1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * address space "slices" (meta-segments) support 4 * 5 * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation. 6 * 7 * Based on hugetlb implementation 8 * 9 * Copyright (C) 2003 David Gibson, IBM Corporation. 10 */ 11 12 #undef DEBUG 13 14 #include <linux/kernel.h> 15 #include <linux/mm.h> 16 #include <linux/pagemap.h> 17 #include <linux/err.h> 18 #include <linux/spinlock.h> 19 #include <linux/export.h> 20 #include <linux/hugetlb.h> 21 #include <linux/sched/mm.h> 22 #include <linux/security.h> 23 #include <asm/mman.h> 24 #include <asm/mmu.h> 25 #include <asm/copro.h> 26 #include <asm/hugetlb.h> 27 #include <asm/mmu_context.h> 28 29 static DEFINE_SPINLOCK(slice_convert_lock); 30 31 #ifdef DEBUG 32 int _slice_debug = 1; 33 34 static void slice_print_mask(const char *label, const struct slice_mask *mask) 35 { 36 if (!_slice_debug) 37 return; 38 pr_devel("%s low_slice: %*pbl\n", label, 39 (int)SLICE_NUM_LOW, &mask->low_slices); 40 pr_devel("%s high_slice: %*pbl\n", label, 41 (int)SLICE_NUM_HIGH, mask->high_slices); 42 } 43 44 #define slice_dbg(fmt...) do { if (_slice_debug) pr_devel(fmt); } while (0) 45 46 #else 47 48 static void slice_print_mask(const char *label, const struct slice_mask *mask) {} 49 #define slice_dbg(fmt...) 50 51 #endif 52 53 static inline notrace bool slice_addr_is_low(unsigned long addr) 54 { 55 u64 tmp = (u64)addr; 56 57 return tmp < SLICE_LOW_TOP; 58 } 59 60 static void slice_range_to_mask(unsigned long start, unsigned long len, 61 struct slice_mask *ret) 62 { 63 unsigned long end = start + len - 1; 64 65 ret->low_slices = 0; 66 if (SLICE_NUM_HIGH) 67 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH); 68 69 if (slice_addr_is_low(start)) { 70 unsigned long mend = min(end, 71 (unsigned long)(SLICE_LOW_TOP - 1)); 72 73 ret->low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1)) 74 - (1u << GET_LOW_SLICE_INDEX(start)); 75 } 76 77 if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) { 78 unsigned long start_index = GET_HIGH_SLICE_INDEX(start); 79 unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT)); 80 unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index; 81 82 bitmap_set(ret->high_slices, start_index, count); 83 } 84 } 85 86 static int slice_area_is_free(struct mm_struct *mm, unsigned long addr, 87 unsigned long len) 88 { 89 struct vm_area_struct *vma; 90 91 if ((mm_ctx_slb_addr_limit(&mm->context) - len) < addr) 92 return 0; 93 vma = find_vma(mm, addr); 94 return (!vma || (addr + len) <= vm_start_gap(vma)); 95 } 96 97 static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice) 98 { 99 return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT, 100 1ul << SLICE_LOW_SHIFT); 101 } 102 103 static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice) 104 { 105 unsigned long start = slice << SLICE_HIGH_SHIFT; 106 unsigned long end = start + (1ul << SLICE_HIGH_SHIFT); 107 108 /* Hack, so that each addresses is controlled by exactly one 109 * of the high or low area bitmaps, the first high area starts 110 * at 4GB, not 0 */ 111 if (start == 0) 112 start = (unsigned long)SLICE_LOW_TOP; 113 114 return !slice_area_is_free(mm, start, end - start); 115 } 116 117 static void slice_mask_for_free(struct mm_struct *mm, struct slice_mask *ret, 118 unsigned long high_limit) 119 { 120 unsigned long i; 121 122 ret->low_slices = 0; 123 if (SLICE_NUM_HIGH) 124 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH); 125 126 for (i = 0; i < SLICE_NUM_LOW; i++) 127 if (!slice_low_has_vma(mm, i)) 