xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision 31eeb6b0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Derived from "arch/i386/mm/fault.c"
7  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *
9  *  Modified by Cort Dougan and Paul Mackerras.
10  *
11  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12  */
13 
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/pagemap.h>
22 #include <linux/ptrace.h>
23 #include <linux/mman.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/highmem.h>
27 #include <linux/extable.h>
28 #include <linux/kprobes.h>
29 #include <linux/kdebug.h>
30 #include <linux/perf_event.h>
31 #include <linux/ratelimit.h>
32 #include <linux/context_tracking.h>
33 #include <linux/hugetlb.h>
34 #include <linux/uaccess.h>
35 #include <linux/kfence.h>
36 #include <linux/pkeys.h>
37 
38 #include <asm/asm-prototypes.h>
39 #include <asm/firmware.h>
40 #include <asm/interrupt.h>
41 #include <asm/page.h>
42 #include <asm/mmu.h>
43 #include <asm/mmu_context.h>
44 #include <asm/siginfo.h>
45 #include <asm/debug.h>
46 #include <asm/kup.h>
47 #include <asm/inst.h>
48 
49 
50 /*
51  * do_page_fault error handling helpers
52  */
53 
54 static int
55 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
56 {
57 	/*
58 	 * If we are in kernel mode, bail out with a SEGV, this will
59 	 * be caught by the assembly which will restore the non-volatile
60 	 * registers before calling bad_page_fault()
61 	 */
62 	if (!user_mode(regs))
63 		return SIGSEGV;
64 
65 	_exception(SIGSEGV, regs, si_code, address);
66 
67 	return 0;
68 }
69 
70 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
71 {
72 	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
73 }
74 
75 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
76 {
77 	struct mm_struct *mm = current->mm;
78 
79 	/*
80 	 * Something tried to access memory that isn't in our memory map..
81 	 * Fix it, but check if it's kernel or user first..
82 	 */
83 	mmap_read_unlock(mm);
84 
85 	return __bad_area_nosemaphore(regs, address, si_code);
86 }
87 
88 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
89 {
90 	return __bad_area(regs, address, SEGV_MAPERR);
91 }
92 
93 static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
94 				    struct vm_area_struct *vma)
95 {
96 	struct mm_struct *mm = current->mm;
97 	int pkey;
98 
99 	/*
100 	 * We don't try to fetch the pkey from page table because reading
101 	 * page table without locking doesn't guarantee stable pte value.
102 	 * Hence the pkey value that we return to userspace can be different
103 	 * from the pkey that actually caused access error.
104 	 *
105 	 * It does *not* guarantee that the VMA we find here
106 	 * was the one that we faulted on.
107 	 *
108 	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
109 	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
110 	 * 3. T1   : faults...
111 	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
112 	 * 5. T1   : enters fault handler, takes mmap_lock, etc...
113 	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
114 	 *	     faulted on a pte with its pkey=4.
115 	 */
116 	pkey = vma_pkey(vma);
117 
118 	mmap_read_unlock(mm);
119 
120 	/*
121 	 * If we are in kernel mode, bail out with a SEGV, this will
122 	 * be caught by the assembly which will restore the non-volatile
123 	 * registers before calling bad_page_fault()
124 	 */
125 	if (!user_mode(regs))
126 		return SIGSEGV;
127 
128 	_exception_pkey(regs, address, pkey);
129 
130 	return 0;
131 }
132 
133 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
134 {
135 	return __bad_area(regs, address, SEGV_ACCERR);
136 }
137 
138 static int do_sigbus(struct pt_regs *regs, unsigned long address,
139 		     vm_fault_t fault)
140 {
141 	if (!user_mode(regs))
142 		return SIGBUS;
143 
144 	current->thread.trap_nr = BUS_ADRERR;
145 #ifdef CONFIG_MEMORY_FAILURE
146 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
147 		unsigned int lsb = 0; /* shutup gcc */
148 
149 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
150 			current->comm, current->pid, address);
151 
152 		if (fault & VM_FAULT_HWPOISON_LARGE)
153 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
154 		if (fault & VM_FAULT_HWPOISON)
155 			lsb = PAGE_SHIFT;
156 
157 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
158 		return 0;
159 	}
160 
161 #endif
162 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
163 	return 0;
164 }
165 
166 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
167 				vm_fault_t fault)
168 {
169 	/*
170 	 * Kernel page fault interrupted by SIGKILL. We have no reason to
171 	 * continue processing.
