1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  PowerPC version derived from arch/arm/mm/consistent.c
4  *    Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
5  *
6  *  Copyright (C) 2000 Russell King
7  *
8  * Consistent memory allocators.  Used for DMA devices that want to
9  * share uncached memory with the processor core.  The function return
10  * is the virtual address and 'dma_handle' is the physical address.
11  * Mostly stolen from the ARM port, with some changes for PowerPC.
12  *						-- Dan
13  *
14  * Reorganized to get rid of the arch-specific consistent_* functions
15  * and provide non-coherent implementations for the DMA API. -Matt
16  *
17  * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent()
18  * implementation. This is pulled straight from ARM and barely
19  * modified. -Matt
20  */
21 
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/highmem.h>
29 #include <linux/dma-direct.h>
30 #include <linux/dma-noncoherent.h>
31 #include <linux/export.h>
32 
33 #include <asm/tlbflush.h>
34 #include <asm/dma.h>
35 
36 #include <mm/mmu_decl.h>
37 
38 /*
39  * This address range defaults to a value that is safe for all
40  * platforms which currently set CONFIG_NOT_COHERENT_CACHE. It
41  * can be further configured for specific applications under
42  * the "Advanced Setup" menu. -Matt
43  */
44 #define CONSISTENT_BASE		(IOREMAP_TOP)
45 #define CONSISTENT_END 		(CONSISTENT_BASE + CONFIG_CONSISTENT_SIZE)
46 #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
47 
48 /*
49  * This is the page table (2MB) covering uncached, DMA consistent allocations
50  */
51 static DEFINE_SPINLOCK(consistent_lock);
52 
53 /*
54  * VM region handling support.
55  *
56  * This should become something generic, handling VM region allocations for
57  * vmalloc and similar (ioremap, module space, etc).
58  *
59  * I envisage vmalloc()'s supporting vm_struct becoming:
60  *
61  *  struct vm_struct {
62  *    struct vm_region	region;
63  *    unsigned long	flags;
64  *    struct page	**pages;
65  *    unsigned int	nr_pages;
66  *    unsigned long	phys_addr;
67  *  };
68  *
69  * get_vm_area() would then call vm_region_alloc with an appropriate
70  * struct vm_region head (eg):
71  *
72  *  struct vm_region vmalloc_head = {
73  *	.vm_list	= LIST_HEAD_INIT(vmalloc_head.vm_list),
74  *	.vm_start	= VMALLOC_START,
75  *	.vm_end		= VMALLOC_END,
76  *  };
77  *
78  * However, vmalloc_head.vm_start is variable (typically, it is dependent on
79  * the amount of RAM found at boot time.)  I would imagine that get_vm_area()
80  * would have to initialise this each time prior to calling vm_region_alloc().
81  */
82 struct ppc_vm_region {
83 	struct list_head	vm_list;
84 	unsigned long		vm_start;
85 	unsigned long		vm_end;
86 };
87 
88 static struct ppc_vm_region consistent_head = {
89 	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
90 	.vm_start	= CONSISTENT_BASE,
91 	.vm_end		= CONSISTENT_END,
92 };
93 
94 static struct ppc_vm_region *
95 ppc_vm_region_alloc(struct ppc_vm_region *head, size_t size, gfp_t gfp)
96 {
97 	unsigned long addr = head->vm_start, end = head->vm_end - size;
98 	unsigned long flags;
99 	struct ppc_vm_region *c, *new;
100 
101 	new = kmalloc(sizeof(struct ppc_vm_region), gfp);
102 	if (!new)
103 		goto out;
104 
105 	spin_lock_irqsave(&consistent_lock, flags);
106 
107 	list_for_each_entry(c, &head->vm_list, vm_list) {
108 		if ((addr + size) < addr)
109 			goto nospc;
110 		if ((addr + size) <= c->vm_start)
111 			goto found;
112 		addr = c->vm_end;
113 		if (addr > end)
114 			goto nospc;
115 	}
116 
117  found:
118 	/*
119 	 * Insert this entry _before_ the one we found.
120 	 */
121 	list_add_tail(&new->vm_list, &c->vm_list);
122 	new->vm_start = addr;
123 	new->vm_end = addr + size;
124 
125 	spin_unlock_irqrestore(&consistent_lock, flags);
126 	return new;
127 
128  nospc:
129 	spin_unlock_irqrestore(&consistent_lock, flags);
130 	kfree(new);
131  out:
132 	return NULL;
133 }
134 
135 static struct ppc_vm_region *ppc_vm_region_find(struct ppc_vm_region *head, unsigned long addr)
136 {
137 	struct ppc_vm_region *c;
138 
139 	list_for_each_entry(c, &head->vm_list, vm_list) {
140 		if (c->vm_start == addr)
141 			goto out;
142 	}
143 	c = NULL;
144  out:
145 	return c;
146 }
147 
148 /*
149  * Allocate DMA-coherent memory space and return both the kernel remapped
150  * virtual and bus address for that space.
