1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerPC version 4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 5 * 6 * Derived from "arch/i386/mm/fault.c" 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * 9 * Modified by Cort Dougan and Paul Mackerras. 10 * 11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) 12 */ 13 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/errno.h> 19 #include <linux/string.h> 20 #include <linux/types.h> 21 #include <linux/pagemap.h> 22 #include <linux/ptrace.h> 23 #include <linux/mman.h> 24 #include <linux/mm.h> 25 #include <linux/interrupt.h> 26 #include <linux/highmem.h> 27 #include <linux/extable.h> 28 #include <linux/kprobes.h> 29 #include <linux/kdebug.h> 30 #include <linux/perf_event.h> 31 #include <linux/ratelimit.h> 32 #include <linux/context_tracking.h> 33 #include <linux/hugetlb.h> 34 #include <linux/uaccess.h> 35 36 #include <asm/firmware.h> 37 #include <asm/page.h> 38 #include <asm/pgtable.h> 39 #include <asm/mmu.h> 40 #include <asm/mmu_context.h> 41 #include <asm/siginfo.h> 42 #include <asm/debug.h> 43 #include <asm/kup.h> 44 45 static inline bool notify_page_fault(struct pt_regs *regs) 46 { 47 bool ret = false; 48 49 #ifdef CONFIG_KPROBES 50 /* kprobe_running() needs smp_processor_id() */ 51 if (!user_mode(regs)) { 52 preempt_disable(); 53 if (kprobe_running() && kprobe_fault_handler(regs, 11)) 54 ret = true; 55 preempt_enable(); 56 } 57 #endif /* CONFIG_KPROBES */ 58 59 if (unlikely(debugger_fault_handler(regs))) 60 ret = true; 61 62 return ret; 63 } 64 65 /* 66 * Check whether the instruction inst is a store using 67 * an update addressing form which will update r1. 68 */ 69 static bool store_updates_sp(unsigned int inst) 70 { 71 /* check for 1 in the rA field */ 72 if (((inst >> 16) & 0x1f) != 1) 73 return false; 74 /* check major opcode */ 75 switch (inst >> 26) { 76 case OP_STWU: 77 case OP_STBU: 78 case OP_STHU: 79 case OP_STFSU: 80 case OP_STFDU: 81 return true; 82 case OP_STD: /* std or stdu */ 83 return (inst & 3) == 1; 84 case OP_31: 85 /* check minor opcode */ 86 switch ((inst >> 1) & 0x3ff) { 87 case OP_31_XOP_STDUX: 88 case OP_31_XOP_STWUX: 89 case OP_31_XOP_STBUX: 90 case OP_31_XOP_STHUX: 91 case OP_31_XOP_STFSUX: 92 case OP_31_XOP_STFDUX: 93 return true; 94 } 95 } 96 return false; 97 } 98 /* 99 * do_page_fault error handling helpers 100 */ 101 102 static int 103 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code) 104 { 105 /* 106 * If we are in kernel mode, bail out with a SEGV, this will 107 * be caught by the assembly which will restore the non-volatile 108 * registers before calling bad_page_fault() 109 */ 110 if (!user_mode(regs)) 111 return SIGSEGV; 112 113 _exception(SIGSEGV, regs, si_code, address); 114 115 return 0; 116 } 117 118 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address) 119 { 120 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR); 121 } 122 123 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code) 124 { 125 struct mm_struct *mm = current->mm; 126 127 /* 128 * Something tried to access memory that isn't in our memory map.. 129 * Fix it, but check if it's kernel or user first.. 130 */ 131 up_read(&mm->mmap_sem); 132 133 return __bad_area_nosemaphore(regs, address, si_code); 134 } 135 136 static noinline int bad_area(struct pt_regs *regs, unsigned long address) 137 { 138 return __bad_area(regs, address, SEGV_MAPERR); 139 } 140 141 static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address, 142 int pkey) 143 { 144 /* 145 * If we are in kernel mode, bail out with a SEGV, this will 146 * be caught by the assembly which will restore the non-volatile 147 * registers before calling bad_page_fault() 148 */ 149 if (!user_mode(regs)) 150 return SIGSEGV; 151 152 _exception_pkey(regs, address, pkey); 153 154 return 0; 155 } 156 157 static noinline int bad_access(struct pt_regs *regs, unsigned long address) 158 { 159 return __bad_area(regs, address, SEGV_ACCERR); 160 } 161 162 static int do_sigbus(struct pt_regs *regs, unsigned long address, 163 vm_fault_t fault) 164 { 165 if (!user_mode(regs)) 166 return SIGBUS; 167 168 current->thread.trap_nr = BUS_ADRERR; 169 #ifdef CONFIG_MEMORY_FAILURE 170 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 171 unsigned int lsb = 0; /* shutup