172 	 */
173 	if (fatal_signal_pending(current) && !user_mode(regs))
174 		return SIGKILL;
175 
176 	/* Out of memory */
177 	if (fault & VM_FAULT_OOM) {
178 		/*
179 		 * We ran out of memory, or some other thing happened to us that
180 		 * made us unable to handle the page fault gracefully.
181 		 */
182 		if (!user_mode(regs))
183 			return SIGSEGV;
184 		pagefault_out_of_memory();
185 	} else {
186 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
187 			     VM_FAULT_HWPOISON_LARGE))
188 			return do_sigbus(regs, addr, fault);
189 		else if (fault & VM_FAULT_SIGSEGV)
190 			return bad_area_nosemaphore(regs, addr);
191 		else
192 			BUG();
193 	}
194 	return 0;
195 }
196 
197 /* Is this a bad kernel fault ? */
198 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
199 			     unsigned long address, bool is_write)
200 {
201 	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
202 
203 	if (is_exec) {
204 		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
205 				    address >= TASK_SIZE ? "exec-protected" : "user",
206 				    address,
207 				    from_kuid(&init_user_ns, current_uid()));
208 
209 		// Kernel exec fault is always bad
210 		return true;
211 	}
212 
213 	// Kernel fault on kernel address is bad
214 	if (address >= TASK_SIZE)
215 		return true;
216 
217 	// Read/write fault blocked by KUAP is bad, it can never succeed.
218 	if (bad_kuap_fault(regs, address, is_write)) {
219 		pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
220 				    is_write ? "write" : "read", address,
221 				    from_kuid(&init_user_ns, current_uid()));
222 
223 		// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
224 		if (!search_exception_tables(regs->nip))
225 			return true;
226 
227 		// Read/write fault in a valid region (the exception table search passed
228 		// above), but blocked by KUAP is bad, it can never succeed.
229 		return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
230 	}
231 
232 	// What's left? Kernel fault on user and allowed by KUAP in the faulting context.
233 	return false;
234 }
235 
236 static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
237 			      struct vm_area_struct *vma)
238 {
239 	/*
240 	 * Make sure to check the VMA so that we do not perform
241 	 * faults just to hit a pkey fault as soon as we fill in a
242 	 * page. Only called for current mm, hence foreign == 0
243 	 */
244 	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
245 		return true;
246 
247 	return false;
248 }
249 
250 static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
251 {
252 	/*
253 	 * Allow execution from readable areas if the MMU does not
254 	 * provide separate controls over reading and executing.
255 	 *
256 	 * Note: That code used to not be enabled for 4xx/BookE.
257 	 * It is now as I/D cache coherency for these is done at
258 	 * set_pte_at() time and I see no reason why the test
259 	 * below wouldn't be valid on those processors. This -may-
260 	 * break programs compiled with a really old ABI though.
261 	 */
262 	if (is_exec) {
263 		return !(vma->vm_flags & VM_EXEC) &&
264 			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
265 			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
266 	}
267 
268 	if (is_write) {
269 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
270 			return true;
271 		return false;
272 	}
273 
274 	if (unlikely(!vma_is_accessible(vma)))
275 		return true;
276 	/*
277 	 * We should ideally do the vma pkey access check here. But in the
278 	 * fault path, handle_mm_fault() also does the same check. To avoid
279 	 * these multiple checks, we skip it here and handle access error due
280 	 * to pkeys later.
