xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision 10c1d542c7e871865bca381842fd04a92d2b95ec)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/ptrace.h>
26 #include <linux/mman.h>
27 #include <linux/mm.h>
28 #include <linux/interrupt.h>
29 #include <linux/highmem.h>
30 #include <linux/extable.h>
31 #include <linux/kprobes.h>
32 #include <linux/kdebug.h>
33 #include <linux/perf_event.h>
34 #include <linux/ratelimit.h>
35 #include <linux/context_tracking.h>
36 #include <linux/hugetlb.h>
37 #include <linux/uaccess.h>
38 
39 #include <asm/firmware.h>
40 #include <asm/page.h>
41 #include <asm/pgtable.h>
42 #include <asm/mmu.h>
43 #include <asm/mmu_context.h>
44 #include <asm/tlbflush.h>
45 #include <asm/siginfo.h>
46 #include <asm/debug.h>
47 
48 static inline bool notify_page_fault(struct pt_regs *regs)
49 {
50 	bool ret = false;
51 
52 #ifdef CONFIG_KPROBES
53 	/* kprobe_running() needs smp_processor_id() */
54 	if (!user_mode(regs)) {
55 		preempt_disable();
56 		if (kprobe_running() && kprobe_fault_handler(regs, 11))
57 			ret = true;
58 		preempt_enable();
59 	}
60 #endif /* CONFIG_KPROBES */
61 
62 	if (unlikely(debugger_fault_handler(regs)))
63 		ret = true;
64 
65 	return ret;
66 }
67 
68 /*
69  * Check whether the instruction at regs->nip is a store using
70  * an update addressing form which will update r1.
71  */
72 static bool store_updates_sp(struct pt_regs *regs)
73 {
74 	unsigned int inst;
75 
76 	if (get_user(inst, (unsigned int __user *)regs->nip))
77 		return false;
78 	/* check for 1 in the rA field */
79 	if (((inst >> 16) & 0x1f) != 1)
80 		return false;
81 	/* check major opcode */
82 	switch (inst >> 26) {
83 	case 37:	/* stwu */
84 	case 39:	/* stbu */
85 	case 45:	/* sthu */
86 	case 53:	/* stfsu */
87 	case 55:	/* stfdu */
88 		return true;
89 	case 62:	/* std or stdu */
90 		return (inst & 3) == 1;
91 	case 31:
92 		/* check minor opcode */
93 		switch ((inst >> 1) & 0x3ff) {
94 		case 181:	/* stdux */
95 		case 183:	/* stwux */
96 		case 247:	/* stbux */
97 		case 439:	/* sthux */
98 		case 695:	/* stfsux */
99 		case 759:	/* stfdux */
100 			return true;
101 		}
102 	}
103 	return false;
104 }
105 /*
106  * do_page_fault error handling helpers
107  */
108 
109 static int
110 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code,
111 		int pkey)
112 {
113 	/*
114 	 * If we are in kernel mode, bail out with a SEGV, this will
115 	 * be caught by the assembly which will restore the non-volatile
116 	 * registers before calling bad_page_fault()
117 	 */
118 	if (!user_mode(regs))
119 		return SIGSEGV;
120 
121 	_exception_pkey(SIGSEGV, regs, si_code, address, pkey);
122 
123 	return 0;
124 }
125 
126 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
127 {
128 	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR, 0);
129 }
130 
131 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
132 			int pkey)
133 {
134 	struct mm_struct *mm = current->mm;
135 
136 	/*
137 	 * Something tried to access memory that isn't in our memory map..
138 	 * Fix it, but check if it's kernel or user first..