gcc */ 172 173 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 174 current->comm, current->pid, address); 175 176 if (fault & VM_FAULT_HWPOISON_LARGE) 177 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 178 if (fault & VM_FAULT_HWPOISON) 179 lsb = PAGE_SHIFT; 180 181 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); 182 return 0; 183 } 184 185 #endif 186 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); 187 return 0; 188 } 189 190 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, 191 vm_fault_t fault) 192 { 193 /* 194 * Kernel page fault interrupted by SIGKILL. We have no reason to 195 * continue processing. 196 */ 197 if (fatal_signal_pending(current) && !user_mode(regs)) 198 return SIGKILL; 199 200 /* Out of memory */ 201 if (fault & VM_FAULT_OOM) { 202 /* 203 * We ran out of memory, or some other thing happened to us that 204 * made us unable to handle the page fault gracefully. 205 */ 206 if (!user_mode(regs)) 207 return SIGSEGV; 208 pagefault_out_of_memory(); 209 } else { 210 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 211 VM_FAULT_HWPOISON_LARGE)) 212 return do_sigbus(regs, addr, fault); 213 else if (fault & VM_FAULT_SIGSEGV) 214 return bad_area_nosemaphore(regs, addr); 215 else 216 BUG(); 217 } 218 return 0; 219 } 220 221 /* Is this a bad kernel fault ? */ 222 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code, 223 unsigned long address, bool is_write) 224 { 225 int is_exec = TRAP(regs) == 0x400; 226 227 /* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */ 228 if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT | 229 DSISR_PROTFAULT))) { 230 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n", 231 address >= TASK_SIZE ? "exec-protected" : "user", 232 address, 233 from_kuid(&init_user_ns, current_uid())); 234 235 // Kernel exec fault is always bad 236 return true; 237 } 238 239 if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) && 240 !search_exception_tables(regs->nip)) { 241 pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n", 242 address, 243 from_kuid(&init_user_ns, current_uid())); 244 } 245 246 // Kernel fault on kernel address is bad 247 if (address >= TASK_SIZE) 248 return true; 249 250 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad 251 if (!search_exception_tables(regs->nip)) 252 return true; 253 254 // Read/write fault in a valid region (the exception table search passed 255 // above), but blocked by KUAP is bad, it can never succeed. 256 if (bad_kuap_fault(regs, is_write)) 257 return true; 258 259 // What's left? Kernel fault on user in well defined regions (extable 260 // matched), and allowed by KUAP in the faulting context. 261 return false; 262 } 263 264 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address, 265 struct vm_area_struct *vma, unsigned int flags, 266 bool *must_retry) 267 { 268 /* 269 * N.B. The POWER/Open ABI allows programs to access up to 270 * 288 bytes below the stack pointer. 271 * The kernel signal delivery code writes up to about 1.5kB 272 * below the stack pointer (r1) before decrementing it. 273 * The exec code can write slightly over 640kB to the stack 274 * before setting the user r1. Thus we allow the stack to 275 * expand to 1MB without further checks. 276 */ 277 if (address + 0x100000 < vma->vm_end) { 278 unsigned int __user *nip = (unsigned int __user *)regs->nip; 279 /* get user regs even if this fault is in kernel mode */ 280 struct pt_regs *uregs = current->thread.regs; 281 if (uregs == NULL) 282 return true; 283 284 /* 285 * A user-mode access to an address a long way below 286 * the stack pointer is only valid if the instruction 287 * is one which would update the stack pointer to the 288 * address accessed if the instruction completed, 289 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb 290 * (or the byte, halfword, float or double forms). 291 * 292 * If we don't check this then any write to the area 293 * between the last mapped region and the stack will 294 * expand the stack rather than segfaulting. 