281 	 */
282 	return false;
283 }
284 
285 #ifdef CONFIG_PPC_SMLPAR
286 static inline void cmo_account_page_fault(void)
287 {
288 	if (firmware_has_feature(FW_FEATURE_CMO)) {
289 		u32 page_ins;
290 
291 		preempt_disable();
292 		page_ins = be32_to_cpu(get_lppaca()->page_ins);
293 		page_ins += 1 << PAGE_FACTOR;
294 		get_lppaca()->page_ins = cpu_to_be32(page_ins);
295 		preempt_enable();
296 	}
297 }
298 #else
299 static inline void cmo_account_page_fault(void) { }
300 #endif /* CONFIG_PPC_SMLPAR */
301 
302 static void sanity_check_fault(bool is_write, bool is_user,
303 			       unsigned long error_code, unsigned long address)
304 {
305 	/*
306 	 * Userspace trying to access kernel address, we get PROTFAULT for that.
307 	 */
308 	if (is_user && address >= TASK_SIZE) {
309 		if ((long)address == -1)
310 			return;
311 
312 		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
313 				   current->comm, current->pid, address,
314 				   from_kuid(&init_user_ns, current_uid()));
315 		return;
316 	}
317 
318 	if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
319 		return;
320 
321 	/*
322 	 * For hash translation mode, we should never get a
323 	 * PROTFAULT. Any update to pte to reduce access will result in us
324 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
325 	 * fault instead of DSISR_PROTFAULT.
326 	 *
327 	 * A pte update to relax the access will not result in a hash page table
328 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
329 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
330 	 * the special !is_write in the below conditional.
331 	 *
332 	 * For platforms that doesn't supports coherent icache and do support
333 	 * per page noexec bit, we do setup things such that we do the
334 	 * sync between D/I cache via fault. But that is handled via low level
335 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
336 	 * here in such case.
337 	 *
338 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
339 	 * check should handle those and hence we should fall to the bad_area
340 	 * handling correctly.
341 	 *
342 	 * For embedded with per page exec support that doesn't support coherent
343 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
344 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
345 	 * is conditional for server MMU.
346 	 *
347 	 * For radix, we can get prot fault for autonuma case, because radix
348 	 * page table will have them marked noaccess for user.
349 	 */
350 	if (radix_enabled() || is_write)
351 		return;
352 
353 	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
354 }
355 
356 /*
357  * Define the correct "is_write" bit in error_code based
358  * on the processor family
359  */
360 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
361 #define page_fault_is_write(__err)	((__err) & ESR_DST)
362 #else
363 #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
364 #endif
365 
366 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
367 #define page_fault_is_bad(__err)	(0)
368 #elif defined(CONFIG_PPC_8xx)
369 #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
370 #elif defined(CONFIG_PPC64)
371 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
372 #else
373 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
374 #endif
375 
376 /*
377  * For 600- and 800-family processors, the error_code parameter is DSISR
378  * for a data fault, SRR1 for an instruction fault.
379  * For 400-family processors the error_code parameter is ESR for a data fault,
380  * 0 for an instruction fault.
381  * For 64-bit processors, the error_code parameter is DSISR for a data access
382  * fault, SRR1 & 0x08000000 for an instruction access fault.
383  *
384  * The return value is 0 if the fault was handled, or the signal
385  * number if this is a kernel fault that can't be handled here.