128 ret->low_slices |= 1u << i; 129 130 if (slice_addr_is_low(high_limit - 1)) 131 return; 132 133 for (i = 0; i < GET_HIGH_SLICE_INDEX(high_limit); i++) 134 if (!slice_high_has_vma(mm, i)) 135 __set_bit(i, ret->high_slices); 136 } 137 138 static bool slice_check_range_fits(struct mm_struct *mm, 139 const struct slice_mask *available, 140 unsigned long start, unsigned long len) 141 { 142 unsigned long end = start + len - 1; 143 u64 low_slices = 0; 144 145 if (slice_addr_is_low(start)) { 146 unsigned long mend = min(end, 147 (unsigned long)(SLICE_LOW_TOP - 1)); 148 149 low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1)) 150 - (1u << GET_LOW_SLICE_INDEX(start)); 151 } 152 if ((low_slices & available->low_slices) != low_slices) 153 return false; 154 155 if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) { 156 unsigned long start_index = GET_HIGH_SLICE_INDEX(start); 157 unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT)); 158 unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index; 159 unsigned long i; 160 161 for (i = start_index; i < start_index + count; i++) { 162 if (!test_bit(i, available->high_slices)) 163 return false; 164 } 165 } 166 167 return true; 168 } 169 170 static void slice_flush_segments(void *parm) 171 { 172 #ifdef CONFIG_PPC64 173 struct mm_struct *mm = parm; 174 unsigned long flags; 175 176 if (mm != current->active_mm) 177 return; 178 179 copy_mm_to_paca(current->active_mm); 180 181 local_irq_save(flags); 182 slb_flush_and_restore_bolted(); 183 local_irq_restore(flags); 184 #endif 185 } 186 187 static void slice_convert(struct mm_struct *mm, 188 const struct slice_mask *mask, int psize) 189 { 190 int index, mask_index; 191 /* Write the new slice psize bits */ 192 unsigned char *hpsizes, *lpsizes; 193 struct slice_mask *psize_mask, *old_mask; 194 unsigned long i, flags; 195 int old_psize; 196 197 slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize); 198 slice_print_mask(" mask", mask); 199 200 psize_mask = slice_mask_for_size(&mm->context, psize); 201 202 /* We need to use a spinlock here to protect against 203 * concurrent 64k -> 4k demotion ... 204 */ 205 spin_lock_irqsave(&slice_convert_lock, flags); 206 207 lpsizes = mm_ctx_low_slices(&mm->context); 208 for (i = 0; i < SLICE_NUM_LOW; i++) { 209 if (!(mask->low_slices & (1u << i))) 210 continue; 211 212 mask_index = i & 0x1; 213 index = i >> 1; 214 215 /* Update the slice_mask */ 216 old_psize = (lpsizes[index] >> (mask_index * 4)) & 0xf; 217 old_mask = slice_mask_for_size(&mm->context, old_psize); 218 old_mask->low_slices &= ~(1u << i); 219 psize_mask->low_slices |= 1u << i; 220 221 /* Update the sizes array */ 222 lpsizes[index] = (lpsizes[index] & ~(0xf << (mask_index * 4))) | 223 (((unsigned long)psize) << (mask_index * 4)); 224 } 225 226 hpsizes = mm_ctx_high_slices(&mm->context); 227 for (i = 0; i < GET_HIGH_SLICE_INDEX(mm_ctx_slb_addr_limit(&mm->context)); i++) { 228 if (!test_bit(i, mask->high_slices)) 229 continue; 230 231 mask_index = i & 0x1; 232 index = i >> 1; 233 234 /* Update the slice_mask */ 235 old_psize = (hpsizes[index] >> (mask_index * 4)) & 0xf; 236 old_mask = slice_mask_for_size(&mm->context, old_psize); 237 __clear_bit(i, old_mask->high_slices); 238 __set_bit(i, psize_mask->high_slices); 239 240 /* Update the sizes array */ 241 hpsizes[index] = (hpsizes[index] & ~(0xf << (mask_index * 4))) | 242 (((unsigned long)psize) << (mask_index * 4)); 243 } 244 245 slice_dbg(" lsps=%lx, hsps=%lx\n", 246 (unsigned long)mm_ctx_low_slices(&mm->context), 247 (unsigned