xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision 174cd4b1)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/extable.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 #include <linux/perf_event.h>
33 #include <linux/ratelimit.h>
34 #include <linux/context_tracking.h>
35 #include <linux/hugetlb.h>
36 #include <linux/uaccess.h>
37 
38 #include <asm/firmware.h>
39 #include <asm/page.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu.h>
42 #include <asm/mmu_context.h>
43 #include <asm/tlbflush.h>
44 #include <asm/siginfo.h>
45 #include <asm/debug.h>
46 
47 #include "icswx.h"
48 
49 #ifdef CONFIG_KPROBES
50 static inline int notify_page_fault(struct pt_regs *regs)
51 {
52 	int ret = 0;
53 
54 	/* kprobe_running() needs smp_processor_id() */
55 	if (!user_mode(regs)) {
56 		preempt_disable();
57 		if (kprobe_running() && kprobe_fault_handler(regs, 11))
58 			ret = 1;
59 		preempt_enable();
60 	}
61 
62 	return ret;
63 }
64 #else
65 static inline int notify_page_fault(struct pt_regs *regs)
66 {
67 	return 0;
68 }
69 #endif
70 
71 /*
72  * Check whether the instruction at regs->nip is a store using
73  * an update addressing form which will update r1.
74  */
75 static int store_updates_sp(struct pt_regs *regs)
76 {
77 	unsigned int inst;
78 
79 	if (get_user(inst, (unsigned int __user *)regs->nip))
80 		return 0;
81 	/* check for 1 in the rA field */
82 	if (((inst >> 16) & 0x1f) != 1)
83 		return 0;
84 	/* check major opcode */
85 	switch (inst >> 26) {
86 	case 37:	/* stwu */
87 	case 39:	/* stbu */
88 	case 45:	/* sthu */
89 	case 53:	/* stfsu */
90 	case 55:	/* stfdu */
91 		return 1;
92 	case 62:	/* std or stdu */
93 		return (inst & 3) == 1;
94 	case 31:
95 		/* check minor opcode */
96 		switch ((inst >> 1) & 0x3ff) {
97 		case 181:	/* stdux */
98 		case 183:	/* stwux */
99 		case 247:	/* stbux */
100 		case 439:	/* sthux */
101 		case 695:	/* stfsux */
102 		case 759:	/* stfdux */
103 			return 1;
104 		}
105 	}
106 	return 0;
107 }
108 /*
109  * do_page_fault error handling helpers
110  */
111 
112 #define MM_FAULT_RETURN		0
113 #define MM_FAULT_CONTINUE	-1
114 #define MM_FAULT_ERR(sig)	(sig)
115 
116 static int do_sigbus(struct pt_regs *regs, unsigned long address,
117 		     unsigned int fault)
118 {
119 	siginfo_t info;
120 	unsigned int lsb = 0;
121 
122 	up_read(&current->mm->mmap_sem);
123 
124 	if (!user_mode(regs))
125 		return MM_FAULT_ERR(SIGBUS);
126 
127 	current->thread.trap_nr = BUS_ADRERR;
128 	info.si_signo = SIGBUS;
129 	info.si_errno = 0;
130 	info.si_code = BUS_ADRERR;
131 	info.si_addr = (void __user *)address;
132 #ifdef CONFIG_MEMORY_FAILURE
133 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
134 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
135 			current->comm, current->pid, address);
136 		info.si_code = BUS_MCEERR_AR;
137 	}
138 
139 	if (fault & VM_FAULT_HWPOISON_LARGE)
140 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
141 	if (fault & VM_FAULT_HWPOISON)
142 		lsb = PAGE_SHIFT;
143 #endif
144 	info.si_addr_lsb = lsb;
145 	force_sig_info(SIGBUS, &info, current);
146 	return MM_FAULT_RETURN;
147 }
148 
149 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
150 {
151 	/*
152 	 * Pagefault was interrupted by SIGKILL. We have no reason to
153 	 * continue the pagefault.
154 	 */
155 	if (fatal_signal_pending(current)) {
156 		/*
157 		 * If we have retry set, the mmap semaphore will have
158 		 * alrady been released in __lock_page_or_retry(). Else
159 		 * we release it now.
160 		 */
161 		if (!(fault & VM_FAULT_RETRY))
162 			up_read(&current->mm->mmap_sem);
163 		/* Coming from kernel, we need to deal with uaccess fixups */
164 		if (user_mode(regs))
165 			return MM_FAULT_RETURN;
166 		return MM_FAULT_ERR(SIGKILL);
167 	}
168 
169 	/* No fault: be happy */
170 	if (!(fault & VM_FAULT_ERROR))
171 		return MM_FAULT_CONTINUE;
172 
173 	/* Out of memory */
174 	if (fault & VM_FAULT_OOM) {
175 		up_read(&current->mm->mmap_sem);
176 
177 		/*
178 		 * We ran out of memory, or some other thing happened to us that
179 		 * made us unable to handle the page fault gracefully.
