1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PowerPC version
4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 *
6 * Derived from "arch/i386/mm/fault.c"
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 *
9 * Modified by Cort Dougan and Paul Mackerras.
10 *
11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 */
13
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/pagemap.h>
22 #include <linux/ptrace.h>
23 #include <linux/mman.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/highmem.h>
27 #include <linux/extable.h>
28 #include <linux/kprobes.h>
29 #include <linux/kdebug.h>
30 #include <linux/perf_event.h>
31 #include <linux/ratelimit.h>
32 #include <linux/context_tracking.h>
33 #include <linux/hugetlb.h>
34 #include <linux/uaccess.h>
35 #include <linux/kfence.h>
36 #include <linux/pkeys.h>
37
38 #include <asm/firmware.h>
39 #include <asm/interrupt.h>
40 #include <asm/page.h>
41 #include <asm/mmu.h>
42 #include <asm/mmu_context.h>
43 #include <asm/siginfo.h>
44 #include <asm/debug.h>
45 #include <asm/kup.h>
46 #include <asm/inst.h>
47
48
49 /*
50 * do_page_fault error handling helpers
51 */
52
53 static int
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long address,int si_code)54 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
55 {
56 /*
57 * If we are in kernel mode, bail out with a SEGV, this will
58 * be caught by the assembly which will restore the non-volatile
59 * registers before calling bad_page_fault()
60 */
61 if (!user_mode(regs))
62 return SIGSEGV;
63
64 _exception(SIGSEGV, regs, si_code, address);
65
66 return 0;
67 }
68
bad_area_nosemaphore(struct pt_regs * regs,unsigned long address)69 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
70 {
71 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
72 }
73
__bad_area(struct pt_regs * regs,unsigned long address,int si_code)74 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
75 {
76 struct mm_struct *mm = current->mm;
77
78 /*
79 * Something tried to access memory that isn't in our memory map..
80 * Fix it, but check if it's kernel or user first..
81 */
82 mmap_read_unlock(mm);
83
84 return __bad_area_nosemaphore(regs, address, si_code);
85 }
86
bad_access_pkey(struct pt_regs * regs,unsigned long address,struct vm_area_struct * vma)87 static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
88 struct vm_area_struct *vma)
89 {
90 struct mm_struct *mm = current->mm;
91 int pkey;
92
93 /*
94 * We don't try to fetch the pkey from page table because reading
95 * page table without locking doesn't guarantee stable pte value.
96 * Hence the pkey value that we return to userspace can be different
97 * from the pkey that actually caused access error.
98 *
99 * It does *not* guarantee that the VMA we find here
100 * was the one that we faulted on.
101 *
102 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
103 * 2. T1 : set AMR to deny access to pkey=4, touches, page
104 * 3. T1 : faults...
105 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
106 * 5. T1 : enters fault handler, takes mmap_lock, etc...
107 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
108 * faulted on a pte with its pkey=4.
109 */
110 pkey = vma_pkey(vma);
111
112 mmap_read_unlock(mm);
113
114 /*
115 * If we are in kernel mode, bail out with a SEGV, this will
116 * be caught by the assembly which will restore the non-volatile
117 * registers before calling bad_page_fault()
118 */
119 if (!user_mode(regs))
120 return SIGSEGV;
121
122 _exception_pkey(regs, address, pkey);
123
124 return 0;
125 }
126
bad_access(struct pt_regs * regs,unsigned long address)127 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
128 {
129 return __bad_area(regs, address, SEGV_ACCERR);
130 }
131
do_sigbus(struct pt_regs * regs,unsigned long address,vm_fault_t fault)132 static int do_sigbus(struct pt_regs *regs, unsigned long address,
133 vm_fault_t fault)
134 {
135 if (!user_mode(regs))
136 return SIGBUS;
137
138 current->thread.trap_nr = BUS_ADRERR;
139 #ifdef CONFIG_MEMORY_FAILURE
140 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
141 unsigned int lsb = 0; /* shutup gcc */
142
143 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
144 current->comm, current->pid, address);
145
146 if (fault & VM_FAULT_HWPOISON_LARGE)
147 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
148 if (fault & VM_FAULT_HWPOISON)
149 lsb = PAGE_SHIFT;
150
151 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
152 return 0;
153 }
154
155 #endif
156 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
157 return 0;
158 }
159
mm_fault_error(struct pt_regs * regs,unsigned long addr,vm_fault_t fault)160 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
161 vm_fault_t fault)
162 {
163 /*
164 * Kernel page fault interrupted by SIGKILL. We have no reason to
165 * continue processing.
