1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerPC64 SLB support. 4 * 5 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM 6 * Based on earlier code written by: 7 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com 8 * Copyright (c) 2001 Dave Engebretsen 9 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 10 */ 11 12 #include <asm/asm-prototypes.h> 13 #include <asm/mmu.h> 14 #include <asm/mmu_context.h> 15 #include <asm/paca.h> 16 #include <asm/ppc-opcode.h> 17 #include <asm/cputable.h> 18 #include <asm/cacheflush.h> 19 #include <asm/smp.h> 20 #include <linux/compiler.h> 21 #include <linux/context_tracking.h> 22 #include <linux/mm_types.h> 23 #include <linux/pgtable.h> 24 25 #include <asm/udbg.h> 26 #include <asm/code-patching.h> 27 28 #include "internal.h" 29 30 31 enum slb_index { 32 LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */ 33 KSTACK_INDEX = 1, /* Kernel stack map */ 34 }; 35 36 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea); 37 38 #define slb_esid_mask(ssize) \ 39 (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T) 40 41 static inline unsigned long mk_esid_data(unsigned long ea, int ssize, 42 enum slb_index index) 43 { 44 return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index; 45 } 46 47 static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize, 48 unsigned long flags) 49 { 50 return (vsid << slb_vsid_shift(ssize)) | flags | 51 ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT); 52 } 53 54 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize, 55 unsigned long flags) 56 { 57 return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags); 58 } 59 60 bool stress_slb_enabled __initdata; 61 62 static int __init parse_stress_slb(char *p) 63 { 64 stress_slb_enabled = true; 65 return 0; 66 } 67 early_param("stress_slb", parse_stress_slb); 68 69 __ro_after_init DEFINE_STATIC_KEY_FALSE(stress_slb_key); 70 71 static void assert_slb_presence(bool present, unsigned long ea) 72 { 73 #ifdef CONFIG_DEBUG_VM 74 unsigned long tmp; 75 76 WARN_ON_ONCE(mfmsr() & MSR_EE); 77 78 if (!cpu_has_feature(CPU_FTR_ARCH_206)) 79 return; 80 81 /* 82 * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware 83 * ignores all other bits from 0-27, so just clear them all. 84 */ 85 ea &= ~((1UL << SID_SHIFT) - 1); 86 asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0"); 87 88 WARN_ON(present == (tmp == 0)); 89 #endif 90 } 91 92 static inline void slb_shadow_update(unsigned long ea, int ssize, 93 unsigned long flags, 94 enum slb_index index) 95 { 96 struct slb_shadow *p = get_slb_shadow(); 97 98 /* 99 * Clear the ESID first so the entry is not valid while we are 100 * updating it. No write barriers are needed here, provided 101 * we only update the current CPU's SLB shadow buffer. 102 */ 103 WRITE_ONCE(p->save_area[index].esid, 0); 104 WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags))); 105 WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index))); 106 } 107 108 static inline void slb_shadow_clear(enum slb_index index) 109 { 110 WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index)); 111 } 112 113 static inline void create_shadowed_slbe(unsigned long ea, int ssize, 114 unsigned long flags, 115 enum slb_index index) 116 { 117 /* 118 * Updating the shadow buffer before writing the SLB ensures 119 * we don't get a stale entry here if we get preempted by PHYP 120 * between these two statements. 121 */ 122 slb_shadow_update(ea, ssize, flags, index); 123 124 assert_slb_presence(false, ea); 125 asm volatile("slbmte %0,%1" : 126 : "r" (mk_vsid_data(ea, ssize, flags)), 127 "r" (mk_esid_data(ea, ssize, index)) 128 : "memory" ); 129 } 130 131 /* 132 * Insert bolted entries into SLB (which may not be empty, so don't clear 133 * slb_cache_ptr). 