xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/pagemap.h>
26 #include <linux/ptrace.h>
27 #include <linux/mman.h>
28 #include <linux/mm.h>
29 #include <linux/interrupt.h>
30 #include <linux/highmem.h>
31 #include <linux/extable.h>
32 #include <linux/kprobes.h>
33 #include <linux/kdebug.h>
34 #include <linux/perf_event.h>
35 #include <linux/ratelimit.h>
36 #include <linux/context_tracking.h>
37 #include <linux/hugetlb.h>
38 #include <linux/uaccess.h>
39 
40 #include <asm/firmware.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/mmu.h>
44 #include <asm/mmu_context.h>
45 #include <asm/siginfo.h>
46 #include <asm/debug.h>
47 
48 static inline bool notify_page_fault(struct pt_regs *regs)
49 {
50 	bool ret = false;
51 
52 #ifdef CONFIG_KPROBES
53 	/* kprobe_running() needs smp_processor_id() */
54 	if (!user_mode(regs)) {
55 		preempt_disable();
56 		if (kprobe_running() && kprobe_fault_handler(regs, 11))
57 			ret = true;
58 		preempt_enable();
59 	}
60 #endif /* CONFIG_KPROBES */
61 
62 	if (unlikely(debugger_fault_handler(regs)))
63 		ret = true;
64 
65 	return ret;
66 }
67 
68 /*
69  * Check whether the instruction inst is a store using
70  * an update addressing form which will update r1.
71  */
72 static bool store_updates_sp(unsigned int inst)
73 {
74 	/* check for 1 in the rA field */
75 	if (((inst >> 16) & 0x1f) != 1)
76 		return false;
77 	/* check major opcode */
78 	switch (inst >> 26) {
79 	case OP_STWU:
80 	case OP_STBU:
81 	case OP_STHU:
82 	case OP_STFSU:
83 	case OP_STFDU:
84 		return true;
85 	case OP_STD:	/* std or stdu */
86 		return (inst & 3) == 1;
87 	case OP_31:
88 		/* check minor opcode */
89 		switch ((inst >> 1) & 0x3ff) {
90 		case OP_31_XOP_STDUX:
91 		case OP_31_XOP_STWUX:
92 		case OP_31_XOP_STBUX:
93 		case OP_31_XOP_STHUX:
94 		case OP_31_XOP_STFSUX:
95 		case OP_31_XOP_STFDUX:
96 			return true;
97 		}
98 	}
99 	return false;
100 }
101 /*
102  * do_page_fault error handling helpers
103  */
104 
105 static int
106 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code,
107 		int pkey)
108 {
109 	/*
110 	 * If we are in kernel mode, bail out with a SEGV, this will
111 	 * be caught by the assembly which will restore the non-volatile
112 	 * registers before calling bad_page_fault()
113 	 */
114 	if (!user_mode(regs))
115 		return SIGSEGV;
116 
117 	_exception_pkey(SIGSEGV, regs, si_code, address, pkey);
118 
119 	return 0;
120 }
121 
122 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
123 {
124 	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR, 0);
125 }
126 
127 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
128 			int pkey)
129 {
130 	struct mm_struct *mm = current->mm;
131 
132 	/*
133 	 * Something tried to access memory that isn't in our memory map..
134 	 * Fix it, but check if it's kernel or user first..
