xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision 075a46a0)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 #include <linux/perf_event.h>
33 #include <linux/magic.h>
34 #include <linux/ratelimit.h>
35 
36 #include <asm/firmware.h>
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/system.h>
42 #include <asm/uaccess.h>
43 #include <asm/tlbflush.h>
44 #include <asm/siginfo.h>
45 #include <mm/mmu_decl.h>
46 
47 #ifdef CONFIG_KPROBES
48 static inline int notify_page_fault(struct pt_regs *regs)
49 {
50 	int ret = 0;
51 
52 	/* kprobe_running() needs smp_processor_id() */
53 	if (!user_mode(regs)) {
54 		preempt_disable();
55 		if (kprobe_running() && kprobe_fault_handler(regs, 11))
56 			ret = 1;
57 		preempt_enable();
58 	}
59 
60 	return ret;
61 }
62 #else
63 static inline int notify_page_fault(struct pt_regs *regs)
64 {
65 	return 0;
66 }
67 #endif
68 
69 /*
70  * Check whether the instruction at regs->nip is a store using
71  * an update addressing form which will update r1.
72  */
73 static int store_updates_sp(struct pt_regs *regs)
74 {
75 	unsigned int inst;
76 
77 	if (get_user(inst, (unsigned int __user *)regs->nip))
78 		return 0;
79 	/* check for 1 in the rA field */
80 	if (((inst >> 16) & 0x1f) != 1)
81 		return 0;
82 	/* check major opcode */
83 	switch (inst >> 26) {
84 	case 37:	/* stwu */
85 	case 39:	/* stbu */
86 	case 45:	/* sthu */
87 	case 53:	/* stfsu */
88 	case 55:	/* stfdu */
89 		return 1;
90 	case 62:	/* std or stdu */
91 		return (inst & 3) == 1;
92 	case 31:
93 		/* check minor opcode */
94 		switch ((inst >> 1) & 0x3ff) {
95 		case 181:	/* stdux */
96 		case 183:	/* stwux */
97 		case 247:	/* stbux */
98 		case 439:	/* sthux */
99 		case 695:	/* stfsux */
100 		case 759:	/* stfdux */
101 			return 1;
102 		}
103 	}
104 	return 0;
105 }
106 
107 /*
108  * For 600- and 800-family processors, the error_code parameter is DSISR
109  * for a data fault, SRR1 for an instruction fault. For 400-family processors
110  * the error_code parameter is ESR for a data fault, 0 for an instruction
111  * fault.
112  * For 64-bit processors, the error_code parameter is
113  *  - DSISR for a non-SLB data access fault,
114  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
115  *  - 0 any SLB fault.
116  *
117  * The return value is 0 if the fault was handled, or the signal
118  * number if this is a kernel fault that can't be handled here.
119  */
120 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
121 			    unsigned long error_code)
122 {
123 	struct vm_area_struct * vma;
124 	struct mm_struct *mm = current->mm;
125 	siginfo_t info;
126 	int code = SEGV_MAPERR;
127 	int is_write = 0, ret;
128 	int trap = TRAP(regs);
129  	int is_exec = trap == 0x400;
130 
131 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
132 	/*
133 	 * Fortunately the bit assignments in SRR1 for an instruction
134 	 * fault and DSISR for a data fault are mostly the same for the
135 	 * bits we are interested in.  But there are some bits which
136 	 * indicate errors in DSISR but can validly be set in SRR1.
137 	 */
138 	if (trap == 0x400)
139 		error_code &= 0x48200000;
140 	else
141 		is_write = error_code & DSISR_ISSTORE;
142 #else
143 	is_write = error_code & ESR_DST;
144 #endif /* CONFIG_4xx || CONFIG_BOOKE */
145 
146 	if (notify_page_fault(regs))
147 		return 0;
148 
149 	if (unlikely(debugger_fault_handler(regs)))
150 		return 0;
151 
152 	/* On a kernel SLB miss we can only check for a valid exception entry */
153 	if (!user_mode(regs) && (address >= TASK_SIZE))
154 		return SIGSEGV;
155 
156 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
157 			     defined(CONFIG_PPC_BOOK3S_64))
158   	if (error_code & DSISR_DABRMATCH) {
159 		/* DABR match */
160 		do_dabr(regs, address, error_code);
161 		return 0;
162 	}
163 #endif
164 
165 	if (in_atomic() || mm == NULL) {
166 		if (!user_mode(regs))
167 			return SIGSEGV;
168 		/* in_atomic() in user mode is really bad,
169 		   as is current->mm == NULL. */
170 		printk(KERN_EMERG "Page fault in user mode with "
171 		       "in_atomic() = %d mm = %p\n", in_atomic(), mm);
172 		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
173 		       regs->nip, regs->msr);
174 		die("Weird page fault", regs, SIGSEGV);
175 	}
176 
177 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
178 
179 	/* When running in the kernel we expect faults to occur only to
180 	 * addresses in user space.  All other faults represent errors in the
181 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
182 	 * erroneous fault occurring in a code path which already holds mmap_sem
183 	 * we will deadlock attempting to validate the fault against the
184 	 * address space.  Luckily the kernel only validly references user
185 	 * space from well defined areas of code, which are listed in the
186 	 * exceptions table.