166 */
167 if (fatal_signal_pending(current) && !user_mode(regs))
168 return SIGKILL;
169
170 /* Out of memory */
171 if (fault & VM_FAULT_OOM) {
172 /*
173 * We ran out of memory, or some other thing happened to us that
174 * made us unable to handle the page fault gracefully.
175 */
176 if (!user_mode(regs))
177 return SIGSEGV;
178 pagefault_out_of_memory();
179 } else {
180 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
181 VM_FAULT_HWPOISON_LARGE))
182 return do_sigbus(regs, addr, fault);
183 else if (fault & VM_FAULT_SIGSEGV)
184 return bad_area_nosemaphore(regs, addr);
185 else
186 BUG();
187 }
188 return 0;
189 }
190
191 /* Is this a bad kernel fault ? */
bad_kernel_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address,bool is_write)192 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
193 unsigned long address, bool is_write)
194 {
195 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
196
197 if (is_exec) {
198 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
199 address >= TASK_SIZE ? "exec-protected" : "user",
200 address,
201 from_kuid(&init_user_ns, current_uid()));
202
203 // Kernel exec fault is always bad
204 return true;
205 }
206
207 // Kernel fault on kernel address is bad
208 if (address >= TASK_SIZE)
209 return true;
210
211 // Read/write fault blocked by KUAP is bad, it can never succeed.
212 if (bad_kuap_fault(regs, address, is_write)) {
213 pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
214 is_write ? "write" : "read", address,
215 from_kuid(&init_user_ns, current_uid()));
216
217 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
218 if (!search_exception_tables(regs->nip))
219 return true;
220
221 // Read/write fault in a valid region (the exception table search passed
222 // above), but blocked by KUAP is bad, it can never succeed.
223 return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
224 }
225
226 // What's left? Kernel fault on user and allowed by KUAP in the faulting context.
227 return false;
228 }
229
access_pkey_error(bool is_write,bool is_exec,bool is_pkey,struct vm_area_struct * vma)230 static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
231 struct vm_area_struct *vma)
232 {
233 /*
234 * Make sure to check the VMA so that we do not perform
235 * faults just to hit a pkey fault as soon as we fill in a
236 * page. Only called for current mm, hence foreign == 0
237 */
238 if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
239 return true;
240
241 return false;
242 }
243
access_error(bool is_write,bool is_exec,struct vm_area_struct * vma)244 static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
245 {
246 /*
247 * Allow execution from readable areas if the MMU does not
248 * provide separate controls over reading and executing.
249 *
250 * Note: That code used to not be enabled for 4xx/BookE.
251 * It is now as I/D cache coherency for these is done at
252 * set_pte_at() time and I see no reason why the test
253 * below wouldn't be valid on those processors. This -may-
254 * break programs compiled with a really old ABI though.
255 */
256 if (is_exec) {
257 return !(vma->vm_flags & VM_EXEC) &&
258 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
259 !(vma->vm_flags & (VM_READ | VM_WRITE)));
260 }
261
262 if (is_write) {
263 if (unlikely(!(vma->vm_flags & VM_WRITE)))
264 return true;
265 return false;
266 }
267
268 /*
269 * VM_READ, VM_WRITE and VM_EXEC all imply read permissions, as
270 * defined in protection_map[]. Read faults can only be caused by
271 * a PROT_NONE mapping, or with a PROT_EXEC-only mapping on Radix.
272 */
273 if (unlikely(!vma_is_accessible(vma)))
274 return true;
275
276 if (unlikely(radix_enabled() && ((vma->vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)))
277 return true;
278
279 /*
280 * We should ideally do the vma pkey access check here. But in the
281 * fault path, handle_mm_fault() also does the same check. To avoid
282 * these multiple checks, we skip it here and handle access error due
283 * to pkeys later.