135 	 */
136 	up_read(&mm->mmap_sem);
137 
138 	return __bad_area_nosemaphore(regs, address, si_code, pkey);
139 }
140 
141 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
142 {
143 	return __bad_area(regs, address, SEGV_MAPERR, 0);
144 }
145 
146 static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
147 				    int pkey)
148 {
149 	return __bad_area_nosemaphore(regs, address, SEGV_PKUERR, pkey);
150 }
151 
152 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
153 {
154 	return __bad_area(regs, address, SEGV_ACCERR, 0);
155 }
156 
157 static int do_sigbus(struct pt_regs *regs, unsigned long address,
158 		     vm_fault_t fault)
159 {
160 	siginfo_t info;
161 	unsigned int lsb = 0;
162 
163 	if (!user_mode(regs))
164 		return SIGBUS;
165 
166 	current->thread.trap_nr = BUS_ADRERR;
167 	clear_siginfo(&info);
168 	info.si_signo = SIGBUS;
169 	info.si_errno = 0;
170 	info.si_code = BUS_ADRERR;
171 	info.si_addr = (void __user *)address;
172 #ifdef CONFIG_MEMORY_FAILURE
173 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
174 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
175 			current->comm, current->pid, address);
176 		info.si_code = BUS_MCEERR_AR;
177 	}
178 
179 	if (fault & VM_FAULT_HWPOISON_LARGE)
180 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
181 	if (fault & VM_FAULT_HWPOISON)
182 		lsb = PAGE_SHIFT;
183 #endif
184 	info.si_addr_lsb = lsb;
185 	force_sig_info(SIGBUS, &info, current);
186 	return 0;
187 }
188 
189 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
190 				vm_fault_t fault)
191 {
192 	/*
193 	 * Kernel page fault interrupted by SIGKILL. We have no reason to
194 	 * continue processing.
195 	 */
196 	if (fatal_signal_pending(current) && !user_mode(regs))
197 		return SIGKILL;
198 
199 	/* Out of memory */
200 	if (fault & VM_FAULT_OOM) {
201 		/*
202 		 * We ran out of memory, or some other thing happened to us that
203 		 * made us unable to handle the page fault gracefully.
204 		 */
205 		if (!user_mode(regs))
206 			return SIGSEGV;
207 		pagefault_out_of_memory();
208 	} else {
209 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
210 			     VM_FAULT_HWPOISON_LARGE))
211 			return do_sigbus(regs, addr, fault);
212 		else if (fault & VM_FAULT_SIGSEGV)
213 			return bad_area_nosemaphore(regs, addr);
214 		else
215 			BUG();
216 	}
217 	return 0;
218 }
219 
220 /* Is this a bad kernel fault ? */
221 static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
222 			     unsigned long address)
223 {
224 	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
225 		printk_ratelimited(KERN_CRIT "kernel tried to execute"
226 				   " exec-protected page (%lx) -"
227 				   "exploit attempt? (uid: %d)\n",
228 				   address, from_kuid(&init_user_ns,
229 						      current_uid()));
230 	}
231 	return is_exec || (address >= TASK_SIZE);
232 }
233 
234 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
235 				struct vm_area_struct *vma, unsigned int flags,
236 				bool *must_retry)
237 {
238 	/*
239 	 * N.B. The POWER/Open ABI allows programs to access up to
240 	 * 288 bytes below the stack pointer.
241 	 * The kernel signal delivery code writes up to about 1.5kB
242 	 * below the stack pointer (r1) before decrementing it.
243 	 * The exec code can write slightly over 640kB to the stack
244 	 * before setting the user r1.  Thus we allow the stack to
245 	 * expand to 1MB without further checks.
246 	 */
247 	if (address + 0x100000 < vma->vm_end) {
248 		unsigned int __user *nip = (unsigned int __user *)regs->nip;
249 		/* get user regs even if this fault is in kernel mode */
250 		struct pt_regs *uregs = current->thread.regs;
251 		if (uregs == NULL)
252 			return true;
253 
254 		/*
255 		 * A user-mode access to an address a long way below
256 		 * the stack pointer is only valid if the instruction
257 		 * is one which would update the stack pointer to the
258 		 * address accessed if the instruction completed,
259 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
260 		 * (or the byte, halfword, float or double forms).
261 		 *
262 		 * If we don't check this then any write to the area
263 		 * between the last mapped region and the stack will
264 		 * expand the stack rather than segfaulting.
265 		 */
266 		if (address + 2048 >= uregs->gpr[1])
267 			return false;
268 
269 		if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
270 		    access_ok(VERIFY_READ, nip, sizeof(*nip))) {
271 			unsigned int inst;
272 			int res;
273 
274 			pagefault_disable();
275 			res = __get_user_inatomic(inst, nip);
276 			pagefault_enable();
277 			if (!res)
278 				return !store_updates_sp(inst);
279 			*must_retry = true;
280 		}
281 		return true;
282 	}
283 	return false;
284 }
285 
286 static bool access_error(bool is_write, bool is_exec,
287 			 struct vm_area_struct *vma)
288 {
289 	/*
290 	 * Allow execution from readable areas if the MMU does not
291 	 * provide separate controls over reading and executing.
