up_read(&mm->mmap_sem);
369 	if (user_mode(regs)) {
370 		info.si_signo = SIGBUS;
371 		info.si_errno = 0;
372 		info.si_code = BUS_ADRERR;
373 		info.si_addr = (void __user *)address;
374 		force_sig_info(SIGBUS, &info, current);
375 		return 0;
376 	}
377 	return SIGBUS;
378 }
379 
380 /*
381  * bad_page_fault is called when we have a bad access from the kernel.
382  * It is called from the DSI and ISI handlers in head.S and from some
383  * of the procedures in traps.c.
384  */
385 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
386 {
387 	const struct exception_table_entry *entry;
388 
389 	/* Are we prepared to handle this fault?  */
390 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
391 		regs->nip = entry->fixup;
392 		return;
393 	}
394 
395 	/* kernel has accessed a bad area */
396 
397 	switch (regs->trap) {
398 	case 0x300:
399 	case 0x380:
400 		printk(KERN_ALERT "Unable to handle kernel paging request for "
401 			"data at address 0x%08lx\n", regs->dar);
402 		break;
403 	case 0x400:
404 	case 0x480:
405 		printk(KERN_ALERT "Unable to handle kernel paging request for "
406 			"instruction fetch\n");
407 		break;
408 	default:
409 		printk(KERN_ALERT "Unable to handle kernel paging request for "
410 			"unknown fault\n");
411 		break;
412 	}
413 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
414 		regs->nip);
415 
416 	die("Kernel access of bad area", regs, sig);
417 }
418