284 */
285 return false;
286 }
287
288 #ifdef CONFIG_PPC_SMLPAR
cmo_account_page_fault(void)289 static inline void cmo_account_page_fault(void)
290 {
291 if (firmware_has_feature(FW_FEATURE_CMO)) {
292 u32 page_ins;
293
294 preempt_disable();
295 page_ins = be32_to_cpu(get_lppaca()->page_ins);
296 page_ins += 1 << PAGE_FACTOR;
297 get_lppaca()->page_ins = cpu_to_be32(page_ins);
298 preempt_enable();
299 }
300 }
301 #else
cmo_account_page_fault(void)302 static inline void cmo_account_page_fault(void) { }
303 #endif /* CONFIG_PPC_SMLPAR */
304
sanity_check_fault(bool is_write,bool is_user,unsigned long error_code,unsigned long address)305 static void sanity_check_fault(bool is_write, bool is_user,
306 unsigned long error_code, unsigned long address)
307 {
308 /*
309 * Userspace trying to access kernel address, we get PROTFAULT for that.
310 */
311 if (is_user && address >= TASK_SIZE) {
312 if ((long)address == -1)
313 return;
314
315 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
316 current->comm, current->pid, address,
317 from_kuid(&init_user_ns, current_uid()));
318 return;
319 }
320
321 if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
322 return;
323
324 /*
325 * For hash translation mode, we should never get a
326 * PROTFAULT. Any update to pte to reduce access will result in us
327 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
328 * fault instead of DSISR_PROTFAULT.
329 *
330 * A pte update to relax the access will not result in a hash page table
331 * entry invalidate and hence can result in DSISR_PROTFAULT.
332 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
333 * the special !is_write in the below conditional.
334 *
335 * For platforms that doesn't supports coherent icache and do support
336 * per page noexec bit, we do setup things such that we do the
337 * sync between D/I cache via fault. But that is handled via low level
338 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
339 * here in such case.
340 *
341 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
342 * check should handle those and hence we should fall to the bad_area
343 * handling correctly.
344 *
345 * For embedded with per page exec support that doesn't support coherent
346 * icache we do get PROTFAULT and we handle that D/I cache sync in
347 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
348 * is conditional for server MMU.
349 *
350 * For radix, we can get prot fault for autonuma case, because radix
351 * page table will have them marked noaccess for user.
352 */
353 if (radix_enabled() || is_write)
354 return;
355
356 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
357 }
358
359 /*
360 * Define the correct "is_write" bit in error_code based
361 * on the processor family
362 */
363 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
364 #define page_fault_is_write(__err) ((__err) & ESR_DST)
365 #else
366 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
367 #endif
368
369 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
370 #define page_fault_is_bad(__err) (0)
371 #elif defined(CONFIG_PPC_8xx)
372 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
373 #elif defined(CONFIG_PPC64)
page_fault_is_bad(unsigned long err)374 static int page_fault_is_bad(unsigned long err)
375 {
376 unsigned long flag = DSISR_BAD_FAULT_64S;
377
378 /*
379 * PAPR+ v2.11 § 14.15.3.4.1 (unreleased)
380 * If byte 0, bit 3 of pi-attribute-specifier-type in
381 * ibm,pi-features property is defined, ignore the DSI error
382 * which is caused by the paste instruction on the
383 * suspended NX window.
384 */
385 if (mmu_has_feature(MMU_FTR_NX_DSI))
386 flag &= ~DSISR_BAD_COPYPASTE;
387
388 return err & flag;
389 }
390 #else
391 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
392 #endif
393
394 /*
395 * For 600- and 800-family processors, the error_code parameter is DSISR
396 * for a data fault, SRR1 for an instruction fault.
397 * For 400-family processors the error_code parameter is ESR for a data fault,
398 * 0 for an instruction fault.
399 * For 64-bit processors, the error_code parameter is DSISR for a data access
400 * fault, SRR1 & 0x08000000 for an instruction access fault.
401 *
402 * The return value is 0 if the fault was handled, or the signal
403 * number if this is a kernel fault that can't be handled here.