292 	 *
293 	 * Note: That code used to not be enabled for 4xx/BookE.
294 	 * It is now as I/D cache coherency for these is done at
295 	 * set_pte_at() time and I see no reason why the test
296 	 * below wouldn't be valid on those processors. This -may-
297 	 * break programs compiled with a really old ABI though.
298 	 */
299 	if (is_exec) {
300 		return !(vma->vm_flags & VM_EXEC) &&
301 			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
302 			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
303 	}
304 
305 	if (is_write) {
306 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
307 			return true;
308 		return false;
309 	}
310 
311 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
312 		return true;
313 	/*
314 	 * We should ideally do the vma pkey access check here. But in the
315 	 * fault path, handle_mm_fault() also does the same check. To avoid
316 	 * these multiple checks, we skip it here and handle access error due
317 	 * to pkeys later.
318 	 */
319 	return false;
320 }
321 
322 #ifdef CONFIG_PPC_SMLPAR
323 static inline void cmo_account_page_fault(void)
324 {
325 	if (firmware_has_feature(FW_FEATURE_CMO)) {
326 		u32 page_ins;
327 
328 		preempt_disable();
329 		page_ins = be32_to_cpu(get_lppaca()->page_ins);
330 		page_ins += 1 << PAGE_FACTOR;
331 		get_lppaca()->page_ins = cpu_to_be32(page_ins);
332 		preempt_enable();
333 	}
334 }
335 #else
336 static inline void cmo_account_page_fault(void) { }
337 #endif /* CONFIG_PPC_SMLPAR */
338 
339 #ifdef CONFIG_PPC_STD_MMU
340 static void sanity_check_fault(bool is_write, unsigned long error_code)
341 {
342 	/*
343 	 * For hash translation mode, we should never get a
344 	 * PROTFAULT. Any update to pte to reduce access will result in us
345 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
346 	 * fault instead of DSISR_PROTFAULT.
347 	 *
348 	 * A pte update to relax the access will not result in a hash page table
349 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
350 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
351 	 * the special !is_write in the below conditional.
352 	 *
353 	 * For platforms that doesn't supports coherent icache and do support
354 	 * per page noexec bit, we do setup things such that we do the
355 	 * sync between D/I cache via fault. But that is handled via low level
356 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
357 	 * here in such case.
358 	 *
359 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
360 	 * check should handle those and hence we should fall to the bad_area
361 	 * handling correctly.
362 	 *
363 	 * For embedded with per page exec support that doesn't support coherent
364 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
365 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
366 	 * is conditional for server MMU.
367 	 *
368 	 * For radix, we can get prot fault for autonuma case, because radix
369 	 * page table will have them marked noaccess for user.
370 	 */
371 	if (!radix_enabled() && !is_write)
372 		WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
373 }
374 #else
375 static void sanity_check_fault(bool is_write, unsigned long error_code) { }
376 #endif /* CONFIG_PPC_STD_MMU */
377 
378 /*
379  * Define the correct "is_write" bit in error_code based
380  * on the processor family
381  */
382 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
383 #define page_fault_is_write(__err)	((__err) & ESR_DST)
384 #define page_fault_is_bad(__err)	(0)
385 #else
386 #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
387 #if defined(CONFIG_PPC_8xx)
388 #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
389 #elif defined(CONFIG_PPC64)
390 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
391 #else
392 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
393 #endif
394 #endif
395 
396 /*
397  * For 600- and 800-family processors, the error_code parameter is DSISR
398  * for a data fault, SRR1 for an instruction fault. For 400-family processors
399  * the error_code parameter is ESR for a data fault, 0 for an instruction
400  * fault.
401  * For 64-bit processors, the error_code parameter is
402  *  - DSISR for a non-SLB data access fault,
403  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
404  *  - 0 any SLB fault.
405  *
406  * The return value is 0 if the fault was handled, or the signal
407  * number if this is a kernel fault that can't be handled here.