long)mm_ctx_high_slices(&mm->context)); 248 249 spin_unlock_irqrestore(&slice_convert_lock, flags); 250 251 copro_flush_all_slbs(mm); 252 } 253 254 /* 255 * Compute which slice addr is part of; 256 * set *boundary_addr to the start or end boundary of that slice 257 * (depending on 'end' parameter); 258 * return boolean indicating if the slice is marked as available in the 259 * 'available' slice_mark. 260 */ 261 static bool slice_scan_available(unsigned long addr, 262 const struct slice_mask *available, 263 int end, unsigned long *boundary_addr) 264 { 265 unsigned long slice; 266 if (slice_addr_is_low(addr)) { 267 slice = GET_LOW_SLICE_INDEX(addr); 268 *boundary_addr = (slice + end) << SLICE_LOW_SHIFT; 269 return !!(available->low_slices & (1u << slice)); 270 } else { 271 slice = GET_HIGH_SLICE_INDEX(addr); 272 *boundary_addr = (slice + end) ? 273 ((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP; 274 return !!test_bit(slice, available->high_slices); 275 } 276 } 277 278 static unsigned long slice_find_area_bottomup(struct mm_struct *mm, 279 unsigned long addr, unsigned long len, 280 const struct slice_mask *available, 281 int psize, unsigned long high_limit) 282 { 283 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); 284 unsigned long found, next_end; 285 struct vm_unmapped_area_info info; 286 287 info.flags = 0; 288 info.length = len; 289 info.align_mask = PAGE_MASK & ((1ul << pshift) - 1); 290 info.align_offset = 0; 291 /* 292 * Check till the allow max value for this mmap request 293 */ 294 while (addr < high_limit) { 295 info.low_limit = addr; 296 if (!slice_scan_available(addr, available, 1, &addr)) 297 continue; 298 299 next_slice: 300 /* 301 * At this point [info.low_limit; addr) covers 302 * available slices only and ends at a slice boundary. 303 * Check if we need to reduce the range, or if we can 304 * extend it to cover the next available slice. 305 */ 306 if (addr >= high_limit) 307 addr = high_limit; 308 else if (slice_scan_available(addr, available, 1, &next_end)) { 309 addr = next_end; 310 goto next_slice; 311 } 312 info.high_limit = addr; 313 314 found = vm_unmapped_area(&info); 315 if (!(found & ~PAGE_MASK)) 316 return found; 317 } 318 319 return -ENOMEM; 320 } 321 322 static unsigned long slice_find_area_topdown(struct mm_struct *mm, 323 unsigned long addr, unsigned long len, 324 const struct slice_mask *available, 325 int psize, unsigned long high_limit) 326 { 327 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); 328 unsigned long found, prev; 329 struct vm_unmapped_area_info info; 330 unsigned long min_addr = max(PAGE_SIZE, mmap_min_addr); 331 332 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 333 info.length = len; 334 info.align_mask = PAGE_MASK & ((1ul << pshift) - 1); 335 info.align_offset = 0; 336 /* 337 * If we are trying to allocate above DEFAULT_MAP_WINDOW 338 * Add the different to the mmap_base. 339 * Only for that request for which high_limit is above 340 * DEFAULT_MAP_WINDOW we should apply this. 341 */ 342 if (high_limit > DEFAULT_MAP_WINDOW) 343 addr += mm_ctx_slb_addr_limit(&mm->context) - DEFAULT_MAP_WINDOW; 344 345 while (addr > min_addr) { 346 info.high_limit = addr; 347 if (!slice_scan_available(addr - 1, available, 0, &addr)) 348 continue; 349 350 prev_slice: 351 /* 352 * At this point [addr; info.high_limit) covers 353 * available slices only and starts at a slice boundary. 354 * Check if we need to reduce the range, or if we can 355 * extend it to cover the previous available slice. 