1 /*
2  *  PowerPC version derived from arch/arm/mm/consistent.c
3  *    Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
4  *
5  *  Copyright (C) 2000 Russell King
6  *
7  * Consistent memory allocators.  Used for DMA devices that want to
8  * share uncached memory with the processor core.  The function return
9  * is the virtual address and 'dma_handle' is the physical address.
10  * Mostly stolen from the ARM port, with some changes for PowerPC.
11  *						-- Dan
12  *
13  * Reorganized to get rid of the arch-specific consistent_* functions
14  * and provide non-coherent implementations for the DMA API. -Matt
15  *
16  * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent()
17  * implementation. This is pulled straight from ARM and barely
18  * modified. -Matt
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License version 2 as
22  * published by the Free Software Foundation.
23  */
24 
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/kernel.h>
28 #include <linux/errno.h>
29 #include <linux/string.h>
30 #include <linux/types.h>
31 #include <linux/highmem.h>
32 #include <linux/dma-direct.h>
33 #include <linux/dma-noncoherent.h>
34 #include <linux/export.h>
35 
36 #include <asm/tlbflush.h>
37 #include <asm/dma.h>
38 
39 #include <mm/mmu_decl.h>
40 
41 /*
42  * This address range defaults to a value that is safe for all
43  * platforms which currently set CONFIG_NOT_COHERENT_CACHE. It
44  * can be further configured for specific applications under
45  * the "Advanced Setup" menu. -Matt
46  */
47 #define CONSISTENT_BASE		(IOREMAP_TOP)
48 #define CONSISTENT_END 		(CONSISTENT_BASE + CONFIG_CONSISTENT_SIZE)
49 #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
50 
51 /*
52  * This is the page table (2MB) covering uncached, DMA consistent allocations
53  */
54 static DEFINE_SPINLOCK(consistent_lock);
55 
56 /*
57  * VM region handling support.
58  *
59  * This should become something generic, handling VM region allocations for
60  * vmalloc and similar (ioremap, module space, etc).
61  *
62  * I envisage vmalloc()'s supporting vm_struct becoming:
63  *
64  *  struct vm_struct {
65  *    struct vm_region	region;
66  *    unsigned long	flags;
67  *    struct page	**pages;
68  *    unsigned int	nr_pages;
69  *    unsigned long	phys_addr;
70  *  };
71  *
72  * get_vm_area() would then call vm_region_alloc with an appropriate
73  * struct vm_region head (eg):
74  *
75  *  struct vm_region vmalloc_head = {
76  *	.vm_list	= LIST_HEAD_INIT(vmalloc_head.vm_list),
77  *	.vm_start	= VMALLOC_START,
78  *	.vm_end		= VMALLOC_END,
79  *  };
80  *
81  * However, vmalloc_head.vm_start is variable (typically, it is dependent on
82  * the amount of RAM found at boot time.)  I would imagine that get_vm_area()
83  * would have to initialise this each time prior to calling vm_region_alloc().
84  */
85 struct ppc_vm_region {
86 	struct list_head	vm_list;
87 	unsigned long		vm_start;
88 	unsigned long		vm_end;
89 };
90 
91 static struct ppc_vm_region consistent_head = {
92 	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
93 	.vm_start	= CONSISTENT_BASE,
94 	.vm_end		= CONSISTENT_END,
95 };
96 
97 static struct ppc_vm_region *
98 ppc_vm_region_alloc(struct ppc_vm_region *head, size_t size, gfp_t gfp)
99 {
100 	unsigned long addr = head->vm_start, end = head->vm_end - size;
101 	unsigned long flags;
102 	struct ppc_vm_region *c, *new;
103 
104 	new = kmalloc(sizeof(struct ppc_vm_region), gfp);
105 	if (!new)
106 		goto out;
107 
108 	spin_lock_irqsave(&consistent_lock, flags);
109 
110 	list_for_each_entry(c, &head->vm_list, vm_list) {
111 		if ((addr + size) < addr)
112 			goto nospc;
113 		if ((addr + size) <= c->vm_start)
114 			goto found;
115 		addr = c->vm_end;
116 		if (addr > end)
117 			goto nospc;
118 	}
119 
120  found:
121 	/*
122 	 * Insert this entry _before_ the one we found.
123 	 */
124 	list_add_tail(&new->vm_list, &c->vm_list);
125 	new->vm_start = addr;
126 	new->vm_end = addr + size;
127 
128 	spin_unlock_irqrestore(&consistent_lock, flags);
129 	return new;
130 
131  nospc:
132 	spin_unlock_irqrestore(&consistent_lock, flags);
133 	kfree(new);
134  out:
135 	return NULL;
136 }
137 
138 static struct ppc_vm_region *ppc_vm_region_find(struct ppc_vm_region *head, unsigned long addr)
139 {
140 	struct ppc_vm_region *c;
141 
142 	list_for_each_entry(c, &head->vm_list, vm_list) {
143 		if (c->vm_start == addr)
144 			goto out;
145 	}
146 	c = NULL;
147  out:
148 	return c;
149 }
150 
151 /*
152  * Allocate DMA-coherent memory space and return both the kernel remapped
153  * virtual and bus address for that space.
