1 /*
2  *  PowerPC version derived from arch/arm/mm/consistent.c
3  *    Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
4  *
5  *  Copyright (C) 2000 Russell King
6  *
7  * Consistent memory allocators.  Used for DMA devices that want to
8  * share uncached memory with the processor core.  The function return
9  * is the virtual address and 'dma_handle' is the physical address.
10  * Mostly stolen from the ARM port, with some changes for PowerPC.
11  *						-- Dan
12  *
13  * Reorganized to get rid of the arch-specific consistent_* functions
14  * and provide non-coherent implementations for the DMA API. -Matt
15  *
16  * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent()
17  * implementation. This is pulled straight from ARM and barely
18  * modified. -Matt
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License version 2 as
22  * published by the Free Software Foundation.
23  */
24 
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/kernel.h>
28 #include <linux/errno.h>
29 #include <linux/string.h>
30 #include <linux/types.h>
31 #include <linux/highmem.h>
32 #include <linux/dma-mapping.h>
33 
34 #include <asm/tlbflush.h>
35 
36 #include "mmu_decl.h"
37 
38 /*
39  * This address range defaults to a value that is safe for all
40  * platforms which currently set CONFIG_NOT_COHERENT_CACHE. It
41  * can be further configured for specific applications under
42  * the "Advanced Setup" menu. -Matt
43  */
44 #define CONSISTENT_BASE		(IOREMAP_TOP)
45 #define CONSISTENT_END 		(CONSISTENT_BASE + CONFIG_CONSISTENT_SIZE)
46 #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
47 
48 /*
49  * This is the page table (2MB) covering uncached, DMA consistent allocations
50  */
51 static DEFINE_SPINLOCK(consistent_lock);
52 
53 /*
54  * VM region handling support.
55  *
56  * This should become something generic, handling VM region allocations for
57  * vmalloc and similar (ioremap, module space, etc).
58  *
59  * I envisage vmalloc()'s supporting vm_struct becoming:
60  *
61  *  struct vm_struct {
62  *    struct vm_region	region;
63  *    unsigned long	flags;
64  *    struct page	**pages;
65  *    unsigned int	nr_pages;
66  *    unsigned long	phys_addr;
67  *  };
68  *
69  * get_vm_area() would then call vm_region_alloc with an appropriate
70  * struct vm_region head (eg):
71  *
72  *  struct vm_region vmalloc_head = {
73  *	.vm_list	= LIST_HEAD_INIT(vmalloc_head.vm_list),
74  *	.vm_start	= VMALLOC_START,
75  *	.vm_end		= VMALLOC_END,
76  *  };
77  *
78  * However, vmalloc_head.vm_start is variable (typically, it is dependent on
79  * the amount of RAM found at boot time.)  I would imagine that get_vm_area()
80  * would have to initialise this each time prior to calling vm_region_alloc().
81  */
82 struct ppc_vm_region {
83 	struct list_head	vm_list;
84 	unsigned long		vm_start;
85 	unsigned long		vm_end;
86 };
87 
88 static struct ppc_vm_region consistent_head = {
89 	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
90 	.vm_start	= CONSISTENT_BASE,
91 	.vm_end		= CONSISTENT_END,
92 };
93 
94 static struct ppc_vm_region *
95 ppc_vm_region_alloc(struct ppc_vm_region *head, size_t size, gfp_t gfp)
96 {
97 	unsigned long addr = head->vm_start, end = head->vm_end - size;
98 	unsigned long flags;
99 	struct ppc_vm_region *c, *new;
100 
101 	new = kmalloc(sizeof(struct ppc_vm_region), gfp);
102 	if (!new)
103 		goto out;
104 
105 	spin_lock_irqsave(&consistent_lock, flags);
106 
107 	list_for_each_entry(c, &head->vm_list, vm_list) {
108 		if ((addr + size) < addr)
109 			goto nospc;
110 		if ((addr + size) <= c->vm_start)
111 			goto found;
112 		addr = c->vm_end;
113 		if (addr > end)
114 			goto nospc;
115 	}
116 
117  found:
118 	/*
119 	 * Insert this entry _before_ the one we found.
120 	 */
121 	list_add_tail(&new->vm_list, &c->vm_list);
122 	new->vm_start = addr;
123 	new->vm_end = addr + size;
124 
125 	spin_unlock_irqrestore(&consistent_lock, flags);
126 	return new;
127 
128  nospc:
129 	spin_unlock_irqrestore(&consistent_lock, flags);
130 	kfree(new);
131  out:
132 	return NULL;
133 }
134 
135 static struct ppc_vm_region *ppc_vm_region_find(struct ppc_vm_region *head, unsigned long addr)
136 {
137 	struct ppc_vm_region *c;
138 
139 	list_for_each_entry(c, &head->vm_list, vm_list) {
140 		if (c->vm_start == addr)
141 			goto out;
142 	}
143 	c = NULL;
144  out:
145 	return c;
146 }
147 
148 /*
149  * Allocate DMA-coherent memory space and return both the kernel remapped
150  * virtual and bus address for that space.