295 */ 296 if (address + 2048 >= uregs->gpr[1]) 297 return false; 298 299 if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) && 300 access_ok(nip, sizeof(*nip))) { 301 unsigned int inst; 302 int res; 303 304 pagefault_disable(); 305 res = __get_user_inatomic(inst, nip); 306 pagefault_enable(); 307 if (!res) 308 return !store_updates_sp(inst); 309 *must_retry = true; 310 } 311 return true; 312 } 313 return false; 314 } 315 316 static bool access_error(bool is_write, bool is_exec, 317 struct vm_area_struct *vma) 318 { 319 /* 320 * Allow execution from readable areas if the MMU does not 321 * provide separate controls over reading and executing. 322 * 323 * Note: That code used to not be enabled for 4xx/BookE. 324 * It is now as I/D cache coherency for these is done at 325 * set_pte_at() time and I see no reason why the test 326 * below wouldn't be valid on those processors. This -may- 327 * break programs compiled with a really old ABI though. 328 */ 329 if (is_exec) { 330 return !(vma->vm_flags & VM_EXEC) && 331 (cpu_has_feature(CPU_FTR_NOEXECUTE) || 332 !(vma->vm_flags & (VM_READ | VM_WRITE))); 333 } 334 335 if (is_write) { 336 if (unlikely(!(vma->vm_flags & VM_WRITE))) 337 return true; 338 return false; 339 } 340 341 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) 342 return true; 343 /* 344 * We should ideally do the vma pkey access check here. But in the 345 * fault path, handle_mm_fault() also does the same check. To avoid 346 * these multiple checks, we skip it here and handle access error due 347 * to pkeys later. 348 */ 349 return false; 350 } 351 352 #ifdef CONFIG_PPC_SMLPAR 353 static inline void cmo_account_page_fault(void) 354 { 355 if (firmware_has_feature(FW_FEATURE_CMO)) { 356 u32 page_ins; 357 358 preempt_disable(); 359 page_ins = be32_to_cpu(get_lppaca()->page_ins); 360 page_ins += 1 << PAGE_FACTOR; 361 get_lppaca()->page_ins = cpu_to_be32(page_ins); 362 preempt_enable(); 363 } 364 } 365 #else 366 static inline void cmo_account_page_fault(void) { } 367 #endif /* CONFIG_PPC_SMLPAR */ 368 369 #ifdef CONFIG_PPC_BOOK3S 370 static void sanity_check_fault(bool is_write, bool is_user, 371 unsigned long error_code, unsigned long address) 372 { 373 /* 374 * Userspace trying to access kernel address, we get PROTFAULT for that. 375 */ 376 if (is_user && address >= TASK_SIZE) { 377 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n", 378 current->comm, current->pid, address, 379 from_kuid(&init_user_ns, current_uid())); 380 return; 381 } 382 383 /* 384 * For hash translation mode, we should never get a 385 * PROTFAULT. Any update to pte to reduce access will result in us 386 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE 387 * fault instead of DSISR_PROTFAULT. 388 * 389 * A pte update to relax the access will not result in a hash page table 390 * entry invalidate and hence can result in DSISR_PROTFAULT. 391 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have 392 * the special !is_write in the below conditional. 393 * 394 * For platforms that doesn't supports coherent icache and do support 395 * per page noexec bit, we do setup things such that we do the 396 * sync between D/I cache via fault. But that is handled via low level 397 * hash fault code (hash_page_do_lazy_icache()) and we should not reach 398 * here in such case. 399 * 400 * For wrong access that can result in PROTFAULT, the above vma->vm_flags 401 * check should handle those and hence we should fall to the bad_area 402 * handling correctly. 403 * 404 * For embedded with per page exec support that doesn't support coherent 405 * icache we do get PROTFAULT and we handle that D/I cache sync in 406 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON 407 * is conditional for server MMU. 408 * 409 * For radix, we can get prot fault for autonuma case, because radix 410 * page table will have them marked noaccess for user. 411 */ 412 if (radix_enabled() || is_write) 413 return; 414 415 WARN_ON_ONCE(error_code & DSISR_PROTFAULT); 416 } 417 #else 418 static void sanity_check_fault(bool is_write, bool is_user, 419 unsigned long error_code, unsigned long address) { } 420 #endif /* CONFIG_PPC_BOOK3S */ 421 422 /* 423 * Define the correct "is_write" bit in error_code based 424 * on the processor family 425 */ 426 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) 427 #define page_fault_is_write(__err) ((__err) & ESR_DST) 428 #define page_fault_is_bad(__err) (0) 429 #else 430 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE) 431 #if defined(CONFIG_PPC_8xx) 432 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G) 433 #elif defined(CONFIG_PPC64) 434 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S) 435 #else 436 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S) 437 #endif 438 #endif 439 440 /* 441 * For 600- and 800-family processors, the error_code parameter is DSISR 442 * for a data fault, SRR1 for an instruction fault. For 400-family processors 443 * the error_code parameter is ESR for a data fault, 0 for an instruction 444 * fault. 