154  */
155 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
156 		gfp_t gfp, unsigned long attrs)
157 {
158 	struct page *page;
159 	struct ppc_vm_region *c;
160 	unsigned long order;
161 	u64 mask = ISA_DMA_THRESHOLD, limit;
162 
163 	if (dev) {
164 		mask = dev->coherent_dma_mask;
165 
166 		/*
167 		 * Sanity check the DMA mask - it must be non-zero, and
168 		 * must be able to be satisfied by a DMA allocation.
169 		 */
170 		if (mask == 0) {
171 			dev_warn(dev, "coherent DMA mask is unset\n");
172 			goto no_page;
173 		}
174 
175 		if ((~mask) & ISA_DMA_THRESHOLD) {
176 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
177 				 "than system GFP_DMA mask %#llx\n",
178 				 mask, (unsigned long long)ISA_DMA_THRESHOLD);
179 			goto no_page;
180 		}
181 	}
182 
183 
184 	size = PAGE_ALIGN(size);
185 	limit = (mask + 1) & ~mask;
186 	if ((limit && size >= limit) ||
187 	    size >= (CONSISTENT_END - CONSISTENT_BASE)) {
188 		printk(KERN_WARNING "coherent allocation too big (requested %#x mask %#Lx)\n",
189 		       size, mask);
190 		return NULL;
191 	}
192 
193 	order = get_order(size);
194 
195 	/* Might be useful if we ever have a real legacy DMA zone... */
196 	if (mask != 0xffffffff)
197 		gfp |= GFP_DMA;
198 
199 	page = alloc_pages(gfp, order);
200 	if (!page)
201 		goto no_page;
202 
203 	/*
204 	 * Invalidate any data that might be lurking in the
205 	 * kernel direct-mapped region for device DMA.
206 	 */
207 	{
208 		unsigned long kaddr = (unsigned long)page_address(page);
209 		memset(page_address(page), 0, size);
210 		flush_dcache_range(kaddr, kaddr + size);
211 	}
212 
213 	/*
214 	 * Allocate a virtual address in the consistent mapping region.
215 	 */
216 	c = ppc_vm_region_alloc(&consistent_head, size,
217 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
218 	if (c) {
219 		unsigned long vaddr = c->vm_start;
220 		struct page *end = page + (1 << order);
221 
222 		split_page(page, order);
223 
224 		/*
225 		 * Set the "dma handle"
226 		 */
227 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
228 
229 		do {
230 			SetPageReserved(page);
231 			map_kernel_page(vaddr, page_to_phys(page),
232 					pgprot_noncached(PAGE_KERNEL));
233 			page++;
234 			vaddr += PAGE_SIZE;
235 		} while (size -= PAGE_SIZE);
236 
237 		/*
238 		 * Free the otherwise unused pages.
239 		 */
240 		while (page < end) {
241 			__free_page(page);
242 			page++;
243 		}
244 
245 		return (void *)c->vm_start;
246 	}
247 
248 	if (page)
249 		__free_pages(page, order);
250  no_page:
251 	return NULL;
252 }
253 
254 /*
255  * free a page as defined by the above mapping.
256  */
257 void arch_dma_free(struct device *dev, size_t size, void *vaddr,
258 		dma_addr_t dma_handle, unsigned long attrs)
259 {
260 	struct ppc_vm_region *c;
261 	unsigned long flags, addr;
262 
263 	size = PAGE_ALIGN(size);
264 
265 	spin_lock_irqsave(&consistent_lock, flags);
266 
267 	c = ppc_vm_region_find(&consistent_head, (unsigned long)vaddr);
268 	if (!c)
269 		goto no_area;
270 
271 	if ((c->vm_end - c->vm_start) != size) {
272 		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
273 		       __func__, c->vm_end - c->vm_start, size);
274 		dump_stack();
275 		size = c->vm_end - c->vm_start;
276 	}
277 
278 	addr = c->vm_start;
279 	do {
280 		pte_t *ptep;
281 		unsigned long pfn;
282 
283 		ptep = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(addr),
284 							       addr),
285 						    addr),
286 					 addr);
287 		if (!pte_none(*ptep) && pte_present(*ptep)) {
288 			pfn = pte_pfn(*ptep);
289 			pte_clear(&init_mm, addr, ptep);
290 			if (pfn_valid(pfn)) {
291 				struct page *page = pfn_to_page(pfn);
292 				__free_reserved_page(page);
293 			}
294 		}
295 		addr += PAGE_SIZE;
296 	} while (size -= PAGE_SIZE);
297 
298 	flush_tlb_kernel_range(c->vm_start, c->vm_end);
299 
300 	list_del(&c->vm_list);
301 
302 	spin_unlock_irqrestore(&consistent_lock, flags);
303 
304 	kfree(c);
305 	return;
306 
307  no_area:
308 	spin_unlock_irqrestore(&consistent_lock, flags);
309 	printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
310 	       __func__, vaddr);
311 	dump_stack();
312 }
313 
314 /*
315  * make an area consistent.
