1 /* 2 * PowerPC version 3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 4 * 5 * Derived from "arch/i386/mm/fault.c" 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * Modified by Cort Dougan and Paul Mackerras. 9 * 10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 15 * 2 of the License, or (at your option) any later version. 16 */ 17 18 #include <linux/signal.h> 19 #include <linux/sched.h> 20 #include <linux/sched/task_stack.h> 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/string.h> 24 #include <linux/types.h> 25 #include <linux/pagemap.h> 26 #include <linux/ptrace.h> 27 #include <linux/mman.h> 28 #include <linux/mm.h> 29 #include <linux/interrupt.h> 30 #include <linux/highmem.h> 31 #include <linux/extable.h> 32 #include <linux/kprobes.h> 33 #include <linux/kdebug.h> 34 #include <linux/perf_event.h> 35 #include <linux/ratelimit.h> 36 #include <linux/context_tracking.h> 37 #include <linux/hugetlb.h> 38 #include <linux/uaccess.h> 39 40 #include <asm/firmware.h> 41 #include <asm/page.h> 42 #include <asm/pgtable.h> 43 #include <asm/mmu.h> 44 #include <asm/mmu_context.h> 45 #include <asm/siginfo.h> 46 #include <asm/debug.h> 47 #include <asm/kup.h> 48 49 static inline bool notify_page_fault(struct pt_regs *regs) 50 { 51 bool ret = false; 52 53 #ifdef CONFIG_KPROBES 54 /* kprobe_running() needs smp_processor_id() */ 55 if (!user_mode(regs)) { 56 preempt_disable(); 57 if (kprobe_running() && kprobe_fault_handler(regs, 11)) 58 ret = true; 59 preempt_enable(); 60 } 61 #endif /* CONFIG_KPROBES */ 62 63 if (unlikely(debugger_fault_handler(regs))) 64 ret = true; 65 66 return ret; 67 } 68 69 /* 70 * Check whether the instruction inst is a store using 71 * an update addressing form which will update r1. 72 */ 73 static bool store_updates_sp(unsigned int inst) 74 { 75 /* check for 1 in the rA field */ 76 if (((inst >> 16) & 0x1f) != 1) 77 return false; 78 /* check major opcode */ 79 switch (inst >> 26) { 80 case OP_STWU: 81 case OP_STBU: 82 case OP_STHU: 83 case OP_STFSU: 84 case OP_STFDU: 85 return true; 86 case OP_STD: /* std or stdu */ 87 return (inst & 3) == 1; 88 case OP_31: 89 /* check minor opcode */ 90 switch ((inst >> 1) & 0x3ff) { 91 case OP_31_XOP_STDUX: 92 case OP_31_XOP_STWUX: 93 case OP_31_XOP_STBUX: 94 case OP_31_XOP_STHUX: 95 case OP_31_XOP_STFSUX: 96 case OP_31_XOP_STFDUX: 97 return true; 98 } 99 } 100 return false; 101 } 102 /* 103 * do_page_fault error handling helpers 104 */ 105 106 static int 107 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code) 108 { 109 /* 110 * If we are in kernel mode, bail out with a SEGV, this will 111 * be caught by the assembly which will restore the non-volatile 112 * registers before calling bad_page_fault() 113 */ 114 if (!user_mode(regs)) 115 return SIGSEGV; 116 117 _exception(SIGSEGV, regs, si_code, address); 118 119 return 0; 120 } 121 122 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address) 123 { 124 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR); 125 } 126 127 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code) 128 { 129 struct mm_struct *mm = current->mm; 130 131 /* 132 * Something tried to access memory that isn't in our memory map.. 133 * Fix it, but check if it's kernel or user first.. 134 */ 135 up_read(&mm->mmap_sem); 136 137 return __bad_area_nosemaphore(regs, address, si_code); 138 } 139 140 static noinline int bad_area(struct pt_regs *regs, unsigned long address) 141 { 142 return __bad_area(regs, address, SEGV_MAPERR); 143 } 144 145 static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address, 146 int pkey) 147 { 148 /* 149 * If we are in kernel mode, bail out with a SEGV, this will 150 * be caught by the assembly which will restore the non-volatile 151 * registers before calling bad_page_fault() 152 */ 153 if (!user_mode(regs)) 154 return SIGSEGV; 155 156 _exception_pkey(regs, address, pkey); 157 158 return 0; 159 } 160 161 static noinline int bad_access(struct pt_regs *regs, unsigned long address) 162 { 163 return __bad_area(regs, address, SEGV_ACCERR); 164 } 165 166 static int do_sigbus(struct pt_regs *regs, unsigned long address, 167 vm_fault_t fault) 168 { 169 if (!user_mode(regs)) 170 return SIGBUS; 171 172 current->thread.trap_nr = BUS_ADRERR; 173 #ifdef CONFIG_MEMORY_FAILURE 174 