180 		 */
181 		if (!user_mode(regs))
182 			return MM_FAULT_ERR(SIGKILL);
183 		pagefault_out_of_memory();
184 		return MM_FAULT_RETURN;
185 	}
186 
187 	if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE))
188 		return do_sigbus(regs, addr, fault);
189 
190 	/* We don't understand the fault code, this is fatal */
191 	BUG();
192 	return MM_FAULT_CONTINUE;
193 }
194 
195 /*
196  * For 600- and 800-family processors, the error_code parameter is DSISR
197  * for a data fault, SRR1 for an instruction fault. For 400-family processors
198  * the error_code parameter is ESR for a data fault, 0 for an instruction
199  * fault.
200  * For 64-bit processors, the error_code parameter is
201  *  - DSISR for a non-SLB data access fault,
202  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
203  *  - 0 any SLB fault.
204  *
205  * The return value is 0 if the fault was handled, or the signal
206  * number if this is a kernel fault that can't be handled here.
207  */
208 int do_page_fault(struct pt_regs *regs, unsigned long address,
209 			    unsigned long error_code)
210 {
211 	enum ctx_state prev_state = exception_enter();
212 	struct vm_area_struct * vma;
213 	struct mm_struct *mm = current->mm;
214 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
215 	int code = SEGV_MAPERR;
216 	int is_write = 0;
217 	int trap = TRAP(regs);
218  	int is_exec = trap == 0x400;
219 	int fault;
220 	int rc = 0, store_update_sp = 0;
221 
222 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
223 	/*
224 	 * Fortunately the bit assignments in SRR1 for an instruction
225 	 * fault and DSISR for a data fault are mostly the same for the
226 	 * bits we are interested in.  But there are some bits which
227 	 * indicate errors in DSISR but can validly be set in SRR1.
228 	 */
229 	if (trap == 0x400)
230 		error_code &= 0x48200000;
231 	else
232 		is_write = error_code & DSISR_ISSTORE;
233 #else
234 	is_write = error_code & ESR_DST;
235 #endif /* CONFIG_4xx || CONFIG_BOOKE */
236 
237 #ifdef CONFIG_PPC_ICSWX
238 	/*
239 	 * we need to do this early because this "data storage
240 	 * interrupt" does not update the DAR/DEAR so we don't want to
241 	 * look at it
242 	 */
243 	if (error_code & ICSWX_DSI_UCT) {
244 		rc = acop_handle_fault(regs, address, error_code);
245 		if (rc)
246 			goto bail;
247 	}
248 #endif /* CONFIG_PPC_ICSWX */
249 
250 	if (notify_page_fault(regs))
251 		goto bail;
252 
253 	if (unlikely(debugger_fault_handler(regs)))
254 		goto bail;
255 
256 	/*
257 	 * The kernel should never take an execute fault nor should it
258 	 * take a page fault to a kernel address.
259 	 */
260 	if (!user_mode(regs) && (is_exec || (address >= TASK_SIZE))) {
261 		rc = SIGSEGV;
262 		goto bail;
263 	}
264 
265 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
266 			     defined(CONFIG_PPC_BOOK3S_64))
267   	if (error_code & DSISR_DABRMATCH) {
268 		/* breakpoint match */
269 		do_break(regs, address, error_code);
270 		goto bail;
271 	}
272 #endif
273 
274 	/* We restore the interrupt state now */
275 	if (!arch_irq_disabled_regs(regs))
276 		local_irq_enable();
277 
278 	if (faulthandler_disabled() || mm == NULL) {
279 		if (!user_mode(regs)) {
280 			rc = SIGSEGV;
281 			goto bail;
282 		}
283 		/* faulthandler_disabled() in user mode is really bad,
284 		   as is current->mm == NULL. */
285 		printk(KERN_EMERG "Page fault in user mode with "
286 		       "faulthandler_disabled() = %d mm = %p\n",
287 		       faulthandler_disabled(), mm);
288 		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
289 		       regs->nip, regs->msr);
290 		die("Weird page fault", regs, SIGSEGV);
291 	}
292 
293 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
294 
295 	/*
296 	 * We want to do this outside mmap_sem, because reading code around nip
297 	 * can result in fault, which will cause a deadlock when called with
298 	 * mmap_sem held
299 	 */
300 	if (user_mode(regs))
301 		store_update_sp = store_updates_sp(regs);
302 
303 	if (user_mode(regs))
304 		flags |= FAULT_FLAG_USER;
305 
306 	/* When running in the kernel we expect faults to occur only to
307 	 * addresses in user space.  All other faults represent errors in the
308 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
309 	 * erroneous fault occurring in a code path which already holds mmap_sem
310 	 * we will deadlock attempting to validate the fault against the
311 	 * address space.  Luckily the kernel only validly references user
312 	 * space from well defined areas of code, which are listed in the
313 	 * exceptions table.