139 	 */
140 	up_read(&mm->mmap_sem);
141 
142 	return __bad_area_nosemaphore(regs, address, si_code, pkey);
143 }
144 
145 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
146 {
147 	return __bad_area(regs, address, SEGV_MAPERR, 0);
148 }
149 
150 static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
151 				    int pkey)
152 {
153 	return __bad_area_nosemaphore(regs, address, SEGV_PKUERR, pkey);
154 }
155 
156 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
157 {
158 	return __bad_area(regs, address, SEGV_ACCERR, 0);
159 }
160 
161 static int do_sigbus(struct pt_regs *regs, unsigned long address,
162 		     unsigned int fault)
163 {
164 	siginfo_t info;
165 	unsigned int lsb = 0;
166 
167 	if (!user_mode(regs))
168 		return SIGBUS;
169 
170 	current->thread.trap_nr = BUS_ADRERR;
171 	info.si_signo = SIGBUS;
172 	info.si_errno = 0;
173 	info.si_code = BUS_ADRERR;
174 	info.si_addr = (void __user *)address;
175 #ifdef CONFIG_MEMORY_FAILURE
176 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
177 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
178 			current->comm, current->pid, address);
179 		info.si_code = BUS_MCEERR_AR;
180 	}
181 
182 	if (fault & VM_FAULT_HWPOISON_LARGE)
183 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
184 	if (fault & VM_FAULT_HWPOISON)
185 		lsb = PAGE_SHIFT;
186 #endif
187 	info.si_addr_lsb = lsb;
188 	force_sig_info(SIGBUS, &info, current);
189 	return 0;
190 }
191 
192 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
193 {
194 	/*
195 	 * Kernel page fault interrupted by SIGKILL. We have no reason to
196 	 * continue processing.
197 	 */
198 	if (fatal_signal_pending(current) && !user_mode(regs))
199 		return SIGKILL;
200 
201 	/* Out of memory */
202 	if (fault & VM_FAULT_OOM) {
203 		/*
204 		 * We ran out of memory, or some other thing happened to us that
205 		 * made us unable to handle the page fault gracefully.
206 		 */
207 		if (!user_mode(regs))
208 			return SIGSEGV;
209 		pagefault_out_of_memory();
210 	} else {
211 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
212 			     VM_FAULT_HWPOISON_LARGE))
213 			return do_sigbus(regs, addr, fault);
214 		else if (fault & VM_FAULT_SIGSEGV)
215 			return bad_area_nosemaphore(regs, addr);
216 		else
217 			BUG();
218 	}
219 	return 0;
220 }
221 
222 /* Is this a bad kernel fault ? */
223 static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
224 			     unsigned long address)
225 {
226 	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
227 		printk_ratelimited(KERN_CRIT "kernel tried to execute"
228 				   " exec-protected page (%lx) -"
229 				   "exploit attempt? (uid: %d)\n",
230 				   address, from_kuid(&init_user_ns,
231 						      current_uid()));
232 	}
233 	return is_exec || (address >= TASK_SIZE);
234 }
235 
236 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
237 				struct vm_area_struct *vma,
238 				bool store_update_sp)
239 {
240 	/*
241 	 * N.B. The POWER/Open ABI allows programs to access up to
242 	 * 288 bytes below the stack pointer.
243 	 * The kernel signal delivery code writes up to about 1.5kB
244 	 * below the stack pointer (r1) before decrementing it.
245 	 * The exec code can write slightly over 640kB to the stack
246 	 * before setting the user r1.  Thus we allow the stack to
247 	 * expand to 1MB without further checks.
248 	 */
249 	if (address + 0x100000 < vma->vm_end) {
250 		/* get user regs even if this fault is in kernel mode */
251 		struct pt_regs *uregs = current->thread.regs;
252 		if (uregs == NULL)
253 			return true;
254 
255 		/*
256 		 * A user-mode access to an address a long way below
257 		 * the stack pointer is only valid if the instruction
258 		 * is one which would update the stack pointer to the
259 		 * address accessed if the instruction completed,
260 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
261 		 * (or the byte, halfword, float or double forms).
262 		 *
263 		 * If we don't check this then any write to the area
264 		 * between the last mapped region and the stack will
265 		 * expand the stack rather than segfaulting.
266 		 */
267 		if (address + 2048 < uregs->gpr[1] && !store_update_sp)
268 			return true;
269 	}
270 	return false;
271 }
272 
273 static bool access_error(bool is_write, bool is_exec,
274 			 struct vm_area_struct *vma)
275 {
276 	/*
277 	 * Allow execution from readable areas if the MMU does not
278 	 * provide separate controls over reading and executing.