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 175 unsigned int lsb = 0; /* shutup gcc */ 176 177 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 178 current->comm, current->pid, address); 179 180 if (fault & VM_FAULT_HWPOISON_LARGE) 181 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 182 if (fault & VM_FAULT_HWPOISON) 183 lsb = PAGE_SHIFT; 184 185 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, 186 current); 187 return 0; 188 } 189 190 #endif 191 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address, current); 192 return 0; 193 } 194 195 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, 196 vm_fault_t fault) 197 { 198 /* 199 * Kernel page fault interrupted by SIGKILL. We have no reason to 200 * continue processing. 201 */ 202 if (fatal_signal_pending(current) && !user_mode(regs)) 203 return SIGKILL; 204 205 /* Out of memory */ 206 if (fault & VM_FAULT_OOM) { 207 /* 208 * We ran out of memory, or some other thing happened to us that 209 * made us unable to handle the page fault gracefully. 210 */ 211 if (!user_mode(regs)) 212 return SIGSEGV; 213 pagefault_out_of_memory(); 214 } else { 215 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 216 VM_FAULT_HWPOISON_LARGE)) 217 return do_sigbus(regs, addr, fault); 218 else if (fault & VM_FAULT_SIGSEGV) 219 return bad_area_nosemaphore(regs, addr); 220 else 221 BUG(); 222 } 223 return 0; 224 } 225 226 /* Is this a bad kernel fault ? */ 227 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code, 228 unsigned long address, bool is_write) 229 { 230 int is_exec = TRAP(regs) == 0x400; 231 232 /* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */ 233 if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT | 234 DSISR_PROTFAULT))) { 235 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n", 236 address >= TASK_SIZE ? "exec-protected" : "user", 237 address, 238 from_kuid(&init_user_ns, current_uid())); 239 240 // Kernel exec fault is always bad 241 return true; 242 } 243 244 if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) && 245 !search_exception_tables(regs->nip)) { 246 pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n", 247 address, 248 from_kuid(&init_user_ns, current_uid())); 249 } 250 251 // Kernel fault on kernel address is bad 252 if (address >= TASK_SIZE) 253 return true; 254 255 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad 256 if (!search_exception_tables(regs->nip)) 257 return true; 258 259 // Read/write fault in a valid region (the exception table search passed 260 // above), but blocked by KUAP is bad, it can never succeed. 261 if (bad_kuap_fault(regs, is_write)) 262 return true; 263 264 // What's left? Kernel fault on user in well defined regions (extable 265 // matched), and allowed by KUAP in the faulting context. 266 return false; 267 } 268 269 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address, 270 struct vm_area_struct *vma, unsigned int flags, 271 bool *must_retry) 272 { 273 /* 274 * N.B. The POWER/Open ABI allows programs to access up to 275 * 288 bytes below the stack pointer. 276 * The kernel signal delivery code writes up to about 1.5kB 277 * below the stack pointer (r1) before decrementing it. 278 * The exec code can write slightly over 640kB to the stack 279 * before setting the user r1. Thus we allow the stack to 280 * expand to 1MB without further checks. 281 */ 282 if (address + 0x100000 < vma->vm_end) { 283 unsigned int __user *nip = (unsigned int __user *)regs->nip; 284 /* get user regs even if this fault is in kernel mode */ 285 struct pt_regs *uregs = current->thread.regs; 286 if (uregs == NULL) 287 return true; 288 289 /* 290 * A user-mode access to an address a long way below 291 * the stack pointer is only valid if the instruction 292 * is one which would update the stack pointer to the 293 * address accessed if the instruction completed, 294 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb 295 * (or the byte, halfword, float or double forms). 296 * 297 * If we don't check this then any write to the area 298 * between the last mapped region and the stack will 299 * expand the stack rather than segfaulting. 