404 */
___do_page_fault(struct pt_regs * regs,unsigned long address,unsigned long error_code)405 static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
406 unsigned long error_code)
407 {
408 struct vm_area_struct * vma;
409 struct mm_struct *mm = current->mm;
410 unsigned int flags = FAULT_FLAG_DEFAULT;
411 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
412 int is_user = user_mode(regs);
413 int is_write = page_fault_is_write(error_code);
414 vm_fault_t fault, major = 0;
415 bool kprobe_fault = kprobe_page_fault(regs, 11);
416
417 if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
418 return 0;
419
420 if (unlikely(page_fault_is_bad(error_code))) {
421 if (is_user) {
422 _exception(SIGBUS, regs, BUS_OBJERR, address);
423 return 0;
424 }
425 return SIGBUS;
426 }
427
428 /* Additional sanity check(s) */
429 sanity_check_fault(is_write, is_user, error_code, address);
430
431 /*
432 * The kernel should never take an execute fault nor should it
433 * take a page fault to a kernel address or a page fault to a user
434 * address outside of dedicated places
435 */
436 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
437 if (kfence_handle_page_fault(address, is_write, regs))
438 return 0;
439
440 return SIGSEGV;
441 }
442
443 /*
444 * If we're in an interrupt, have no user context or are running
445 * in a region with pagefaults disabled then we must not take the fault
446 */
447 if (unlikely(faulthandler_disabled() || !mm)) {
448 if (is_user)
449 printk_ratelimited(KERN_ERR "Page fault in user mode"
450 " with faulthandler_disabled()=%d"
451 " mm=%p\n",
452 faulthandler_disabled(), mm);
453 return bad_area_nosemaphore(regs, address);
454 }
455
456 interrupt_cond_local_irq_enable(regs);
457
458 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
459
460 /*
461 * We want to do this outside mmap_lock, because reading code around nip
462 * can result in fault, which will cause a deadlock when called with
463 * mmap_lock held
464 */
465 if (is_user)
466 flags |= FAULT_FLAG_USER;
467 if (is_write)
468 flags |= FAULT_FLAG_WRITE;
469 if (is_exec)
470 flags |= FAULT_FLAG_INSTRUCTION;
471
472 if (!(flags & FAULT_FLAG_USER))
473 goto lock_mmap;
474
475 vma = lock_vma_under_rcu(mm, address);
476 if (!vma)
477 goto lock_mmap;
478
479 if (unlikely(access_pkey_error(is_write, is_exec,
480 (error_code & DSISR_KEYFAULT), vma))) {
481 vma_end_read(vma);
482 goto lock_mmap;
483 }
484
485 if (unlikely(access_error(is_write, is_exec, vma))) {
486 vma_end_read(vma);
487 goto lock_mmap;
488 }
489
490 fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
491 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
492 vma_end_read(vma);
493
494 if (!(fault & VM_FAULT_RETRY)) {
495 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
496 goto done;
497 }
498 count_vm_vma_lock_event(VMA_LOCK_RETRY);
499
500 if (fault_signal_pending(fault, regs))
501 return user_mode(regs) ? 0 : SIGBUS;
502
503 lock_mmap:
504
505 /* When running in the kernel we expect faults to occur only to
506 * addresses in user space. All other faults represent errors in the
507 * kernel and should generate an OOPS. Unfortunately, in the case of an
508 * erroneous fault occurring in a code path which already holds mmap_lock
509 * we will deadlock attempting to validate the fault against the
510 * address space. Luckily the kernel only validly references user
511 * space from well defined areas of code, which are listed in the
512 * exceptions table. lock_mm_and_find_vma() handles that logic.
513 */
514 retry:
515 vma = lock_mm_and_find_vma(mm, address, regs);
516 if (unlikely(!vma))
517 return bad_area_nosemaphore(regs, address);
518
519 if (unlikely(access_pkey_error(is_write, is_exec,
520 (error_code & DSISR_KEYFAULT), vma)))
521 return bad_access_pkey(regs, address, vma);
522
523 if (unlikely(access_error(is_write, is_exec, vma)))
524 return bad_access(regs, address);
525
526 /*
527 * If for any reason at all we couldn't handle the fault,
528 * make sure we exit gracefully rather than endlessly redo
529 * the fault.
530 */
531 fault = handle_mm_fault(vma, address, flags, regs);
532
533 major |= fault & VM_FAULT_MAJOR;
534
535 if (fault_signal_pending(fault, regs))
536 return user_mode(regs) ? 0 : SIGBUS;
537
538 /* The fault is fully completed (including releasing mmap lock) */
539 if (fault & VM_FAULT_COMPLETED)
540 goto out;
541
542 /*
543 * Handle the retry right now, the mmap_lock has been released in that
544 * case.