279 	 *
280 	 * Note: That code used to not be enabled for 4xx/BookE.
281 	 * It is now as I/D cache coherency for these is done at
282 	 * set_pte_at() time and I see no reason why the test
283 	 * below wouldn't be valid on those processors. This -may-
284 	 * break programs compiled with a really old ABI though.
285 	 */
286 	if (is_exec) {
287 		return !(vma->vm_flags & VM_EXEC) &&
288 			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
289 			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
290 	}
291 
292 	if (is_write) {
293 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
294 			return true;
295 		return false;
296 	}
297 
298 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
299 		return true;
300 
301 	return false;
302 }
303 
304 #ifdef CONFIG_PPC_SMLPAR
305 static inline void cmo_account_page_fault(void)
306 {
307 	if (firmware_has_feature(FW_FEATURE_CMO)) {
308 		u32 page_ins;
309 
310 		preempt_disable();
311 		page_ins = be32_to_cpu(get_lppaca()->page_ins);
312 		page_ins += 1 << PAGE_FACTOR;
313 		get_lppaca()->page_ins = cpu_to_be32(page_ins);
314 		preempt_enable();
315 	}
316 }
317 #else
318 static inline void cmo_account_page_fault(void) { }
319 #endif /* CONFIG_PPC_SMLPAR */
320 
321 #ifdef CONFIG_PPC_STD_MMU
322 static void sanity_check_fault(bool is_write, unsigned long error_code)
323 {
324 	/*
325 	 * For hash translation mode, we should never get a
326 	 * PROTFAULT. Any update to pte to reduce access will result in us
327 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
328 	 * fault instead of DSISR_PROTFAULT.
329 	 *
330 	 * A pte update to relax the access will not result in a hash page table
331 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
332 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
333 	 * the special !is_write in the below conditional.
334 	 *
335 	 * For platforms that doesn't supports coherent icache and do support
336 	 * per page noexec bit, we do setup things such that we do the
337 	 * sync between D/I cache via fault. But that is handled via low level
338 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
339 	 * here in such case.
340 	 *
341 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
342 	 * check should handle those and hence we should fall to the bad_area
343 	 * handling correctly.
344 	 *
345 	 * For embedded with per page exec support that doesn't support coherent
346 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
347 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
348 	 * is conditional for server MMU.
349 	 *
350 	 * For radix, we can get prot fault for autonuma case, because radix
351 	 * page table will have them marked noaccess for user.
352 	 */
353 	if (!radix_enabled() && !is_write)
354 		WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
355 }
356 #else
357 static void sanity_check_fault(bool is_write, unsigned long error_code) { }
358 #endif /* CONFIG_PPC_STD_MMU */
359 
360 /*
361  * Define the correct "is_write" bit in error_code based
362  * on the processor family
363  */
364 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
365 #define page_fault_is_write(__err)	((__err) & ESR_DST)
366 #define page_fault_is_bad(__err)	(0)
367 #else
368 #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
369 #if defined(CONFIG_PPC_8xx)
370 #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
371 #elif defined(CONFIG_PPC64)
372 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
373 #else
374 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
375 #endif
376 #endif
377 
378 /*
379  * For 600- and 800-family processors, the error_code parameter is DSISR
380  * for a data fault, SRR1 for an instruction fault. For 400-family processors
381  * the error_code parameter is ESR for a data fault, 0 for an instruction
382  * fault.
383  * For 64-bit processors, the error_code parameter is
384  *  - DSISR for a non-SLB data access fault,
385  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
386  *  - 0 any SLB fault.
387  *
388  * The return value is 0 if the fault was handled, or the signal
389  * number if this is a kernel fault that can't be handled here.