300 */ 301 if (address + 2048 >= uregs->gpr[1]) 302 return false; 303 304 if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) && 305 access_ok(nip, sizeof(*nip))) { 306 unsigned int inst; 307 int res; 308 309 pagefault_disable(); 310 res = __get_user_inatomic(inst, nip); 311 pagefault_enable(); 312 if (!res) 313 return !store_updates_sp(inst); 314 *must_retry = true; 315 } 316 return true; 317 } 318 return false; 319 } 320 321 static bool access_error(bool is_write, bool is_exec, 322 struct vm_area_struct *vma) 323 { 324 /* 325 * Allow execution from readable areas if the MMU does not 326 * provide separate controls over reading and executing. 327 * 328 * Note: That code used to not be enabled for 4xx/BookE. 329 * It is now as I/D cache coherency for these is done at 330 * set_pte_at() time and I see no reason why the test 331 * below wouldn't be valid on those processors. This -may- 332 * break programs compiled with a really old ABI though. 333 */ 334 if (is_exec) { 335 return !(vma->vm_flags & VM_EXEC) && 336 (cpu_has_feature(CPU_FTR_NOEXECUTE) || 337 !(vma->vm_flags & (VM_READ | VM_WRITE))); 338 } 339 340 if (is_write) { 341 if (unlikely(!(vma->vm_flags & VM_WRITE))) 342 return true; 343 return false; 344 } 345 346 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) 347 return true; 348 /* 349 * We should ideally do the vma pkey access check here. But in the 350 * fault path, handle_mm_fault() also does the same check. To avoid 351 * these multiple checks, we skip it here and handle access error due 352 * to pkeys later. 353 */ 354 return false; 355 } 356 357 #ifdef CONFIG_PPC_SMLPAR 358 static inline void cmo_account_page_fault(void) 359 { 360 if (firmware_has_feature(FW_FEATURE_CMO)) { 361 u32 page_ins; 362 363 preempt_disable(); 364 page_ins = be32_to_cpu(get_lppaca()->page_ins); 365 page_ins += 1 << PAGE_FACTOR; 366 get_lppaca()->page_ins = cpu_to_be32(page_ins); 367 preempt_enable(); 368 } 369 } 370 #else 371 static inline void cmo_account_page_fault(void) { } 372 #endif /* CONFIG_PPC_SMLPAR */ 373 374 #ifdef CONFIG_PPC_BOOK3S 375 static void sanity_check_fault(bool is_write, bool is_user, 376 unsigned long error_code, unsigned long address) 377 { 378 /* 379 * Userspace trying to access kernel address, we get PROTFAULT for that. 380 */ 381 if (is_user && address >= TASK_SIZE) { 382 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n", 383 current->comm, current->pid, address, 384 from_kuid(&init_user_ns, current_uid())); 385 return; 386 } 387 388 /* 389 * For hash translation mode, we should never get a 390 * PROTFAULT. Any update to pte to reduce access will result in us 391 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE 392 * fault instead of DSISR_PROTFAULT. 393 * 394 * A pte update to relax the access will not result in a hash page table 395 * entry invalidate and hence can result in DSISR_PROTFAULT. 396 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have 397 * the special !is_write in the below conditional. 398 * 399 * For platforms that doesn't supports coherent icache and do support 400 * per page noexec bit, we do setup things such that we do the 401 * sync between D/I cache via fault. But that is handled via low level 402 * hash fault code (hash_page_do_lazy_icache()) and we should not reach 403 * here in such case. 404 * 405 * For wrong access that can result in PROTFAULT, the above vma->vm_flags 406 * check should handle those and hence we should fall to the bad_area 407 * handling correctly. 408 * 409 * For embedded with per page exec support that doesn't support coherent 410 * icache we do get PROTFAULT and we handle that D/I cache sync in 411 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON 412 * is conditional for server MMU. 413 * 414 * For radix, we can get prot fault for autonuma case, because radix 415 * page table will have them marked noaccess for user. 416 */ 417 if (radix_enabled() || is_write) 418 return; 419 420 WARN_ON_ONCE(error_code & DSISR_PROTFAULT); 421 } 422 #else 423 static void sanity_check_fault(bool is_write, bool is_user, 424 unsigned long error_code, unsigned long address) { } 425 #endif /* CONFIG_PPC_BOOK3S */ 426 427 /* 428 * Define the correct "is_write" bit in error_code based 429 * on the processor family 430 */ 431 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) 432 #define page_fault_is_write(__err) ((__err) & ESR_DST) 433 #define page_fault_is_bad(__err) (0) 434 #else 435 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE) 436 #if defined(CONFIG_PPC_8xx) 437 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G) 438 #elif defined(CONFIG_PPC64) 439 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S) 440 #else 441 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S) 442 #endif 443 #endif 444 445 /* 446 * For 600- and 800-family processors, the error_code parameter is DSISR 447 * for a data fault, SRR1 for an instruction fault. For 400-family processors 448 * the error_code parameter is ESR for a data fault, 0 for an instruction 449 * fault. 