151  */
152 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
153 		gfp_t gfp, unsigned long attrs)
154 {
155 	struct page *page;
156 	struct ppc_vm_region *c;
157 	unsigned long order;
158 	u64 mask = ISA_DMA_THRESHOLD, limit;
159 
160 	if (dev) {
161 		mask = dev->coherent_dma_mask;
162 
163 		/*
164 		 * Sanity check the DMA mask - it must be non-zero, and
165 		 * must be able to be satisfied by a DMA allocation.
166 		 */
167 		if (mask == 0) {
168 			dev_warn(dev, "coherent DMA mask is unset\n");
169 			goto no_page;
170 		}
171 
172 		if ((~mask) & ISA_DMA_THRESHOLD) {
173 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
174 				 "than system GFP_DMA mask %#llx\n",
175 				 mask, (unsigned long long)ISA_DMA_THRESHOLD);
176 			goto no_page;
177 		}
178 	}
179 
180 
181 	size = PAGE_ALIGN(size);
182 	limit = (mask + 1) & ~mask;
183 	if ((limit && size >= limit) ||
184 	    size >= (CONSISTENT_END - CONSISTENT_BASE)) {
185 		printk(KERN_WARNING "coherent allocation too big (requested %#x mask %#Lx)\n",
186 		       size, mask);
187 		return NULL;
188 	}
189 
190 	order = get_order(size);
191 
192 	/* Might be useful if we ever have a real legacy DMA zone... */
193 	if (mask != 0xffffffff)
194 		gfp |= GFP_DMA;
195 
196 	page = alloc_pages(gfp, order);
197 	if (!page)
198 		goto no_page;
199 
200 	/*
201 	 * Invalidate any data that might be lurking in the
202 	 * kernel direct-mapped region for device DMA.
203 	 */
204 	{
205 		unsigned long kaddr = (unsigned long)page_address(page);
206 		memset(page_address(page), 0, size);
207 		flush_dcache_range(kaddr, kaddr + size);
208 	}
209 
210 	/*
211 	 * Allocate a virtual address in the consistent mapping region.
212 	 */
213 	c = ppc_vm_region_alloc(&consistent_head, size,
214 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
215 	if (c) {
216 		unsigned long vaddr = c->vm_start;
217 		struct page *end = page + (1 << order);
218 
219 		split_page(page, order);
220 
221 		/*
222 		 * Set the "dma handle"
223 		 */
224 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
225 
226 		do {
227 			SetPageReserved(page);
228 			map_kernel_page(vaddr, page_to_phys(page),
229 					pgprot_noncached(PAGE_KERNEL));
230 			page++;
231 			vaddr += PAGE_SIZE;
232 		} while (size -= PAGE_SIZE);
233 
234 		/*
235 		 * Free the otherwise unused pages.
236 		 */
237 		while (page < end) {
238 			__free_page(page);
239 			page++;
240 		}
241 
242 		return (void *)c->vm_start;
243 	}
244 
245 	if (page)
246 		__free_pages(page, order);
247  no_page:
248 	return NULL;
249 }
250 
251 /*
252  * free a page as defined by the above mapping.
253  */
254 void arch_dma_free(struct device *dev, size_t size, void *vaddr,
255 		dma_addr_t dma_handle, unsigned long attrs)
256 {
257 	struct ppc_vm_region *c;
258 	unsigned long flags, addr;
259 
260 	size = PAGE_ALIGN(size);
261 
262 	spin_lock_irqsave(&consistent_lock, flags);
263 
264 	c = ppc_vm_region_find(&consistent_head, (unsigned long)vaddr);
265 	if (!c)
266 		goto no_area;
267 
268 	if ((c->vm_end - c->vm_start) != size) {
269 		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
270 		       __func__, c->vm_end - c->vm_start, size);
271 		dump_stack();
272 		size = c->vm_end - c->vm_start;
273 	}
274 
275 	addr = c->vm_start;
276 	do {
277 		pte_t *ptep;
278 		unsigned long pfn;
279 
280 		ptep = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(addr),
281 							       addr),
282 						    addr),
283 					 addr);
284 		if (!pte_none(*ptep) && pte_present(*ptep)) {
285 			pfn = pte_pfn(*ptep);
286 			pte_clear(&init_mm, addr, ptep);
287 			if (pfn_valid(pfn)) {
288 				struct page *page = pfn_to_page(pfn);
289 				__free_reserved_page(page);
290 			}
291 		}
292 		addr += PAGE_SIZE;
293 	} while (size -= PAGE_SIZE);
294 
295 	flush_tlb_kernel_range(c->vm_start, c->vm_end);
296 
297 	list_del(&c->vm_list);
298 
299 	spin_unlock_irqrestore(&consistent_lock, flags);
300 
301 	kfree(c);
302 	return;
303 
304  no_area:
305 	spin_unlock_irqrestore(&consistent_lock, flags);
306 	printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
307 	       __func__, vaddr);
308 	dump_stack();
309 }
310 
311 /*
312  * make an area consistent.