134 */ 135 void __slb_restore_bolted_realmode(void) 136 { 137 struct slb_shadow *p = get_slb_shadow(); 138 enum slb_index index; 139 140 /* No isync needed because realmode. */ 141 for (index = 0; index < SLB_NUM_BOLTED; index++) { 142 asm volatile("slbmte %0,%1" : 143 : "r" (be64_to_cpu(p->save_area[index].vsid)), 144 "r" (be64_to_cpu(p->save_area[index].esid))); 145 } 146 147 assert_slb_presence(true, local_paca->kstack); 148 } 149 150 /* 151 * Insert the bolted entries into an empty SLB. 152 */ 153 void slb_restore_bolted_realmode(void) 154 { 155 __slb_restore_bolted_realmode(); 156 get_paca()->slb_cache_ptr = 0; 157 158 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 159 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; 160 } 161 162 /* 163 * This flushes all SLB entries including 0, so it must be realmode. 164 */ 165 void slb_flush_all_realmode(void) 166 { 167 asm volatile("slbmte %0,%0; slbia" : : "r" (0)); 168 } 169 170 static __always_inline void __slb_flush_and_restore_bolted(bool preserve_kernel_lookaside) 171 { 172 struct slb_shadow *p = get_slb_shadow(); 173 unsigned long ksp_esid_data, ksp_vsid_data; 174 u32 ih; 175 176 /* 177 * SLBIA IH=1 on ISA v2.05 and newer processors may preserve lookaside 178 * information created with Class=0 entries, which we use for kernel 179 * SLB entries (the SLB entries themselves are still invalidated). 180 * 181 * Older processors will ignore this optimisation. Over-invalidation 182 * is fine because we never rely on lookaside information existing. 183 */ 184 if (preserve_kernel_lookaside) 185 ih = 1; 186 else 187 ih = 0; 188 189 ksp_esid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].esid); 190 ksp_vsid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].vsid); 191 192 asm volatile(PPC_SLBIA(%0)" \n" 193 "slbmte %1, %2 \n" 194 :: "i" (ih), 195 "r" (ksp_vsid_data), 196 "r" (ksp_esid_data) 197 : "memory"); 198 } 199 200 /* 201 * This flushes non-bolted entries, it can be run in virtual mode. Must 202 * be called with interrupts disabled. 203 */ 204 void slb_flush_and_restore_bolted(void) 205 { 206 BUILD_BUG_ON(SLB_NUM_BOLTED != 2); 207 208 WARN_ON(!irqs_disabled()); 209 210 /* 211 * We can't take a PMU exception in the following code, so hard 212 * disable interrupts. 213 */ 214 hard_irq_disable(); 215 216 isync(); 217 __slb_flush_and_restore_bolted(false); 218 isync(); 219 220 assert_slb_presence(true, get_paca()->kstack); 221 222 get_paca()->slb_cache_ptr = 0; 223 224 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 225 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; 226 } 227 228 void slb_save_contents(struct slb_entry *slb_ptr) 229 { 230 int i; 231 unsigned long e, v; 232 233 /* Save slb_cache_ptr value. */ 234 get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr; 235 236 if (!slb_ptr) 237 return; 238 239 for (i = 0; i < mmu_slb_size; i++) { 240 asm volatile("slbmfee %0,%1" : "=r" (e) : "r" (i)); 241 asm volatile("slbmfev %0,%1" : "=r" (v) : "r" (i)); 242 slb_ptr->esid = e; 243 slb_ptr->vsid = v; 244 slb_ptr++; 245 } 246 } 247 248 void slb_dump_contents(struct slb_entry *slb_ptr) 249 { 250 int i, n; 251 unsigned long e, v; 252 unsigned long llp; 253 254 if (!slb_ptr) 255 return; 256 257 pr_err("SLB contents of cpu 0x%x\n", smp_processor_id()); 258 pr_err("Last SLB entry inserted at slot %d\n", get_paca()->stab_rr); 259 260 for (i = 0; i < mmu_slb_size; i++) { 261 e = slb_ptr->esid; 262 v = slb_ptr->vsid; 263 slb_ptr++; 264 265 if (!e && !v) 266 continue; 267 268 pr_err("%02d %016lx %016lx\n", i, e, v); 269 270 if (!