450 * For 64-bit processors, the error_code parameter is 451 * - DSISR for a non-SLB data access fault, 452 * - SRR1 & 0x08000000 for a non-SLB instruction access fault 453 * - 0 any SLB fault. 454 * 455 * The return value is 0 if the fault was handled, or the signal 456 * number if this is a kernel fault that can't be handled here. 457 */ 458 static int __do_page_fault(struct pt_regs *regs, unsigned long address, 459 unsigned long error_code) 460 { 461 struct vm_area_struct * vma; 462 struct mm_struct *mm = current->mm; 463 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 464 int is_exec = TRAP(regs) == 0x400; 465 int is_user = user_mode(regs); 466 int is_write = page_fault_is_write(error_code); 467 vm_fault_t fault, major = 0; 468 bool must_retry = false; 469 470 if (notify_page_fault(regs)) 471 return 0; 472 473 if (unlikely(page_fault_is_bad(error_code))) { 474 if (is_user) { 475 _exception(SIGBUS, regs, BUS_OBJERR, address); 476 return 0; 477 } 478 return SIGBUS; 479 } 480 481 /* Additional sanity check(s) */ 482 sanity_check_fault(is_write, is_user, error_code, address); 483 484 /* 485 * The kernel should never take an execute fault nor should it 486 * take a page fault to a kernel address or a page fault to a user 487 * address outside of dedicated places 488 */ 489 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) 490 return SIGSEGV; 491 492 /* 493 * If we're in an interrupt, have no user context or are running 494 * in a region with pagefaults disabled then we must not take the fault 495 */ 496 if (unlikely(faulthandler_disabled() || !mm)) { 497 if (is_user) 498 printk_ratelimited(KERN_ERR "Page fault in user mode" 499 " with faulthandler_disabled()=%d" 500 " mm=%p\n", 501 faulthandler_disabled(), mm); 502 return bad_area_nosemaphore(regs, address); 503 } 504 505 /* We restore the interrupt state now */ 506 if (!arch_irq_disabled_regs(regs)) 507 local_irq_enable(); 508 509 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 510 511 if (error_code & DSISR_KEYFAULT) 512 return bad_key_fault_exception(regs, address, 513 get_mm_addr_key(mm, address)); 514 515 /* 516 * We want to do this outside mmap_sem, because reading code around nip 517 * can result in fault, which will cause a deadlock when called with 518 * mmap_sem held 519 */ 520 if (is_user) 521 flags |= FAULT_FLAG_USER; 522 if (is_write) 523 flags |= FAULT_FLAG_WRITE; 524 if (is_exec) 525 flags |= FAULT_FLAG_INSTRUCTION; 526 527 /* When running in the kernel we expect faults to occur only to 528 * addresses in user space. All other faults represent errors in the 529 * kernel and should generate an OOPS. Unfortunately, in the case of an 530 * erroneous fault occurring in a code path which already holds mmap_sem 531 * we will deadlock attempting to validate the fault against the 532 * address space. Luckily the kernel only validly references user 533 * space from well defined areas of code, which are listed in the 534 * exceptions table. 535 * 536 * As the vast majority of faults will be valid we will only perform 537 * the source reference check when there is a possibility of a deadlock. 538 * Attempt to lock the address space, if we cannot we then validate the 539 * source. If this is invalid we can skip the address space check, 540 * thus avoiding the deadlock. 