545 */
546 if (unlikely(fault & VM_FAULT_RETRY)) {
547 flags |= FAULT_FLAG_TRIED;
548 goto retry;
549 }
550
551 mmap_read_unlock(current->mm);
552
553 done:
554 if (unlikely(fault & VM_FAULT_ERROR))
555 return mm_fault_error(regs, address, fault);
556
557 out:
558 /*
559 * Major/minor page fault accounting.
560 */
561 if (major)
562 cmo_account_page_fault();
563
564 return 0;
565 }
566 NOKPROBE_SYMBOL(___do_page_fault);
567
__do_page_fault(struct pt_regs * regs)568 static __always_inline void __do_page_fault(struct pt_regs *regs)
569 {
570 long err;
571
572 err = ___do_page_fault(regs, regs->dar, regs->dsisr);
573 if (unlikely(err))
574 bad_page_fault(regs, err);
575 }
576
DEFINE_INTERRUPT_HANDLER(do_page_fault)577 DEFINE_INTERRUPT_HANDLER(do_page_fault)
578 {
579 __do_page_fault(regs);
580 }
581
582 #ifdef CONFIG_PPC_BOOK3S_64
583 /* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
hash__do_page_fault(struct pt_regs * regs)584 void hash__do_page_fault(struct pt_regs *regs)
585 {
586 __do_page_fault(regs);
587 }
588 NOKPROBE_SYMBOL(hash__do_page_fault);
589 #endif
590
591 /*
592 * bad_page_fault is called when we have a bad access from the kernel.
593 * It is called from the DSI and ISI handlers in head.S and from some
594 * of the procedures in traps.c.
595 */
__bad_page_fault(struct pt_regs * regs,int sig)596 static void __bad_page_fault(struct pt_regs *regs, int sig)
597 {
598 int is_write = page_fault_is_write(regs->dsisr);
599 const char *msg;
600
601 /* kernel has accessed a bad area */
602
603 if (regs->dar < PAGE_SIZE)
604 msg = "Kernel NULL pointer dereference";
605 else
606 msg = "Unable to handle kernel data access";
607
608 switch (TRAP(regs)) {
609 case INTERRUPT_DATA_STORAGE:
610 case INTERRUPT_H_DATA_STORAGE:
611 pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
612 is_write ? "write" : "read", regs->dar);
613 break;
614 case INTERRUPT_DATA_SEGMENT:
615 pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
616 break;
617 case INTERRUPT_INST_STORAGE:
618 case INTERRUPT_INST_SEGMENT:
619 pr_alert("BUG: Unable to handle kernel instruction fetch%s",
620 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
621 break;
622 case INTERRUPT_ALIGNMENT:
623 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
624 regs->dar);
625 break;
626 default:
627 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
628 regs->dar);
629 break;
630 }
631 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
632 regs->nip);
633
634 if (task_stack_end_corrupted(current))
635 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
636
637 die("Kernel access of bad area", regs, sig);
638 }
639
bad_page_fault(struct pt_regs * regs,int sig)640 void bad_page_fault(struct pt_regs *regs, int sig)
641 {
642 const struct exception_table_entry *entry;
643
644 /* Are we prepared to handle this fault? */
645 entry = search_exception_tables(instruction_pointer(regs));
646 if (entry)
647 instruction_pointer_set(regs, extable_fixup(entry));
648 else
649 __bad_page_fault(regs, sig);
650 }
651
652 #ifdef CONFIG_PPC_BOOK3S_64
DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)653 DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
654 {
655 bad_page_fault(regs, SIGSEGV);
656 }
657
658 /*
659 * In radix, segment interrupts indicate the EA is not addressable by the
660 * page table geometry, so they are always sent here.
661 *
662 * In hash, this is called if do_slb_fault returns error. Typically it is
663 * because the EA was outside the region allowed by software.
664 */
DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)665 DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
666 {
667 int err = regs->result;
668
669 if (err == -EFAULT) {
670 if (user_mode(regs))
671 _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
672 else
673 bad_page_fault(regs, SIGSEGV);
674 } else if (err == -EINVAL) {
675 unrecoverable_exception(regs);
676 } else {
677 BUG();
678 }
679 }
680 #endif
681