390  */
391 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
392 			   unsigned long error_code)
393 {
394 	struct vm_area_struct * vma;
395 	struct mm_struct *mm = current->mm;
396 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
397  	int is_exec = TRAP(regs) == 0x400;
398 	int is_user = user_mode(regs);
399 	int is_write = page_fault_is_write(error_code);
400 	int fault, major = 0;
401 	bool store_update_sp = false;
402 
403 	if (notify_page_fault(regs))
404 		return 0;
405 
406 	if (unlikely(page_fault_is_bad(error_code))) {
407 		if (is_user) {
408 			_exception(SIGBUS, regs, BUS_OBJERR, address);
409 			return 0;
410 		}
411 		return SIGBUS;
412 	}
413 
414 	/* Additional sanity check(s) */
415 	sanity_check_fault(is_write, error_code);
416 
417 	/*
418 	 * The kernel should never take an execute fault nor should it
419 	 * take a page fault to a kernel address.
420 	 */
421 	if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
422 		return SIGSEGV;
423 
424 	/*
425 	 * If we're in an interrupt, have no user context or are running
426 	 * in a region with pagefaults disabled then we must not take the fault
427 	 */
428 	if (unlikely(faulthandler_disabled() || !mm)) {
429 		if (is_user)
430 			printk_ratelimited(KERN_ERR "Page fault in user mode"
431 					   " with faulthandler_disabled()=%d"
432 					   " mm=%p\n",
433 					   faulthandler_disabled(), mm);
434 		return bad_area_nosemaphore(regs, address);
435 	}
436 
437 	/* We restore the interrupt state now */
438 	if (!arch_irq_disabled_regs(regs))
439 		local_irq_enable();
440 
441 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
442 
443 	if (error_code & DSISR_KEYFAULT)
444 		return bad_key_fault_exception(regs, address,
445 					       get_mm_addr_key(mm, address));
446 
447 	/*
448 	 * We want to do this outside mmap_sem, because reading code around nip
449 	 * can result in fault, which will cause a deadlock when called with
450 	 * mmap_sem held
451 	 */
452 	if (is_write && is_user)
453 		store_update_sp = store_updates_sp(regs);
454 
455 	if (is_user)
456 		flags |= FAULT_FLAG_USER;
457 	if (is_write)
458 		flags |= FAULT_FLAG_WRITE;
459 	if (is_exec)
460 		flags |= FAULT_FLAG_INSTRUCTION;
461 
462 	/* When running in the kernel we expect faults to occur only to
463 	 * addresses in user space.  All other faults represent errors in the
464 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
465 	 * erroneous fault occurring in a code path which already holds mmap_sem
466 	 * we will deadlock attempting to validate the fault against the
467 	 * address space.  Luckily the kernel only validly references user
468 	 * space from well defined areas of code, which are listed in the
469 	 * exceptions table.
470 	 *
471 	 * As the vast majority of faults will be valid we will only perform
472 	 * the source reference check when there is a possibility of a deadlock.
473 	 * Attempt to lock the address space, if we cannot we then validate the
474 	 * source.  If this is invalid we can skip the address space check,
475 	 * thus avoiding the deadlock.
476 	 */
477 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
478 		if (!is_user && !search_exception_tables(regs->nip))
479 			return bad_area_nosemaphore(regs, address);
480 
481 retry:
482 		down_read(&mm->mmap_sem);
483 	} else {
484 		/*
485 		 * The above down_read_trylock() might have succeeded in
486 		 * which case we'll have missed the might_sleep() from
487 		 * down_read():
488 		 */
489 		might_sleep();
490 	}
491 
492 	vma = find_vma(mm, address);
493 	if (unlikely(!vma))
494 		return bad_area(regs, address);
495 	if (likely(vma->vm_start <= address))
496 		goto good_area;
497 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
498 		return bad_area(regs, address);
499 
500 	/* The stack is being expanded, check if it's valid */
501 	if (unlikely(bad_stack_expansion(regs, address, vma, store_update_sp)))
502 		return bad_area(regs, address);
503 
504 	/* Try to expand it */
505 	if (unlikely(expand_stack(vma, address)))
506 		return bad_area(regs, address);
507 
508 good_area:
509 	if (unlikely(access_error(is_write, is_exec, vma)))
510 		return bad_access(regs, address);
511 
512 	/*
513 	 * If for any reason at all we couldn't handle the fault,
514 	 * make sure we exit gracefully rather than endlessly redo
515 	 * the fault.