356 */ 357 if (addr < min_addr) 358 addr = min_addr; 359 else if (slice_scan_available(addr - 1, available, 0, &prev)) { 360 addr = prev; 361 goto prev_slice; 362 } 363 info.low_limit = addr; 364 365 found = vm_unmapped_area(&info); 366 if (!(found & ~PAGE_MASK)) 367 return found; 368 } 369 370 /* 371 * A failed mmap() very likely causes application failure, 372 * so fall back to the bottom-up function here. This scenario 373 * can happen with large stack limits and large mmap() 374 * allocations. 375 */ 376 return slice_find_area_bottomup(mm, TASK_UNMAPPED_BASE, len, available, psize, high_limit); 377 } 378 379 380 static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len, 381 const struct slice_mask *mask, int psize, 382 int topdown, unsigned long high_limit) 383 { 384 if (topdown) 385 return slice_find_area_topdown(mm, mm->mmap_base, len, mask, psize, high_limit); 386 else 387 return slice_find_area_bottomup(mm, mm->mmap_base, len, mask, psize, high_limit); 388 } 389 390 static inline void slice_copy_mask(struct slice_mask *dst, 391 const struct slice_mask *src) 392 { 393 dst->low_slices = src->low_slices; 394 if (!SLICE_NUM_HIGH) 395 return; 396 bitmap_copy(dst->high_slices, src->high_slices, SLICE_NUM_HIGH); 397 } 398 399 static inline void slice_or_mask(struct slice_mask *dst, 400 const struct slice_mask *src1, 401 const struct slice_mask *src2) 402 { 403 dst->low_slices = src1->low_slices | src2->low_slices; 404 if (!SLICE_NUM_HIGH) 405 return; 406 bitmap_or(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH); 407 } 408 409 static inline void slice_andnot_mask(struct slice_mask *dst, 410 const struct slice_mask *src1, 411 const struct slice_mask *src2) 412 { 413 dst->low_slices = src1->low_slices & ~src2->low_slices; 414 if (!SLICE_NUM_HIGH) 415 return; 416 bitmap_andnot(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH); 417 } 418 419 #ifdef CONFIG_PPC_64K_PAGES 420 #define MMU_PAGE_BASE MMU_PAGE_64K 421 #else 422 #define MMU_PAGE_BASE MMU_PAGE_4K 423 #endif 424 425 unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len, 426 unsigned long flags, unsigned int psize, 427 int topdown) 428 { 429 struct slice_mask good_mask; 430 struct slice_mask potential_mask; 431 const struct slice_mask *maskp; 432 const struct slice_mask *compat_maskp = NULL; 433 int fixed = (flags & MAP_FIXED); 434 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); 435 unsigned long page_size = 1UL << pshift; 436 struct mm_struct *mm = current->mm; 437 unsigned long newaddr; 438 unsigned long high_limit; 439 440 high_limit = DEFAULT_MAP_WINDOW; 441 if (addr >= high_limit || (fixed && (addr + len > high_limit))) 442 high_limit = TASK_SIZE; 443 444 if (len > high_limit) 445 return -ENOMEM; 446 if (len & (page_size - 1)) 447 return -EINVAL; 448 if (fixed) { 449 if (addr & (page_size - 1)) 450 return -EINVAL; 451 if (addr > high_limit - len) 452 return -ENOMEM; 453 } 454 455 if (high_limit > mm_ctx_slb_addr_limit(&mm->context)) { 456 /* 457 * Increasing the slb_addr_limit does not require 458 * slice mask cache to be recalculated because it should 459 * be already initialised beyond the old address limit. 