151  */
152 void *
153 __dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
154 {
155 	struct page *page;
156 	struct ppc_vm_region *c;
157 	unsigned long order;
158 	u64 mask = ISA_DMA_THRESHOLD, limit;
159 
160 	if (dev) {
161 		mask = dev->coherent_dma_mask;
162 
163 		/*
164 		 * Sanity check the DMA mask - it must be non-zero, and
165 		 * must be able to be satisfied by a DMA allocation.
166 		 */
167 		if (mask == 0) {
168 			dev_warn(dev, "coherent DMA mask is unset\n");
169 			goto no_page;
170 		}
171 
172 		if ((~mask) & ISA_DMA_THRESHOLD) {
173 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
174 				 "than system GFP_DMA mask %#llx\n",
175 				 mask, (unsigned long long)ISA_DMA_THRESHOLD);
176 			goto no_page;
177 		}
178 	}
179 
180 
181 	size = PAGE_ALIGN(size);
182 	limit = (mask + 1) & ~mask;
183 	if ((limit && size >= limit) ||
184 	    size >= (CONSISTENT_END - CONSISTENT_BASE)) {
185 		printk(KERN_WARNING "coherent allocation too big (requested %#x mask %#Lx)\n",
186 		       size, mask);
187 		return NULL;
188 	}
189 
190 	order = get_order(size);
191 
192 	/* Might be useful if we ever have a real legacy DMA zone... */
193 	if (mask != 0xffffffff)
194 		gfp |= GFP_DMA;
195 
196 	page = alloc_pages(gfp, order);
197 	if (!page)
198 		goto no_page;
199 
200 	/*
201 	 * Invalidate any data that might be lurking in the
202 	 * kernel direct-mapped region for device DMA.
203 	 */
204 	{
205 		unsigned long kaddr = (unsigned long)page_address(page);
206 		memset(page_address(page), 0, size);
207 		flush_dcache_range(kaddr, kaddr + size);
208 	}
209 
210 	/*
211 	 * Allocate a virtual address in the consistent mapping region.
212 	 */
213 	c = ppc_vm_region_alloc(&consistent_head, size,
214 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
215 	if (c) {
216 		unsigned long vaddr = c->vm_start;
217 		struct page *end = page + (1 << order);
218 
219 		split_page(page, order);
220 
221 		/*
222 		 * Set the "dma handle"
223 		 */
224 		*handle = page_to_phys(page);
225 
226 		do {
227 			SetPageReserved(page);
228 			map_page(vaddr, page_to_phys(page),
229 				 pgprot_noncached(PAGE_KERNEL));
230 			page++;
231 			vaddr += PAGE_SIZE;
232 		} while (size -= PAGE_SIZE);
233 
234 		/*
235 		 * Free the otherwise unused pages.
236 		 */
237 		while (page < end) {
238 			__free_page(page);
239 			page++;
240 		}
241 
242 		return (void *)c->vm_start;
243 	}
244 
245 	if (page)
246 		__free_pages(page, order);
247  no_page:
248 	return NULL;
249 }
250 EXPORT_SYMBOL(__dma_alloc_coherent);
251 
252 /*
253  * free a page as defined by the above mapping.
254  */
255 void __dma_free_coherent(size_t size, void *vaddr)
256 {
257 	struct ppc_vm_region *c;
258 	unsigned long flags, addr;
259 
260 	size = PAGE_ALIGN(size);
261 
262 	spin_lock_irqsave(&consistent_lock, flags);
263 
264 	c = ppc_vm_region_find(&consistent_head, (unsigned long)vaddr);
265 	if (!c)
266 		goto no_area;
267 
268 	if ((c->vm_end - c->vm_start) != size) {
269 		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
270 		       __func__, c->vm_end - c->vm_start, size);
271 		dump_stack();
272 		size = c->vm_end - c->vm_start;
273 	}
274 
275 	addr = c->vm_start;
276 	do {
277 		pte_t *ptep;
278 		unsigned long pfn;
279 
280 		ptep = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(addr),
281 							       addr),
282 						    addr),
283 					 addr);
284 		if (!pte_none(*ptep) && pte_present(*ptep)) {
285 			pfn = pte_pfn(*ptep);
286 			pte_clear(&init_mm, addr, ptep);
287 			if (pfn_valid(pfn)) {
288 				struct page *page = pfn_to_page(pfn);
289 
290 				ClearPageReserved(page);
291 				__free_page(page);
292 			}
293 		}
294 		addr += PAGE_SIZE;
295 	} while (size -= PAGE_SIZE);
296 
297 	flush_tlb_kernel_range(c->vm_start, c->vm_end);
298 
299 	list_del(&c->vm_list);
300 
301 	spin_unlock_irqrestore(&consistent_lock, flags);
302 
303 	kfree(c);
304 	return;
305 
306  no_area:
307 	spin_unlock_irqrestore(&consistent_lock, flags);
308 	printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
309 	       __func__, vaddr);
310 	dump_stack();
311 }
312 EXPORT_SYMBOL(__dma_free_coherent);
313 
314 /*
315  * make an area consistent.