516 	 */
517 	fault = handle_mm_fault(vma, address, flags);
518 
519 #ifdef CONFIG_PPC_MEM_KEYS
520 	/*
521 	 * if the HPTE is not hashed, hardware will not detect
522 	 * a key fault. Lets check if we failed because of a
523 	 * software detected key fault.
524 	 */
525 	if (unlikely(fault & VM_FAULT_SIGSEGV) &&
526 		!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
527 			is_exec, 0)) {
528 		/*
529 		 * The PGD-PDT...PMD-PTE tree may not have been fully setup.
530 		 * Hence we cannot walk the tree to locate the PTE, to locate
531 		 * the key. Hence let's use vma_pkey() to get the key; instead
532 		 * of get_mm_addr_key().
533 		 */
534 		int pkey = vma_pkey(vma);
535 
536 		if (likely(pkey)) {
537 			up_read(&mm->mmap_sem);
538 			return bad_key_fault_exception(regs, address, pkey);
539 		}
540 	}
541 #endif /* CONFIG_PPC_MEM_KEYS */
542 
543 	major |= fault & VM_FAULT_MAJOR;
544 
545 	/*
546 	 * Handle the retry right now, the mmap_sem has been released in that
547 	 * case.
548 	 */
549 	if (unlikely(fault & VM_FAULT_RETRY)) {
550 		/* We retry only once */
551 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
552 			/*
553 			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
554 			 * of starvation.
555 			 */
556 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
557 			flags |= FAULT_FLAG_TRIED;
558 			if (!fatal_signal_pending(current))
559 				goto retry;
560 		}
561 
562 		/*
563 		 * User mode? Just return to handle the fatal exception otherwise
564 		 * return to bad_page_fault
565 		 */
566 		return is_user ? 0 : SIGBUS;
567 	}
568 
569 	up_read(&current->mm->mmap_sem);
570 
571 	if (unlikely(fault & VM_FAULT_ERROR))
572 		return mm_fault_error(regs, address, fault);
573 
574 	/*
575 	 * Major/minor page fault accounting.
576 	 */
577 	if (major) {
578 		current->maj_flt++;
579 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
580 		cmo_account_page_fault();
581 	} else {
582 		current->min_flt++;
583 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
584 	}
585 	return 0;
586 }
587 NOKPROBE_SYMBOL(__do_page_fault);
588 
589 int do_page_fault(struct pt_regs *regs, unsigned long address,
590 		  unsigned long error_code)
591 {
592 	enum ctx_state prev_state = exception_enter();
593 	int rc = __do_page_fault(regs, address, error_code);
594 	exception_exit(prev_state);
595 	return rc;
596 }
597 NOKPROBE_SYMBOL(do_page_fault);
598 
599 /*
600  * bad_page_fault is called when we have a bad access from the kernel.
601  * It is called from the DSI and ISI handlers in head.S and from some
602  * of the procedures in traps.c.
603  */
604 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
605 {
606 	const struct exception_table_entry *entry;
607 
608 	/* Are we prepared to handle this fault?  */
609 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
610 		regs->nip = extable_fixup(entry);
611 		return;
612 	}
613 
614 	/* kernel has accessed a bad area */
615 
616 	switch (TRAP(regs)) {
617 	case 0x300:
618 	case 0x380:
619 		printk(KERN_ALERT "Unable to handle kernel paging request for "
620 			"data at address 0x%08lx\n", regs->dar);
621 		break;
622 	case 0x400:
623 	case 0x480:
624 		printk(KERN_ALERT "Unable to handle kernel paging request for "
625 			"instruction fetch\n");
626 		break;
627 	case 0x600:
628 		printk(KERN_ALERT "Unable to handle kernel paging request for "
629 			"unaligned access at address 0x%08lx\n", regs->dar);
630 		break;
631 	default:
632 		printk(KERN_ALERT "Unable to handle kernel paging request for "
633 			"unknown fault\n");
634 		break;
635 	}
636 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
637 		regs->nip);
638 
639 	if (task_stack_end_corrupted(current))
640 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
641 
642 	die("Kernel access of bad area", regs, sig);
643 }
644