460 */ 461 mm_ctx_set_slb_addr_limit(&mm->context, high_limit); 462 463 on_each_cpu(slice_flush_segments, mm, 1); 464 } 465 466 /* Sanity checks */ 467 BUG_ON(mm->task_size == 0); 468 BUG_ON(mm_ctx_slb_addr_limit(&mm->context) == 0); 469 VM_BUG_ON(radix_enabled()); 470 471 slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize); 472 slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n", 473 addr, len, flags, topdown); 474 475 /* If hint, make sure it matches our alignment restrictions */ 476 if (!fixed && addr) { 477 addr = ALIGN(addr, page_size); 478 slice_dbg(" aligned addr=%lx\n", addr); 479 /* Ignore hint if it's too large or overlaps a VMA */ 480 if (addr > high_limit - len || addr < mmap_min_addr || 481 !slice_area_is_free(mm, addr, len)) 482 addr = 0; 483 } 484 485 /* First make up a "good" mask of slices that have the right size 486 * already 487 */ 488 maskp = slice_mask_for_size(&mm->context, psize); 489 490 /* 491 * Here "good" means slices that are already the right page size, 492 * "compat" means slices that have a compatible page size (i.e. 493 * 4k in a 64k pagesize kernel), and "free" means slices without 494 * any VMAs. 495 * 496 * If MAP_FIXED: 497 * check if fits in good | compat => OK 498 * check if fits in good | compat | free => convert free 499 * else bad 500 * If have hint: 501 * check if hint fits in good => OK 502 * check if hint fits in good | free => convert free 503 * Otherwise: 504 * search in good, found => OK 505 * search in good | free, found => convert free 506 * search in good | compat | free, found => convert free. 507 */ 508 509 /* 510 * If we support combo pages, we can allow 64k pages in 4k slices 511 * The mask copies could be avoided in most cases here if we had 512 * a pointer to good mask for the next code to use. 513 */ 514 if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) { 515 compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K); 516 if (fixed) 517 slice_or_mask(&good_mask, maskp, compat_maskp); 518 else 519 slice_copy_mask(&good_mask, maskp); 520 } else { 521 slice_copy_mask(&good_mask, maskp); 522 } 523 524 slice_print_mask(" good_mask", &good_mask); 525 if (compat_maskp) 526 slice_print_mask(" compat_mask", compat_maskp); 527 528 /* First check hint if it's valid or if we have MAP_FIXED */ 529 if (addr != 0 || fixed) { 530 /* Check if we fit in the good mask. If we do, we just return, 531 * nothing else to do 532 */ 533 if (slice_check_range_fits(mm, &good_mask, addr, len)) { 534 slice_dbg(" fits good !\n"); 535 newaddr = addr; 536 goto return_addr; 537 } 538 } else { 539 /* Now let's see if we can find something in the existing 540 * slices for that size 541 */ 542 newaddr = slice_find_area(mm, len, &good_mask, 543 psize, topdown, high_limit); 544 if (newaddr != -ENOMEM) { 545 /* Found within the good mask, we don't have to setup, 546 * we thus return directly 547 */ 548 slice_dbg(" found area at 0x%lx\n", newaddr); 549 goto return_addr; 550 } 551 } 552 /* 553 * We don't fit in the good mask, check what other slices are 554 * empty and thus can be converted 555 */ 556 slice_mask_for_free(mm, &potential_mask, high_limit); 557 slice_or_mask(&potential_mask, &potential_mask, &good_mask); 558 slice_print_mask(" potential", &potential_mask); 559 560 if (addr != 0 || fixed) { 561 if (slice_check_range_fits(mm, &potential_mask, addr, len)) { 562 slice_dbg(" fits potential !\n"); 563 newaddr = addr; 564 goto convert; 565 } 566 } 567 568 /* If we have MAP_FIXED and failed the above steps, then error out */ 569 if (fixed) 570 return -EBUSY; 571 572 slice_dbg(" search...