187 	 *
188 	 * As the vast majority of faults will be valid we will only perform
189 	 * the source reference check when there is a possibility of a deadlock.
190 	 * Attempt to lock the address space, if we cannot we then validate the
191 	 * source.  If this is invalid we can skip the address space check,
192 	 * thus avoiding the deadlock.
193 	 */
194 	if (!down_read_trylock(&mm->mmap_sem)) {
195 		if (!user_mode(regs) && !search_exception_tables(regs->nip))
196 			goto bad_area_nosemaphore;
197 
198 		down_read(&mm->mmap_sem);
199 	}
200 
201 	vma = find_vma(mm, address);
202 	if (!vma)
203 		goto bad_area;
204 	if (vma->vm_start <= address)
205 		goto good_area;
206 	if (!(vma->vm_flags & VM_GROWSDOWN))
207 		goto bad_area;
208 
209 	/*
210 	 * N.B. The POWER/Open ABI allows programs to access up to
211 	 * 288 bytes below the stack pointer.
212 	 * The kernel signal delivery code writes up to about 1.5kB
213 	 * below the stack pointer (r1) before decrementing it.
214 	 * The exec code can write slightly over 640kB to the stack
215 	 * before setting the user r1.  Thus we allow the stack to
216 	 * expand to 1MB without further checks.
217 	 */
218 	if (address + 0x100000 < vma->vm_end) {
219 		/* get user regs even if this fault is in kernel mode */
220 		struct pt_regs *uregs = current->thread.regs;
221 		if (uregs == NULL)
222 			goto bad_area;
223 
224 		/*
225 		 * A user-mode access to an address a long way below
226 		 * the stack pointer is only valid if the instruction
227 		 * is one which would update the stack pointer to the
228 		 * address accessed if the instruction completed,
229 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
230 		 * (or the byte, halfword, float or double forms).
231 		 *
232 		 * If we don't check this then any write to the area
233 		 * between the last mapped region and the stack will
234 		 * expand the stack rather than segfaulting.
235 		 */
236 		if (address + 2048 < uregs->gpr[1]
237 		    && (!user_mode(regs) || !store_updates_sp(regs)))
238 			goto bad_area;
239 	}
240 	if (expand_stack(vma, address))
241 		goto bad_area;
242 
243 good_area:
244 	code = SEGV_ACCERR;
245 #if defined(CONFIG_6xx)
246 	if (error_code & 0x95700000)
247 		/* an error such as lwarx to I/O controller space,
248 		   address matching DABR, eciwx, etc. */
249 		goto bad_area;
250 #endif /* CONFIG_6xx */
251 #if defined(CONFIG_8xx)
252 	/* 8xx sometimes need to load a invalid/non-present TLBs.
253 	 * These must be invalidated separately as linux mm don't.
254 	 */
255 	if (error_code & 0x40000000) /* no translation? */
256 		_tlbil_va(address, 0, 0, 0);
257 
258         /* The MPC8xx seems to always set 0x80000000, which is
259          * "undefined".  Of those that can be set, this is the only
260          * one which seems bad.
261          */
262 	if (error_code & 0x10000000)
263                 /* Guarded storage error. */
264 		goto bad_area;
265 #endif /* CONFIG_8xx */
266 
267 	if (is_exec) {
268 #ifdef CONFIG_PPC_STD_MMU
269 		/* Protection fault on exec go straight to failure on
270 		 * Hash based MMUs as they either don't support per-page
271 		 * execute permission, or if they do, it's handled already
272 		 * at the hash level. This test would probably have to
273 		 * be removed if we change the way this works to make hash
274 		 * processors use the same I/D cache coherency mechanism
275 		 * as embedded.
276 		 */
277 		if (error_code & DSISR_PROTFAULT)
278 			goto bad_area;
279 #endif /* CONFIG_PPC_STD_MMU */
280 
281 		/*
282 		 * Allow execution from readable areas if the MMU does not
283 		 * provide separate controls over reading and executing.