316  */
317 void __dma_sync(void *vaddr, size_t size, int direction)
318 {
319 	unsigned long start = (unsigned long)vaddr;
320 	unsigned long end   = start + size;
321 
322 	switch (direction) {
323 	case DMA_NONE:
324 		BUG();
325 	case DMA_FROM_DEVICE:
326 		/*
327 		 * invalidate only when cache-line aligned otherwise there is
328 		 * the potential for discarding uncommitted data from the cache
329 		 */
330 		if ((start & (L1_CACHE_BYTES - 1)) || (size & (L1_CACHE_BYTES - 1)))
331 			flush_dcache_range(start, end);
332 		else
333 			invalidate_dcache_range(start, end);
334 		break;
335 	case DMA_TO_DEVICE:		/* writeback only */
336 		clean_dcache_range(start, end);
337 		break;
338 	case DMA_BIDIRECTIONAL:	/* writeback and invalidate */
339 		flush_dcache_range(start, end);
340 		break;
341 	}
342 }
343 EXPORT_SYMBOL(__dma_sync);
344 
345 #ifdef CONFIG_HIGHMEM
346 /*
347  * __dma_sync_page() implementation for systems using highmem.
348  * In this case, each page of a buffer must be kmapped/kunmapped
349  * in order to have a virtual address for __dma_sync(). This must
350  * not sleep so kmap_atomic()/kunmap_atomic() are used.
351  *
352  * Note: yes, it is possible and correct to have a buffer extend
353  * beyond the first page.
354  */
355 static inline void __dma_sync_page_highmem(struct page *page,
356 		unsigned long offset, size_t size, int direction)
357 {
358 	size_t seg_size = min((size_t)(PAGE_SIZE - offset), size);
359 	size_t cur_size = seg_size;
360 	unsigned long flags, start, seg_offset = offset;
361 	int nr_segs = 1 + ((size - seg_size) + PAGE_SIZE - 1)/PAGE_SIZE;
362 	int seg_nr = 0;
363 
364 	local_irq_save(flags);
365 
366 	do {
367 		start = (unsigned long)kmap_atomic(page + seg_nr,
368 				KM_PPC_SYNC_PAGE) + seg_offset;
369 
370 		/* Sync this buffer segment */
371 		__dma_sync((void *)start, seg_size, direction);
372 		kunmap_atomic((void *)start, KM_PPC_SYNC_PAGE);
373 		seg_nr++;
374 
375 		/* Calculate next buffer segment size */
376 		seg_size = min((size_t)PAGE_SIZE, size - cur_size);
377 
378 		/* Add the segment size to our running total */
379 		cur_size += seg_size;
380 		seg_offset = 0;
381 	} while (seg_nr < nr_segs);
382 
383 	local_irq_restore(flags);
384 }
385 #endif /* CONFIG_HIGHMEM */
386 
387 /*
388  * __dma_sync_page makes memory consistent. identical to __dma_sync, but
389  * takes a struct page instead of a virtual address
390  */
391 void __dma_sync_page(struct page *page, unsigned long offset,
392 	size_t size, int direction)
393 {
394 #ifdef CONFIG_HIGHMEM
395 	__dma_sync_page_highmem(page, offset, size, direction);
396 #else
397 	unsigned long start = (unsigned long)page_address(page) + offset;
398 	__dma_sync((void *)start, size, direction);
399 #endif
400 }
401 EXPORT_SYMBOL(__dma_sync_page);
402 
403 /*
404  * Return the PFN for a given cpu virtual address returned by
405  * __dma_alloc_coherent. This is used by dma_mmap_coherent()
406  */
407 unsigned long __dma_get_coherent_pfn(unsigned long cpu_addr)
408 {
409 	/* This should always be populated, so we don't test every
410 	 * level. If that fails, we'll have a nice crash which
411 	 * will be as good as a BUG_ON()
412 	 */
413 	pgd_t *pgd = pgd_offset_k(cpu_addr);
414 	pud_t *pud = pud_offset(pgd, cpu_addr);
415 	pmd_t *pmd = pmd_offset(pud, cpu_addr);
416 	pte_t *ptep = pte_offset_kernel(pmd, cpu_addr);
417 
418 	if (pte_none(*ptep) || !pte_present(*ptep))
419 		return 0;
420 	return pte_pfn(*ptep);
421 }
422