\n"); 573 574 /* If we had a hint that didn't work out, see if we can fit 575 * anywhere in the good area. 576 */ 577 if (addr) { 578 newaddr = slice_find_area(mm, len, &good_mask, 579 psize, topdown, high_limit); 580 if (newaddr != -ENOMEM) { 581 slice_dbg(" found area at 0x%lx\n", newaddr); 582 goto return_addr; 583 } 584 } 585 586 /* Now let's see if we can find something in the existing slices 587 * for that size plus free slices 588 */ 589 newaddr = slice_find_area(mm, len, &potential_mask, 590 psize, topdown, high_limit); 591 592 if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && newaddr == -ENOMEM && 593 psize == MMU_PAGE_64K) { 594 /* retry the search with 4k-page slices included */ 595 slice_or_mask(&potential_mask, &potential_mask, compat_maskp); 596 newaddr = slice_find_area(mm, len, &potential_mask, 597 psize, topdown, high_limit); 598 } 599 600 if (newaddr == -ENOMEM) 601 return -ENOMEM; 602 603 slice_range_to_mask(newaddr, len, &potential_mask); 604 slice_dbg(" found potential area at 0x%lx\n", newaddr); 605 slice_print_mask(" mask", &potential_mask); 606 607 convert: 608 /* 609 * Try to allocate the context before we do slice convert 610 * so that we handle the context allocation failure gracefully. 611 */ 612 if (need_extra_context(mm, newaddr)) { 613 if (alloc_extended_context(mm, newaddr) < 0) 614 return -ENOMEM; 615 } 616 617 slice_andnot_mask(&potential_mask, &potential_mask, &good_mask); 618 if (compat_maskp && !fixed) 619 slice_andnot_mask(&potential_mask, &potential_mask, compat_maskp); 620 if (potential_mask.low_slices || 621 (SLICE_NUM_HIGH && 622 !bitmap_empty(potential_mask.high_slices, SLICE_NUM_HIGH))) { 623 slice_convert(mm, &potential_mask, psize); 624 if (psize > MMU_PAGE_BASE) 625 on_each_cpu(slice_flush_segments, mm, 1); 626 } 627 return newaddr; 628 629 return_addr: 630 if (need_extra_context(mm, newaddr)) { 631 if (alloc_extended_context(mm, newaddr) < 0) 632 return -ENOMEM; 633 } 634 return newaddr; 635 } 636 EXPORT_SYMBOL_GPL(slice_get_unmapped_area); 637 638 unsigned long arch_get_unmapped_area(struct file *filp, 639 unsigned long addr, 640 unsigned long len, 641 unsigned long pgoff, 642 unsigned long flags) 643 { 644 if (radix_enabled()) 645 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 646 647 return slice_get_unmapped_area(addr, len, flags, 648 mm_ctx_user_psize(¤t->mm->context), 0); 649 } 650 651 unsigned long arch_get_unmapped_area_topdown(struct file *filp, 652 const unsigned long addr0, 653 const unsigned long len, 654 const unsigned long pgoff, 655 const unsigned long flags) 656 { 657 if (radix_enabled()) 658 return generic_get_unmapped_area_topdown(filp, addr0, len, pgoff, flags); 659 660 return slice_get_unmapped_area(addr0, len, flags, 661 mm_ctx_user_psize(¤t->mm->context), 1); 662 } 663 664 unsigned int notrace get_slice_psize(struct mm_struct *mm, unsigned long addr) 665 { 666 unsigned char *psizes; 667 int index, mask_index; 668 669 VM_BUG_ON(radix_enabled()); 670 671 if (slice_addr_is_low(addr)) { 672 psizes = mm_ctx_low_slices(&mm->context); 673 index = GET_LOW_SLICE_INDEX(addr); 674 } else { 675 psizes = mm_ctx_high_slices(&mm->context); 676 index = GET_HIGH_SLICE_INDEX(addr); 677 } 678 mask_index = index & 0x1; 679 return (psizes[index >> 1] >> (mask_index * 4)) & 0xf; 680 } 681 EXPORT_SYMBOL_GPL(get_slice_psize); 682 683 void slice_init_new_context_exec(struct mm_struct *mm) 684 { 685 unsigned char *hpsizes, *lpsizes; 686 struct slice_mask *mask; 687 unsigned int psize = mmu_virtual_psize; 688 689 slice_dbg("slice_init_new_context_exec(mm=%p)\n", mm); 690 691 /* 692 * In the case of exec, use the default limit. In the 693 * case of fork it is just inherited from the mm being 694 * duplicated. 695 */ 696 mm_ctx_set_slb_addr_limit(&mm->context, SLB_ADDR_LIMIT_DEFAULT); 697 mm_ctx_set_user_psize(&mm->context, psize); 698 699 /* 700 * Set all slice psizes to the default. 