314 	 *
315 	 * As the vast majority of faults will be valid we will only perform
316 	 * the source reference check when there is a possibility of a deadlock.
317 	 * Attempt to lock the address space, if we cannot we then validate the
318 	 * source.  If this is invalid we can skip the address space check,
319 	 * thus avoiding the deadlock.
320 	 */
321 	if (!down_read_trylock(&mm->mmap_sem)) {
322 		if (!user_mode(regs) && !search_exception_tables(regs->nip))
323 			goto bad_area_nosemaphore;
324 
325 retry:
326 		down_read(&mm->mmap_sem);
327 	} else {
328 		/*
329 		 * The above down_read_trylock() might have succeeded in
330 		 * which case we'll have missed the might_sleep() from
331 		 * down_read():
332 		 */
333 		might_sleep();
334 	}
335 
336 	vma = find_vma(mm, address);
337 	if (!vma)
338 		goto bad_area;
339 	if (vma->vm_start <= address)
340 		goto good_area;
341 	if (!(vma->vm_flags & VM_GROWSDOWN))
342 		goto bad_area;
343 
344 	/*
345 	 * N.B. The POWER/Open ABI allows programs to access up to
346 	 * 288 bytes below the stack pointer.
347 	 * The kernel signal delivery code writes up to about 1.5kB
348 	 * below the stack pointer (r1) before decrementing it.
349 	 * The exec code can write slightly over 640kB to the stack
350 	 * before setting the user r1.  Thus we allow the stack to
351 	 * expand to 1MB without further checks.
352 	 */
353 	if (address + 0x100000 < vma->vm_end) {
354 		/* get user regs even if this fault is in kernel mode */
355 		struct pt_regs *uregs = current->thread.regs;
356 		if (uregs == NULL)
357 			goto bad_area;
358 
359 		/*
360 		 * A user-mode access to an address a long way below
361 		 * the stack pointer is only valid if the instruction
362 		 * is one which would update the stack pointer to the
363 		 * address accessed if the instruction completed,
364 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
365 		 * (or the byte, halfword, float or double forms).
366 		 *
367 		 * If we don't check this then any write to the area
368 		 * between the last mapped region and the stack will
369 		 * expand the stack rather than segfaulting.
370 		 */
371 		if (address + 2048 < uregs->gpr[1] && !store_update_sp)
372 			goto bad_area;
373 	}
374 	if (expand_stack(vma, address))
375 		goto bad_area;
376 
377 good_area:
378 	code = SEGV_ACCERR;
379 #if defined(CONFIG_6xx)
380 	if (error_code & 0x95700000)
381 		/* an error such as lwarx to I/O controller space,
382 		   address matching DABR, eciwx, etc. */
383 		goto bad_area;
384 #endif /* CONFIG_6xx */
385 #if defined(CONFIG_8xx)
386         /* The MPC8xx seems to always set 0x80000000, which is
387          * "undefined".  Of those that can be set, this is the only
388          * one which seems bad.
389          */
390 	if (error_code & 0x10000000)
391                 /* Guarded storage error. */
392 		goto bad_area;
393 #endif /* CONFIG_8xx */
394 
395 	if (is_exec) {
396 		/*
397 		 * Allow execution from readable areas if the MMU does not
398 		 * provide separate controls over reading and executing.
399 		 *
400 		 * Note: That code used to not be enabled for 4xx/BookE.
401 		 * It is now as I/D cache coherency for these is done at
402 		 * set_pte_at() time and I see no reason why the test
403 		 * below wouldn't be valid on those processors. This -may-
404 		 * break programs compiled with a really old ABI though.
405 		 */
406 		if (!(vma->vm_flags & VM_EXEC) &&
407 		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
408 		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
409 			goto bad_area;
410 	/* a write */
411 	} else if (is_write) {
412 		if (!(vma->vm_flags & VM_WRITE))
413 			goto bad_area;
414 		flags |= FAULT_FLAG_WRITE;
415 	/* a read */
416 	} else {
417 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
418 			goto bad_area;
419 	}
420 #ifdef CONFIG_PPC_STD_MMU
421 	/*
422 	 * For hash translation mode, we should never get a
423 	 * PROTFAULT. Any update to pte to reduce access will result in us
424 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
425 	 * fault instead of DSISR_PROTFAULT.
426 	 *
427 	 * A pte update to relax the access will not result in a hash page table
428 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
429 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
430 	 * the special !is_write in the below conditional.