445 * For 64-bit processors, the error_code parameter is 446 * - DSISR for a non-SLB data access fault, 447 * - SRR1 & 0x08000000 for a non-SLB instruction access fault 448 * - 0 any SLB fault. 449 * 450 * The return value is 0 if the fault was handled, or the signal 451 * number if this is a kernel fault that can't be handled here. 452 */ 453 static int __do_page_fault(struct pt_regs *regs, unsigned long address, 454 unsigned long error_code) 455 { 456 struct vm_area_struct * vma; 457 struct mm_struct *mm = current->mm; 458 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 459 int is_exec = TRAP(regs) == 0x400; 460 int is_user = user_mode(regs); 461 int is_write = page_fault_is_write(error_code); 462 vm_fault_t fault, major = 0; 463 bool must_retry = false; 464 465 if (notify_page_fault(regs)) 466 return 0; 467 468 if (unlikely(page_fault_is_bad(error_code))) { 469 if (is_user) { 470 _exception(SIGBUS, regs, BUS_OBJERR, address); 471 return 0; 472 } 473 return SIGBUS; 474 } 475 476 /* Additional sanity check(s) */ 477 sanity_check_fault(is_write, is_user, error_code, address); 478 479 /* 480 * The kernel should never take an execute fault nor should it 481 * take a page fault to a kernel address or a page fault to a user 482 * address outside of dedicated places 483 */ 484 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) 485 return SIGSEGV; 486 487 /* 488 * If we're in an interrupt, have no user context or are running 489 * in a region with pagefaults disabled then we must not take the fault 490 */ 491 if (unlikely(faulthandler_disabled() || !mm)) { 492 if (is_user) 493 printk_ratelimited(KERN_ERR "Page fault in user mode" 494 " with faulthandler_disabled()=%d" 495 " mm=%p\n", 496 faulthandler_disabled(), mm); 497 return bad_area_nosemaphore(regs, address); 498 } 499 500 /* We restore the interrupt state now */ 501 if (!arch_irq_disabled_regs(regs)) 502 local_irq_enable(); 503 504 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 505 506 if (error_code & DSISR_KEYFAULT) 507 return bad_key_fault_exception(regs, address, 508 get_mm_addr_key(mm, address)); 509 510 /* 511 * We want to do this outside mmap_sem, because reading code around nip 512 * can result in fault, which will cause a deadlock when called with 513 * mmap_sem held 514 */ 515 if (is_user) 516 flags |= FAULT_FLAG_USER; 517 if (is_write) 518 flags |= FAULT_FLAG_WRITE; 519 if (is_exec) 520 flags |= FAULT_FLAG_INSTRUCTION; 521 522 /* When running in the kernel we expect faults to occur only to 523 * addresses in user space. All other faults represent errors in the 524 * kernel and should generate an OOPS. Unfortunately, in the case of an 525 * erroneous fault occurring in a code path which already holds mmap_sem 526 * we will deadlock attempting to validate the fault against the 527 * address space. Luckily the kernel only validly references user 528 * space from well defined areas of code, which are listed in the 529 * exceptions table. 530 * 531 * As the vast majority of faults will be valid we will only perform 532 * the source reference check when there is a possibility of a deadlock. 533 * Attempt to lock the address space, if we cannot we then validate the 534 * source. If this is invalid we can skip the address space check, 535 * thus avoiding the deadlock. 