701 */ 702 lpsizes = mm_ctx_low_slices(&mm->context); 703 memset(lpsizes, (psize << 4) | psize, SLICE_NUM_LOW >> 1); 704 705 hpsizes = mm_ctx_high_slices(&mm->context); 706 memset(hpsizes, (psize << 4) | psize, SLICE_NUM_HIGH >> 1); 707 708 /* 709 * Slice mask cache starts zeroed, fill the default size cache. 710 */ 711 mask = slice_mask_for_size(&mm->context, psize); 712 mask->low_slices = ~0UL; 713 if (SLICE_NUM_HIGH) 714 bitmap_fill(mask->high_slices, SLICE_NUM_HIGH); 715 } 716 717 void slice_setup_new_exec(void) 718 { 719 struct mm_struct *mm = current->mm; 720 721 slice_dbg("slice_setup_new_exec(mm=%p)\n", mm); 722 723 if (!is_32bit_task()) 724 return; 725 726 mm_ctx_set_slb_addr_limit(&mm->context, DEFAULT_MAP_WINDOW); 727 } 728 729 void slice_set_range_psize(struct mm_struct *mm, unsigned long start, 730 unsigned long len, unsigned int psize) 731 { 732 struct slice_mask mask; 733 734 VM_BUG_ON(radix_enabled()); 735 736 slice_range_to_mask(start, len, &mask); 737 slice_convert(mm, &mask, psize); 738 } 739 740 #ifdef CONFIG_HUGETLB_PAGE 741 /* 742 * is_hugepage_only_range() is used by generic code to verify whether 743 * a normal mmap mapping (non hugetlbfs) is valid on a given area. 744 * 745 * until the generic code provides a more generic hook and/or starts 746 * calling arch get_unmapped_area for MAP_FIXED (which our implementation 747 * here knows how to deal with), we hijack it to keep standard mappings 748 * away from us. 749 * 750 * because of that generic code limitation, MAP_FIXED mapping cannot 751 * "convert" back a slice with no VMAs to the standard page size, only 752 * get_unmapped_area() can. It would be possible to fix it here but I 753 * prefer working on fixing the generic code instead. 754 * 755 * WARNING: This will not work if hugetlbfs isn't enabled since the 756 * generic code will redefine that function as 0 in that. This is ok 757 * for now as we only use slices with hugetlbfs enabled. This should 758 * be fixed as the generic code gets fixed. 759 */ 760 int slice_is_hugepage_only_range(struct mm_struct *mm, unsigned long addr, 761 unsigned long len) 762 { 763 const struct slice_mask *maskp; 764 unsigned int psize = mm_ctx_user_psize(&mm->context); 765 766 VM_BUG_ON(radix_enabled()); 767 768 maskp = slice_mask_for_size(&mm->context, psize); 769 770 /* We need to account for 4k slices too */ 771 if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) { 772 const struct slice_mask *compat_maskp; 773 struct slice_mask available; 774 775 compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K); 776 slice_or_mask(&available, maskp, compat_maskp); 777 return !slice_check_range_fits(mm, &available, addr, len); 778 } 779 780 return !slice_check_range_fits(mm, maskp, addr, len); 781 } 782 783 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 784 { 785 /* With radix we don't use slice, so derive it from vma*/ 786 if (radix_enabled()) 787 return vma_kernel_pagesize(vma); 788 789 return 1UL << mmu_psize_to_shift(get_slice_psize(vma->vm_mm, vma->vm_start)); 790 } 791 792 static int file_to_psize(struct file *file) 793 { 794 struct hstate *hstate = hstate_file(file); 795 return shift_to_mmu_psize(huge_page_shift(hstate)); 796 } 797 798 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 799 unsigned long len, unsigned long pgoff, 800 unsigned long flags) 801 { 802 if (radix_enabled()) 803 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); 804 805 return slice_get_unmapped_area(addr, len, flags, file_to_psize(file), 1); 806 } 807 #endif 808