431 	 *
432 	 * For platforms that doesn't supports coherent icache and do support
433 	 * per page noexec bit, we do setup things such that we do the
434 	 * sync between D/I cache via fault. But that is handled via low level
435 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
436 	 * here in such case.
437 	 *
438 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
439 	 * check should handle those and hence we should fall to the bad_area
440 	 * handling correctly.
441 	 *
442 	 * For embedded with per page exec support that doesn't support coherent
443 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
444 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
445 	 * is conditional for server MMU.
446 	 *
447 	 * For radix, we can get prot fault for autonuma case, because radix
448 	 * page table will have them marked noaccess for user.
449 	 */
450 	if (!radix_enabled() && !is_write)
451 		WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
452 #endif /* CONFIG_PPC_STD_MMU */
453 
454 	/*
455 	 * If for any reason at all we couldn't handle the fault,
456 	 * make sure we exit gracefully rather than endlessly redo
457 	 * the fault.
458 	 */
459 	fault = handle_mm_fault(vma, address, flags);
460 	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
461 		if (fault & VM_FAULT_SIGSEGV)
462 			goto bad_area;
463 		rc = mm_fault_error(regs, address, fault);
464 		if (rc >= MM_FAULT_RETURN)
465 			goto bail;
466 		else
467 			rc = 0;
468 	}
469 
470 	/*
471 	 * Major/minor page fault accounting is only done on the
472 	 * initial attempt. If we go through a retry, it is extremely
473 	 * likely that the page will be found in page cache at that point.
474 	 */
475 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
476 		if (fault & VM_FAULT_MAJOR) {
477 			current->maj_flt++;
478 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
479 				      regs, address);
480 #ifdef CONFIG_PPC_SMLPAR
481 			if (firmware_has_feature(FW_FEATURE_CMO)) {
482 				u32 page_ins;
483 
484 				preempt_disable();
485 				page_ins = be32_to_cpu(get_lppaca()->page_ins);
486 				page_ins += 1 << PAGE_FACTOR;
487 				get_lppaca()->page_ins = cpu_to_be32(page_ins);
488 				preempt_enable();
489 			}
490 #endif /* CONFIG_PPC_SMLPAR */
491 		} else {
492 			current->min_flt++;
493 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
494 				      regs, address);
495 		}
496 		if (fault & VM_FAULT_RETRY) {
497 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
498 			 * of starvation. */
499 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
500 			flags |= FAULT_FLAG_TRIED;
501 			goto retry;
502 		}
503 	}
504 
505 	up_read(&mm->mmap_sem);
506 	goto bail;
507 
508 bad_area:
509 	up_read(&mm->mmap_sem);
510 
511 bad_area_nosemaphore:
512 	/* User mode accesses cause a SIGSEGV */
513 	if (user_mode(regs)) {
514 		_exception(SIGSEGV, regs, code, address);
515 		goto bail;
516 	}
517 
518 	if (is_exec && (error_code & DSISR_PROTFAULT))
519 		printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
520 				   " page (%lx) - exploit attempt? (uid: %d)\n",
521 				   address, from_kuid(&init_user_ns, current_uid()));
522 
523 	rc = SIGSEGV;
524 
525 bail:
526 	exception_exit(prev_state);
527 	return rc;
528 }
529 NOKPROBE_SYMBOL(do_page_fault);
530 
531 /*
532  * bad_page_fault is called when we have a bad access from the kernel.
533  * It is called from the DSI and ISI handlers in head.S and from some
534  * of the procedures in traps.c.
535  */
536 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
537 {
538 	const struct exception_table_entry *entry;
539 
540 	/* Are we prepared to handle this fault?  */
541 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
542 		regs->nip = extable_fixup(entry);
543 		return;
544 	}
545 
546 	/* kernel has accessed a bad area */
547 
548 	switch (regs->trap) {
549 	case 0x300:
550 	case 0x380:
551 		printk(KERN_ALERT "Unable to handle kernel paging request for "
552 			"data at address 0x%08lx\n", regs->dar);
553 		break;
554 	case 0x400:
555 	case 0x480:
556 		printk(KERN_ALERT "Unable to handle kernel paging request for "
557 			"instruction fetch\n");
558 		break;
559 	case 0x600:
560 		printk(KERN_ALERT "Unable to handle kernel paging request for "
561 			"unaligned access at address 0x%08lx\n", regs->dar);
562 		break;
563 	default:
564 		printk(KERN_ALERT "Unable to handle kernel paging request for "
565 			"unknown fault\n");
566 		break;
567 	}
568 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
569 		regs->nip);
570 
571 	if (task_stack_end_corrupted(current))
572 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
573 
574 	die("Kernel access of bad area", regs, sig);
575 }
576