284 		 *
285 		 * Note: That code used to not be enabled for 4xx/BookE.
286 		 * It is now as I/D cache coherency for these is done at
287 		 * set_pte_at() time and I see no reason why the test
288 		 * below wouldn't be valid on those processors. This -may-
289 		 * break programs compiled with a really old ABI though.
290 		 */
291 		if (!(vma->vm_flags & VM_EXEC) &&
292 		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
293 		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
294 			goto bad_area;
295 	/* a write */
296 	} else if (is_write) {
297 		if (!(vma->vm_flags & VM_WRITE))
298 			goto bad_area;
299 	/* a read */
300 	} else {
301 		/* protection fault */
302 		if (error_code & 0x08000000)
303 			goto bad_area;
304 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
305 			goto bad_area;
306 	}
307 
308 	/*
309 	 * If for any reason at all we couldn't handle the fault,
310 	 * make sure we exit gracefully rather than endlessly redo
311 	 * the fault.
312 	 */
313 	ret = handle_mm_fault(mm, vma, address, is_write ? FAULT_FLAG_WRITE : 0);
314 	if (unlikely(ret & VM_FAULT_ERROR)) {
315 		if (ret & VM_FAULT_OOM)
316 			goto out_of_memory;
317 		else if (ret & VM_FAULT_SIGBUS)
318 			goto do_sigbus;
319 		BUG();
320 	}
321 	if (ret & VM_FAULT_MAJOR) {
322 		current->maj_flt++;
323 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
324 				     regs, address);
325 #ifdef CONFIG_PPC_SMLPAR
326 		if (firmware_has_feature(FW_FEATURE_CMO)) {
327 			preempt_disable();
328 			get_lppaca()->page_ins += (1 << PAGE_FACTOR);
329 			preempt_enable();
330 		}
331 #endif
332 	} else {
333 		current->min_flt++;
334 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
335 				     regs, address);
336 	}
337 	up_read(&mm->mmap_sem);
338 	return 0;
339 
340 bad_area:
341 	up_read(&mm->mmap_sem);
342 
343 bad_area_nosemaphore:
344 	/* User mode accesses cause a SIGSEGV */
345 	if (user_mode(regs)) {
346 		_exception(SIGSEGV, regs, code, address);
347 		return 0;
348 	}
349 
350 	if (is_exec && (error_code & DSISR_PROTFAULT))
351 		printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
352 				   " page (%lx) - exploit attempt? (uid: %d)\n",
353 				   address, current_uid());
354 
355 	return SIGSEGV;
356 
357 /*
358  * We ran out of memory, or some other thing happened to us that made
359  * us unable to handle the page fault gracefully.
360  */
361 out_of_memory:
362 	up_read(&mm->mmap_sem);
363 	if (!user_mode(regs))
364 		return SIGKILL;
365 	pagefault_out_of_memory();
366 	return 0;
367 
368 do_sigbus:
369 	up_read(&mm->mmap_sem);
370 	if (user_mode(regs)) {
371 		info.si_signo = SIGBUS;
372 		info.si_errno = 0;
373 		info.si_code = BUS_ADRERR;
374 		info.si_addr = (void __user *)address;
375 		force_sig_info(SIGBUS, &info, current);
376 		return 0;
377 	}
378 	return SIGBUS;
379 }
380 
381 /*
382  * bad_page_fault is called when we have a bad access from the kernel.
383  * It is called from the DSI and ISI handlers in head.S and from some
384  * of the procedures in traps.c.
385  */
386 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
387 {
388 	const struct exception_table_entry *entry;
389 	unsigned long *stackend;
390 
391 	/* Are we prepared to handle this fault?  */
392 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
393 		regs->nip = entry->fixup;
394 		return;
395 	}
396 
397 	/* kernel has accessed a bad area */
398 
399 	switch (regs->trap) {
400 	case 0x300:
401 	case 0x380:
402 		printk(KERN_ALERT "Unable to handle kernel paging request for "
403 			"data at address 0x%08lx\n", regs->dar);
404 		break;
405 	case 0x400:
406 	case 0x480:
407 		printk(KERN_ALERT "Unable to handle kernel paging request for "
408 			"instruction fetch\n");
409 		break;
410 	default:
411 		printk(KERN_ALERT "Unable to handle kernel paging request for "
412 			"unknown fault\n");
413 		break;
414 	}
415 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
416 		regs->nip);
417 
418 	stackend = end_of_stack(current);
419 	if (current != &init_task && *stackend != STACK_END_MAGIC)
420 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
421 
422 	die("Kernel access of bad area", regs, sig);
423 }
424