316  */
317 static void __dma_sync(void *vaddr, size_t size, int direction)
318 {
319 	unsigned long start = (unsigned long)vaddr;
320 	unsigned long end   = start + size;
321 
322 	switch (direction) {
323 	case DMA_NONE:
324 		BUG();
325 	case DMA_FROM_DEVICE:
326 		/*
327 		 * invalidate only when cache-line aligned otherwise there is
328 		 * the potential for discarding uncommitted data from the cache
329 		 */
330 		if ((start | end) & (L1_CACHE_BYTES - 1))
331 			flush_dcache_range(start, end);
332 		else
333 			invalidate_dcache_range(start, end);
334 		break;
335 	case DMA_TO_DEVICE:		/* writeback only */
336 		clean_dcache_range(start, end);
337 		break;
338 	case DMA_BIDIRECTIONAL:	/* writeback and invalidate */
339 		flush_dcache_range(start, end);
340 		break;
341 	}
342 }
343 
344 #ifdef CONFIG_HIGHMEM
345 /*
346  * __dma_sync_page() implementation for systems using highmem.
347  * In this case, each page of a buffer must be kmapped/kunmapped
348  * in order to have a virtual address for __dma_sync(). This must
349  * not sleep so kmap_atomic()/kunmap_atomic() are used.
350  *
351  * Note: yes, it is possible and correct to have a buffer extend
352  * beyond the first page.
353  */
354 static inline void __dma_sync_page_highmem(struct page *page,
355 		unsigned long offset, size_t size, int direction)
356 {
357 	size_t seg_size = min((size_t)(PAGE_SIZE - offset), size);
358 	size_t cur_size = seg_size;
359 	unsigned long flags, start, seg_offset = offset;
360 	int nr_segs = 1 + ((size - seg_size) + PAGE_SIZE - 1)/PAGE_SIZE;
361 	int seg_nr = 0;
362 
363 	local_irq_save(flags);
364 
365 	do {
366 		start = (unsigned long)kmap_atomic(page + seg_nr) + seg_offset;
367 
368 		/* Sync this buffer segment */
369 		__dma_sync((void *)start, seg_size, direction);
370 		kunmap_atomic((void *)start);
371 		seg_nr++;
372 
373 		/* Calculate next buffer segment size */
374 		seg_size = min((size_t)PAGE_SIZE, size - cur_size);
375 
376 		/* Add the segment size to our running total */
377 		cur_size += seg_size;
378 		seg_offset = 0;
379 	} while (seg_nr < nr_segs);
380 
381 	local_irq_restore(flags);
382 }
383 #endif /* CONFIG_HIGHMEM */
384 
385 /*
386  * __dma_sync_page makes memory consistent. identical to __dma_sync, but
387  * takes a struct page instead of a virtual address
388  */
389 static void __dma_sync_page(phys_addr_t paddr, size_t size, int dir)
390 {
391 	struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
392 	unsigned offset = paddr & ~PAGE_MASK;
393 
394 #ifdef CONFIG_HIGHMEM
395 	__dma_sync_page_highmem(page, offset, size, dir);
396 #else
397 	unsigned long start = (unsigned long)page_address(page) + offset;
398 	__dma_sync((void *)start, size, dir);
399 #endif
400 }
401 
402 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
403 		size_t size, enum dma_data_direction dir)
404 {
405 	__dma_sync_page(paddr, size, dir);
406 }
407 
408 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
409 		size_t size, enum dma_data_direction dir)
410 {
411 	__dma_sync_page(paddr, size, dir);
412 }
413 
414 /*
415  * Return the PFN for a given cpu virtual address returned by arch_dma_alloc.
416  */
417 long arch_dma_coherent_to_pfn(struct device *dev, void *vaddr,
418 		dma_addr_t dma_addr)
419 {
420 	/* This should always be populated, so we don't test every
421 	 * level. If that fails, we'll have a nice crash which
422 	 * will be as good as a BUG_ON()
423 	 */
424 	unsigned long cpu_addr = (unsigned long)vaddr;
425 	pgd_t *pgd = pgd_offset_k(cpu_addr);
426 	pud_t *pud = pud_offset(pgd, cpu_addr);
427 	pmd_t *pmd = pmd_offset(pud, cpu_addr);
428 	pte_t *ptep = pte_offset_kernel(pmd, cpu_addr);
429 
430 	if (pte_none(*ptep) || !pte_present(*ptep))
431 		return 0;
432 	return pte_pfn(*ptep);
433 }
434