313  */
314 static void __dma_sync(void *vaddr, size_t size, int direction)
315 {
316 	unsigned long start = (unsigned long)vaddr;
317 	unsigned long end   = start + size;
318 
319 	switch (direction) {
320 	case DMA_NONE:
321 		BUG();
322 	case DMA_FROM_DEVICE:
323 		/*
324 		 * invalidate only when cache-line aligned otherwise there is
325 		 * the potential for discarding uncommitted data from the cache
326 		 */
327 		if ((start | end) & (L1_CACHE_BYTES - 1))
328 			flush_dcache_range(start, end);
329 		else
330 			invalidate_dcache_range(start, end);
331 		break;
332 	case DMA_TO_DEVICE:		/* writeback only */
333 		clean_dcache_range(start, end);
334 		break;
335 	case DMA_BIDIRECTIONAL:	/* writeback and invalidate */
336 		flush_dcache_range(start, end);
337 		break;
338 	}
339 }
340 
341 #ifdef CONFIG_HIGHMEM
342 /*
343  * __dma_sync_page() implementation for systems using highmem.
344  * In this case, each page of a buffer must be kmapped/kunmapped
345  * in order to have a virtual address for __dma_sync(). This must
346  * not sleep so kmap_atomic()/kunmap_atomic() are used.
347  *
348  * Note: yes, it is possible and correct to have a buffer extend
349  * beyond the first page.
350  */
351 static inline void __dma_sync_page_highmem(struct page *page,
352 		unsigned long offset, size_t size, int direction)
353 {
354 	size_t seg_size = min((size_t)(PAGE_SIZE - offset), size);
355 	size_t cur_size = seg_size;
356 	unsigned long flags, start, seg_offset = offset;
357 	int nr_segs = 1 + ((size - seg_size) + PAGE_SIZE - 1)/PAGE_SIZE;
358 	int seg_nr = 0;
359 
360 	local_irq_save(flags);
361 
362 	do {
363 		start = (unsigned long)kmap_atomic(page + seg_nr) + seg_offset;
364 
365 		/* Sync this buffer segment */
366 		__dma_sync((void *)start, seg_size, direction);
367 		kunmap_atomic((void *)start);
368 		seg_nr++;
369 
370 		/* Calculate next buffer segment size */
371 		seg_size = min((size_t)PAGE_SIZE, size - cur_size);
372 
373 		/* Add the segment size to our running total */
374 		cur_size += seg_size;
375 		seg_offset = 0;
376 	} while (seg_nr < nr_segs);
377 
378 	local_irq_restore(flags);
379 }
380 #endif /* CONFIG_HIGHMEM */
381 
382 /*
383  * __dma_sync_page makes memory consistent. identical to __dma_sync, but
384  * takes a struct page instead of a virtual address
385  */
386 static void __dma_sync_page(phys_addr_t paddr, size_t size, int dir)
387 {
388 	struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
389 	unsigned offset = paddr & ~PAGE_MASK;
390 
391 #ifdef CONFIG_HIGHMEM
392 	__dma_sync_page_highmem(page, offset, size, dir);
393 #else
394 	unsigned long start = (unsigned long)page_address(page) + offset;
395 	__dma_sync((void *)start, size, dir);
396 #endif
397 }
398 
399 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
400 		size_t size, enum dma_data_direction dir)
401 {
402 	__dma_sync_page(paddr, size, dir);
403 }
404 
405 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
406 		size_t size, enum dma_data_direction dir)
407 {
408 	__dma_sync_page(paddr, size, dir);
409 }
410 
411 /*
412  * Return the PFN for a given cpu virtual address returned by arch_dma_alloc.
413  */
414 long arch_dma_coherent_to_pfn(struct device *dev, void *vaddr,
415 		dma_addr_t dma_addr)
416 {
417 	/* This should always be populated, so we don't test every
418 	 * level. If that fails, we'll have a nice crash which
419 	 * will be as good as a BUG_ON()
420 	 */
421 	unsigned long cpu_addr = (unsigned long)vaddr;
422 	pgd_t *pgd = pgd_offset_k(cpu_addr);
423 	pud_t *pud = pud_offset(pgd, cpu_addr);
424 	pmd_t *pmd = pmd_offset(pud, cpu_addr);
425 	pte_t *ptep = pte_offset_kernel(pmd, cpu_addr);
426 
427 	if (pte_none(*ptep) || !pte_present(*ptep))
428 		return 0;
429 	return pte_pfn(*ptep);
430 }
431