408  */
409 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
410 			   unsigned long error_code)
411 {
412 	struct vm_area_struct * vma;
413 	struct mm_struct *mm = current->mm;
414 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
415  	int is_exec = TRAP(regs) == 0x400;
416 	int is_user = user_mode(regs);
417 	int is_write = page_fault_is_write(error_code);
418 	vm_fault_t fault, major = 0;
419 	bool must_retry = false;
420 
421 	if (notify_page_fault(regs))
422 		return 0;
423 
424 	if (unlikely(page_fault_is_bad(error_code))) {
425 		if (is_user) {
426 			_exception(SIGBUS, regs, BUS_OBJERR, address);
427 			return 0;
428 		}
429 		return SIGBUS;
430 	}
431 
432 	/* Additional sanity check(s) */
433 	sanity_check_fault(is_write, error_code);
434 
435 	/*
436 	 * The kernel should never take an execute fault nor should it
437 	 * take a page fault to a kernel address.
438 	 */
439 	if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
440 		return SIGSEGV;
441 
442 	/*
443 	 * If we're in an interrupt, have no user context or are running
444 	 * in a region with pagefaults disabled then we must not take the fault
445 	 */
446 	if (unlikely(faulthandler_disabled() || !mm)) {
447 		if (is_user)
448 			printk_ratelimited(KERN_ERR "Page fault in user mode"
449 					   " with faulthandler_disabled()=%d"
450 					   " mm=%p\n",
451 					   faulthandler_disabled(), mm);
452 		return bad_area_nosemaphore(regs, address);
453 	}
454 
455 	/* We restore the interrupt state now */
456 	if (!arch_irq_disabled_regs(regs))
457 		local_irq_enable();
458 
459 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
460 
461 	if (error_code & DSISR_KEYFAULT)
462 		return bad_key_fault_exception(regs, address,
463 					       get_mm_addr_key(mm, address));
464 
465 	/*
466 	 * We want to do this outside mmap_sem, because reading code around nip
467 	 * can result in fault, which will cause a deadlock when called with
468 	 * mmap_sem held
469 	 */
470 	if (is_user)
471 		flags |= FAULT_FLAG_USER;
472 	if (is_write)
473 		flags |= FAULT_FLAG_WRITE;
474 	if (is_exec)
475 		flags |= FAULT_FLAG_INSTRUCTION;
476 
477 	/* When running in the kernel we expect faults to occur only to
478 	 * addresses in user space.  All other faults represent errors in the
479 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
480 	 * erroneous fault occurring in a code path which already holds mmap_sem
481 	 * we will deadlock attempting to validate the fault against the
482 	 * address space.  Luckily the kernel only validly references user
483 	 * space from well defined areas of code, which are listed in the
484 	 * exceptions table.
485 	 *
486 	 * As the vast majority of faults will be valid we will only perform
487 	 * the source reference check when there is a possibility of a deadlock.
488 	 * Attempt to lock the address space, if we cannot we then validate the
489 	 * source.  If this is invalid we can skip the address space check,
490 	 * thus avoiding the deadlock.
491 	 */
492 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
493 		if (!is_user && !search_exception_tables(regs->nip))
494 			return bad_area_nosemaphore(regs, address);
495 
496 retry:
497 		down_read(&mm->mmap_sem);
498 	} else {
499 		/*
500 		 * The above down_read_trylock() might have succeeded in
501 		 * which case we'll have missed the might_sleep() from
502 		 * down_read():
503 		 */
504 		might_sleep();
505 	}
506 
507 	vma = find_vma(mm, address);
508 	if (unlikely(!vma))
509 		return bad_area(regs, address);
510 	if (likely(vma->vm_start <= address))
511 		goto good_area;
512 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
513 		return bad_area(regs, address);
514 
515 	/* The stack is being expanded, check if it's valid */
516 	if (unlikely(bad_stack_expansion(regs, address, vma, flags,
517 					 &must_retry))) {
518 		if (!must_retry)
519 			return bad_area(regs, address);
520 
521 		up_read(&mm->mmap_sem);
522 		if (fault_in_pages_readable((const char __user *)regs->nip,
523 					    sizeof(unsigned int)))
524 			return bad_area_nosemaphore(regs, address);
525 		goto retry;
526 	}
527 
528 	/* Try to expand it */
529 	if (unlikely(expand_stack(vma, address)))
530 		return bad_area(regs, address);
531 
532 good_area:
533 	if (unlikely(access_error(is_write, is_exec, vma)))
534 		return bad_access(regs, address);
535 
536 	/*
537 	 * If for any reason at all we couldn't handle the fault,
538 	 * make sure we exit gracefully rather than endlessly redo
539 	 * the fault.