536 */ 537 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 538 if (!is_user && !search_exception_tables(regs->nip)) 539 return bad_area_nosemaphore(regs, address); 540 541 retry: 542 down_read(&mm->mmap_sem); 543 } else { 544 /* 545 * The above down_read_trylock() might have succeeded in 546 * which case we'll have missed the might_sleep() from 547 * down_read(): 548 */ 549 might_sleep(); 550 } 551 552 vma = find_vma(mm, address); 553 if (unlikely(!vma)) 554 return bad_area(regs, address); 555 if (likely(vma->vm_start <= address)) 556 goto good_area; 557 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) 558 return bad_area(regs, address); 559 560 /* The stack is being expanded, check if it's valid */ 561 if (unlikely(bad_stack_expansion(regs, address, vma, flags, 562 &must_retry))) { 563 if (!must_retry) 564 return bad_area(regs, address); 565 566 up_read(&mm->mmap_sem); 567 if (fault_in_pages_readable((const char __user *)regs->nip, 568 sizeof(unsigned int))) 569 return bad_area_nosemaphore(regs, address); 570 goto retry; 571 } 572 573 /* Try to expand it */ 574 if (unlikely(expand_stack(vma, address))) 575 return bad_area(regs, address); 576 577 good_area: 578 if (unlikely(access_error(is_write, is_exec, vma))) 579 return bad_access(regs, address); 580 581 /* 582 * If for any reason at all we couldn't handle the fault, 583 * make sure we exit gracefully rather than endlessly redo 584 * the fault. 585 */ 586 fault = handle_mm_fault(vma, address, flags); 587 588 #ifdef CONFIG_PPC_MEM_KEYS 589 /* 590 * we skipped checking for access error due to key earlier. 591 * Check that using handle_mm_fault error return. 592 */ 593 if (unlikely(fault & VM_FAULT_SIGSEGV) && 594 !arch_vma_access_permitted(vma, is_write, is_exec, 0)) { 595 596 int pkey = vma_pkey(vma); 597 598 up_read(&mm->mmap_sem); 599 return bad_key_fault_exception(regs, address, pkey); 600 } 601 #endif /* CONFIG_PPC_MEM_KEYS */ 602 603 major |= fault & VM_FAULT_MAJOR; 604 605 /* 606 * Handle the retry right now, the mmap_sem has been released in that 607 * case. 608 */ 609 if (unlikely(fault & VM_FAULT_RETRY)) { 610 /* We retry only once */ 611 if (flags & FAULT_FLAG_ALLOW_RETRY) { 612 /* 613 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk 614 * of starvation. 615 */ 616 flags &= ~FAULT_FLAG_ALLOW_RETRY; 617 flags |= FAULT_FLAG_TRIED; 618 if (!fatal_signal_pending(current)) 619 goto retry; 620 } 621 622 /* 623 * User mode? Just return to handle the fatal exception otherwise 624 * return to bad_page_fault 625 */ 626 return is_user ? 0 : SIGBUS; 627 } 628 629 up_read(¤t->mm->mmap_sem); 630 631 if (unlikely(fault & VM_FAULT_ERROR)) 632 return mm_fault_error(regs, address, fault); 633 634 /* 635 * Major/minor page fault accounting. 636 */ 637 if (major) { 638 current->maj_flt++; 639 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 640 cmo_account_page_fault(); 641 } else { 642 current->min_flt++; 643 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 644 } 645 return 0; 646 } 647 NOKPROBE_SYMBOL(__do_page_fault); 648 649 int do_page_fault(struct pt_regs *regs, unsigned long address, 650 unsigned long error_code) 651 { 652 enum ctx_state prev_state = exception_enter(); 653 int rc = __do_page_fault(regs, address, error_code); 654 exception_exit(prev_state); 655 return rc; 656 } 657 NOKPROBE_SYMBOL(do_page_fault); 658 659 /* 660 * bad_page_fault is called when we have a bad access from the kernel. 661 * It is called from the DSI and ISI handlers in head.S and from some 662 * of the procedures in traps.c. 663 */ 664 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) 665 { 666 const struct exception_table_entry *entry; 667 668 /* Are we prepared to handle this fault? */ 669 if ((entry = search_exception_tables(regs->nip)) != NULL) { 670 regs->nip = extable_fixup(entry); 671 return; 672 } 673 674 /* kernel has accessed a bad area */ 675 676 switch (TRAP(regs)) { 677 case 0x300: 678 case 0x380: 679 case 0xe00: 680 pr_alert("BUG: %s at 0x%08lx\n", 681 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" : 682 "Unable to handle kernel data access", regs->dar); 683 break; 684 case 0x400: 685 case 0x480: 686 pr_alert("BUG: Unable to handle kernel instruction fetch%s", 687 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n"); 688 break; 689 case 0x600: 690 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n", 691 regs->dar); 692 break; 693 default: 694 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n", 695 regs->dar); 696 break; 697 } 698 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", 699 regs->nip); 700 701 if (task_stack_end_corrupted(current)) 702 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 703 704 die("Kernel access of bad area", regs, sig); 705 } 706