386  */
387 static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
388 			   unsigned long error_code)
389 {
390 	struct vm_area_struct * vma;
391 	struct mm_struct *mm = current->mm;
392 	unsigned int flags = FAULT_FLAG_DEFAULT;
393 	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
394 	int is_user = user_mode(regs);
395 	int is_write = page_fault_is_write(error_code);
396 	vm_fault_t fault, major = 0;
397 	bool kprobe_fault = kprobe_page_fault(regs, 11);
398 
399 	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
400 		return 0;
401 
402 	if (unlikely(page_fault_is_bad(error_code))) {
403 		if (is_user) {
404 			_exception(SIGBUS, regs, BUS_OBJERR, address);
405 			return 0;
406 		}
407 		return SIGBUS;
408 	}
409 
410 	/* Additional sanity check(s) */
411 	sanity_check_fault(is_write, is_user, error_code, address);
412 
413 	/*
414 	 * The kernel should never take an execute fault nor should it
415 	 * take a page fault to a kernel address or a page fault to a user
416 	 * address outside of dedicated places
417 	 */
418 	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
419 		if (kfence_handle_page_fault(address, is_write, regs))
420 			return 0;
421 
422 		return SIGSEGV;
423 	}
424 
425 	/*
426 	 * If we're in an interrupt, have no user context or are running
427 	 * in a region with pagefaults disabled then we must not take the fault
428 	 */
429 	if (unlikely(faulthandler_disabled() || !mm)) {
430 		if (is_user)
431 			printk_ratelimited(KERN_ERR "Page fault in user mode"
432 					   " with faulthandler_disabled()=%d"
433 					   " mm=%p\n",
434 					   faulthandler_disabled(), mm);
435 		return bad_area_nosemaphore(regs, address);
436 	}
437 
438 	interrupt_cond_local_irq_enable(regs);
439 
440 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
441 
442 	/*
443 	 * We want to do this outside mmap_lock, because reading code around nip
444 	 * can result in fault, which will cause a deadlock when called with
445 	 * mmap_lock held
446 	 */
447 	if (is_user)
448 		flags |= FAULT_FLAG_USER;
449 	if (is_write)
450 		flags |= FAULT_FLAG_WRITE;
451 	if (is_exec)
452 		flags |= FAULT_FLAG_INSTRUCTION;
453 
454 	/* When running in the kernel we expect faults to occur only to
455 	 * addresses in user space.  All other faults represent errors in the
456 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
457 	 * erroneous fault occurring in a code path which already holds mmap_lock
458 	 * we will deadlock attempting to validate the fault against the
459 	 * address space.  Luckily the kernel only validly references user
460 	 * space from well defined areas of code, which are listed in the
461 	 * exceptions table.
462 	 *
463 	 * As the vast majority of faults will be valid we will only perform
464 	 * the source reference check when there is a possibility of a deadlock.
465 	 * Attempt to lock the address space, if we cannot we then validate the
466 	 * source.  If this is invalid we can skip the address space check,
467 	 * thus avoiding the deadlock.
468 	 */
469 	if (unlikely(!mmap_read_trylock(mm))) {
470 		if (!is_user && !search_exception_tables(regs->nip))
471 			return bad_area_nosemaphore(regs, address);
472 
473 retry:
474 		mmap_read_lock(mm);
475 	} else {
476 		/*
477 		 * The above down_read_trylock() might have succeeded in
478 		 * which case we'll have missed the might_sleep() from
479 		 * down_read():
480 		 */
481 		might_sleep();
482 	}
483 
484 	vma = find_vma(mm, address);
485 	if (unlikely(!vma))
486 		return bad_area(regs, address);
487 
488 	if (unlikely(vma->vm_start > address)) {
489 		if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
490 			return bad_area(regs, address);
491 
492 		if (unlikely(expand_stack(vma, address)))
493 			return bad_area(regs, address);
494 	}
495 
496 	if (unlikely(access_pkey_error(is_write, is_exec,
497 				       (error_code & DSISR_KEYFAULT), vma)))
498 		return bad_access_pkey(regs, address, vma);
499 
500 	if (unlikely(access_error(is_write, is_exec, vma)))
501 		return bad_access(regs, address);
502 
503 	/*
504 	 * If for any reason at all we couldn't handle the fault,
505 	 * make sure we exit gracefully rather than endlessly redo
506 	 * the fault.
507 	 */
508 	fault = handle_mm_fault(vma, address, flags, regs);
509 
510 	major |= fault & VM_FAULT_MAJOR;
511 
512 	if (fault_signal_pending(fault, regs))
513 		return user_mode(regs) ? 0 : SIGBUS;
514 
515 	/*
516 	 * Handle the retry right now, the mmap_lock has been released in that
517 	 * case.