541 */ 542 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 543 if (!is_user && !search_exception_tables(regs->nip)) 544 return bad_area_nosemaphore(regs, address); 545 546 retry: 547 down_read(&mm->mmap_sem); 548 } else { 549 /* 550 * The above down_read_trylock() might have succeeded in 551 * which case we'll have missed the might_sleep() from 552 * down_read(): 553 */ 554 might_sleep(); 555 } 556 557 vma = find_vma(mm, address); 558 if (unlikely(!vma)) 559 return bad_area(regs, address); 560 if (likely(vma->vm_start <= address)) 561 goto good_area; 562 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) 563 return bad_area(regs, address); 564 565 /* The stack is being expanded, check if it's valid */ 566 if (unlikely(bad_stack_expansion(regs, address, vma, flags, 567 &must_retry))) { 568 if (!must_retry) 569 return bad_area(regs, address); 570 571 up_read(&mm->mmap_sem); 572 if (fault_in_pages_readable((const char __user *)regs->nip, 573 sizeof(unsigned int))) 574 return bad_area_nosemaphore(regs, address); 575 goto retry; 576 } 577 578 /* Try to expand it */ 579 if (unlikely(expand_stack(vma, address))) 580 return bad_area(regs, address); 581 582 good_area: 583 if (unlikely(access_error(is_write, is_exec, vma))) 584 return bad_access(regs, address); 585 586 /* 587 * If for any reason at all we couldn't handle the fault, 588 * make sure we exit gracefully rather than endlessly redo 589 * the fault. 590 */ 591 fault = handle_mm_fault(vma, address, flags); 592 593 #ifdef CONFIG_PPC_MEM_KEYS 594 /* 595 * we skipped checking for access error due to key earlier. 596 * Check that using handle_mm_fault error return. 597 */ 598 if (unlikely(fault & VM_FAULT_SIGSEGV) && 599 !arch_vma_access_permitted(vma, is_write, is_exec, 0)) { 600 601 int pkey = vma_pkey(vma); 602 603 up_read(&mm->mmap_sem); 604 return bad_key_fault_exception(regs, address, pkey); 605 } 606 #endif /* CONFIG_PPC_MEM_KEYS */ 607 608 major |= fault & VM_FAULT_MAJOR; 609 610 /* 611 * Handle the retry right now, the mmap_sem has been released in that 612 * case. 613 */ 614 if (unlikely(fault & VM_FAULT_RETRY)) { 615 /* We retry only once */ 616 if (flags & FAULT_FLAG_ALLOW_RETRY) { 617 /* 618 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk 619 * of starvation. 620 */ 621 flags &= ~FAULT_FLAG_ALLOW_RETRY; 622 flags |= FAULT_FLAG_TRIED; 623 if (!fatal_signal_pending(current)) 624 goto retry; 625 } 626 627 /* 628 * User mode? Just return to handle the fatal exception otherwise 629 * return to bad_page_fault 630 */ 631 return is_user ? 0 : SIGBUS; 632 } 633 634 up_read(¤t->mm->mmap_sem); 635 636 if (unlikely(fault & VM_FAULT_ERROR)) 637 return mm_fault_error(regs, address, fault); 638 639 /* 640 * Major/minor page fault accounting. 641 */ 642 if (major) { 643 current->maj_flt++; 644 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 645 cmo_account_page_fault(); 646 } else { 647 current->min_flt++; 648 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 649 } 650 return 0; 651 } 652 NOKPROBE_SYMBOL(__do_page_fault); 653 654 int do_page_fault(struct pt_regs *regs, unsigned long address, 655 unsigned long error_code) 656 { 657 enum ctx_state prev_state = exception_enter(); 658 int rc = __do_page_fault(regs, address, error_code); 659 exception_exit(prev_state); 660 return rc; 661 } 662 NOKPROBE_SYMBOL(do_page_fault); 663 664 /* 665 * bad_page_fault is called when we have a bad access from the kernel. 666 * It is called from the DSI and ISI handlers in head.S and from some 667 * of the procedures in traps.c. 668 */ 669 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) 670 { 671 const struct exception_table_entry *entry; 672 673 /* Are we prepared to handle this fault? */ 674 if ((entry = search_exception_tables(regs->nip)) != NULL) { 675 regs->nip = extable_fixup(entry); 676 return; 677 } 678 679 /* kernel has accessed a bad area */ 680 681 switch (TRAP(regs)) { 682 case 0x300: 683 case 0x380: 684 case 0xe00: 685 pr_alert("BUG: %s at 0x%08lx\n", 686 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" : 687 "Unable to handle kernel data access", regs->dar); 688 break; 689 case 0x400: 690 case 0x480: 691 pr_alert("BUG: Unable to handle kernel instruction fetch%s", 692 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n"); 693 break; 694 case 0x600: 695 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n", 696 regs->dar); 697 break; 698 default: 699 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n", 700 regs->dar); 701 break; 702 } 703 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", 704 regs->nip); 705 706 if (task_stack_end_corrupted(current)) 707 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 708 709 die("Kernel access of bad area", regs, sig); 710 } 711