540 	 */
541 	fault = handle_mm_fault(vma, address, flags);
542 
543 #ifdef CONFIG_PPC_MEM_KEYS
544 	/*
545 	 * we skipped checking for access error due to key earlier.
546 	 * Check that using handle_mm_fault error return.
547 	 */
548 	if (unlikely(fault & VM_FAULT_SIGSEGV) &&
549 		!arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
550 
551 		int pkey = vma_pkey(vma);
552 
553 		up_read(&mm->mmap_sem);
554 		return bad_key_fault_exception(regs, address, pkey);
555 	}
556 #endif /* CONFIG_PPC_MEM_KEYS */
557 
558 	major |= fault & VM_FAULT_MAJOR;
559 
560 	/*
561 	 * Handle the retry right now, the mmap_sem has been released in that
562 	 * case.
563 	 */
564 	if (unlikely(fault & VM_FAULT_RETRY)) {
565 		/* We retry only once */
566 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
567 			/*
568 			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
569 			 * of starvation.
570 			 */
571 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
572 			flags |= FAULT_FLAG_TRIED;
573 			if (!fatal_signal_pending(current))
574 				goto retry;
575 		}
576 
577 		/*
578 		 * User mode? Just return to handle the fatal exception otherwise
579 		 * return to bad_page_fault
580 		 */
581 		return is_user ? 0 : SIGBUS;
582 	}
583 
584 	up_read(&current->mm->mmap_sem);
585 
586 	if (unlikely(fault & VM_FAULT_ERROR))
587 		return mm_fault_error(regs, address, fault);
588 
589 	/*
590 	 * Major/minor page fault accounting.
591 	 */
592 	if (major) {
593 		current->maj_flt++;
594 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
595 		cmo_account_page_fault();
596 	} else {
597 		current->min_flt++;
598 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
599 	}
600 	return 0;
601 }
602 NOKPROBE_SYMBOL(__do_page_fault);
603 
604 int do_page_fault(struct pt_regs *regs, unsigned long address,
605 		  unsigned long error_code)
606 {
607 	enum ctx_state prev_state = exception_enter();
608 	int rc = __do_page_fault(regs, address, error_code);
609 	exception_exit(prev_state);
610 	return rc;
611 }
612 NOKPROBE_SYMBOL(do_page_fault);
613 
614 /*
615  * bad_page_fault is called when we have a bad access from the kernel.
616  * It is called from the DSI and ISI handlers in head.S and from some
617  * of the procedures in traps.c.
618  */
619 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
620 {
621 	const struct exception_table_entry *entry;
622 
623 	/* Are we prepared to handle this fault?  */
624 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
625 		regs->nip = extable_fixup(entry);
626 		return;
627 	}
628 
629 	/* kernel has accessed a bad area */
630 
631 	switch (TRAP(regs)) {
632 	case 0x300:
633 	case 0x380:
634 		printk(KERN_ALERT "Unable to handle kernel paging request for "
635 			"data at address 0x%08lx\n", regs->dar);
636 		break;
637 	case 0x400:
638 	case 0x480:
639 		printk(KERN_ALERT "Unable to handle kernel paging request for "
640 			"instruction fetch\n");
641 		break;
642 	case 0x600:
643 		printk(KERN_ALERT "Unable to handle kernel paging request for "
644 			"unaligned access at address 0x%08lx\n", regs->dar);
645 		break;
646 	default:
647 		printk(KERN_ALERT "Unable to handle kernel paging request for "
648 			"unknown fault\n");
649 		break;
650 	}
651 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
652 		regs->nip);
653 
654 	if (task_stack_end_corrupted(current))
655 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
656 
657 	die("Kernel access of bad area", regs, sig);
658 }
659