518 	 */
519 	if (unlikely(fault & VM_FAULT_RETRY)) {
520 		flags |= FAULT_FLAG_TRIED;
521 		goto retry;
522 	}
523 
524 	mmap_read_unlock(current->mm);
525 
526 	if (unlikely(fault & VM_FAULT_ERROR))
527 		return mm_fault_error(regs, address, fault);
528 
529 	/*
530 	 * Major/minor page fault accounting.
531 	 */
532 	if (major)
533 		cmo_account_page_fault();
534 
535 	return 0;
536 }
537 NOKPROBE_SYMBOL(___do_page_fault);
538 
539 static __always_inline void __do_page_fault(struct pt_regs *regs)
540 {
541 	long err;
542 
543 	err = ___do_page_fault(regs, regs->dar, regs->dsisr);
544 	if (unlikely(err))
545 		bad_page_fault(regs, err);
546 }
547 
548 DEFINE_INTERRUPT_HANDLER(do_page_fault)
549 {
550 	__do_page_fault(regs);
551 }
552 
553 #ifdef CONFIG_PPC_BOOK3S_64
554 /* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
555 void hash__do_page_fault(struct pt_regs *regs)
556 {
557 	__do_page_fault(regs);
558 }
559 NOKPROBE_SYMBOL(hash__do_page_fault);
560 #endif
561 
562 /*
563  * bad_page_fault is called when we have a bad access from the kernel.
564  * It is called from the DSI and ISI handlers in head.S and from some
565  * of the procedures in traps.c.
566  */
567 static void __bad_page_fault(struct pt_regs *regs, int sig)
568 {
569 	int is_write = page_fault_is_write(regs->dsisr);
570 
571 	/* kernel has accessed a bad area */
572 
573 	switch (TRAP(regs)) {
574 	case INTERRUPT_DATA_STORAGE:
575 	case INTERRUPT_DATA_SEGMENT:
576 	case INTERRUPT_H_DATA_STORAGE:
577 		pr_alert("BUG: %s on %s at 0x%08lx\n",
578 			 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
579 			 "Unable to handle kernel data access",
580 			 is_write ? "write" : "read", regs->dar);
581 		break;
582 	case INTERRUPT_INST_STORAGE:
583 	case INTERRUPT_INST_SEGMENT:
584 		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
585 			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
586 		break;
587 	case INTERRUPT_ALIGNMENT:
588 		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
589 			 regs->dar);
590 		break;
591 	default:
592 		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
593 			 regs->dar);
594 		break;
595 	}
596 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
597 		regs->nip);
598 
599 	if (task_stack_end_corrupted(current))
600 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
601 
602 	die("Kernel access of bad area", regs, sig);
603 }
604 
605 void bad_page_fault(struct pt_regs *regs, int sig)
606 {
607 	const struct exception_table_entry *entry;
608 
609 	/* Are we prepared to handle this fault?  */
610 	entry = search_exception_tables(instruction_pointer(regs));
611 	if (entry)
612 		instruction_pointer_set(regs, extable_fixup(entry));
613 	else
614 		__bad_page_fault(regs, sig);
615 }
616 
617 #ifdef CONFIG_PPC_BOOK3S_64
618 DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
619 {
620 	bad_page_fault(regs, SIGSEGV);
621 }
622 
623 /*
624  * In radix, segment interrupts indicate the EA is not addressable by the
625  * page table geometry, so they are always sent here.
626  *
627  * In hash, this is called if do_slb_fault returns error. Typically it is
628  * because the EA was outside the region allowed by software.
629  */
630 DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
631 {
632 	int err = regs->result;
633 
634 	if (err == -EFAULT) {
635 		if (user_mode(regs))
636 			_exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
637 		else
638 			bad_page_fault(regs, SIGSEGV);
639 	} else if (err == -EINVAL) {
640 		unrecoverable_exception(regs);
641 	} else {
642 		BUG();
643 	}
644 }
645 #endif
646