(e & SLB_ESID_V)) { 271 pr_err("\n"); 272 continue; 273 } 274 llp = v & SLB_VSID_LLP; 275 if (v & SLB_VSID_B_1T) { 276 pr_err(" 1T ESID=%9lx VSID=%13lx LLP:%3lx\n", 277 GET_ESID_1T(e), 278 (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp); 279 } else { 280 pr_err(" 256M ESID=%9lx VSID=%13lx LLP:%3lx\n", 281 GET_ESID(e), 282 (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp); 283 } 284 } 285 pr_err("----------------------------------\n"); 286 287 /* Dump slb cache entires as well. */ 288 pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr); 289 pr_err("Valid SLB cache entries:\n"); 290 n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES); 291 for (i = 0; i < n; i++) 292 pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); 293 pr_err("Rest of SLB cache entries:\n"); 294 for (i = n; i < SLB_CACHE_ENTRIES; i++) 295 pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); 296 } 297 298 void slb_vmalloc_update(void) 299 { 300 /* 301 * vmalloc is not bolted, so just have to flush non-bolted. 302 */ 303 slb_flush_and_restore_bolted(); 304 } 305 306 static bool preload_hit(struct thread_info *ti, unsigned long esid) 307 { 308 unsigned char i; 309 310 for (i = 0; i < ti->slb_preload_nr; i++) { 311 unsigned char idx; 312 313 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR; 314 if (esid == ti->slb_preload_esid[idx]) 315 return true; 316 } 317 return false; 318 } 319 320 static bool preload_add(struct thread_info *ti, unsigned long ea) 321 { 322 unsigned char idx; 323 unsigned long esid; 324 325 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) { 326 /* EAs are stored >> 28 so 256MB segments don't need clearing */ 327 if (ea & ESID_MASK_1T) 328 ea &= ESID_MASK_1T; 329 } 330 331 esid = ea >> SID_SHIFT; 332 333 if (preload_hit(ti, esid)) 334 return false; 335 336 idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR; 337 ti->slb_preload_esid[idx] = esid; 338 if (ti->slb_preload_nr == SLB_PRELOAD_NR) 339 ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR; 340 else 341 ti->slb_preload_nr++; 342 343 return true; 344 } 345 346 static void preload_age(struct thread_info *ti) 347 { 348 if (!ti->slb_preload_nr) 349 return; 350 ti->slb_preload_nr--; 351 ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR; 352 } 353 354 void slb_setup_new_exec(void) 355 { 356 struct thread_info *ti = current_thread_info(); 357 struct mm_struct *mm = current->mm; 358 unsigned long exec = 0x10000000; 359 360 WARN_ON(irqs_disabled()); 361 362 /* 363 * preload cache can only be used to determine whether a SLB 364 * entry exists if it does not start to overflow. 365 */ 366 if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR) 367 return; 368 369 hard_irq_disable(); 370 371 /* 372 * We have no good place to clear the slb preload cache on exec, 373 * flush_thread is about the earliest arch hook but that happens 374 * after we switch to the mm and have aleady preloaded the SLBEs. 375 * 376 * For the most part that's probably okay to use entries from the 377 * previous exec, they will age out if unused. It may turn out to 378 * be an advantage to clear the cache before switching to it, 379 * however. 380 */ 381 382 /* 383 * preload some userspace segments into the SLB. 384 * Almost all 32 and 64bit PowerPC executables are linked at 385 * 0x10000000 so it makes sense to preload this segment. 386 */ 387 if (!is_kernel_addr(exec)) { 388 if (preload_add(ti, exec)) 389 slb_allocate_user(mm, exec); 390 } 391 392 /* Libraries and mmaps. */ 393 if (!is_kernel_addr(mm->mmap_base)) { 394 if (preload_add(ti, mm->mmap_base)) 395 slb_allocate_user(mm, mm->mmap_base); 396 } 397 398 /* see switch_slb */ 399 asm volatile("isync" : : : "memory"); 400 401 local_irq_enable(); 402 } 403 404 void preload_new_slb_context(unsigned long start, unsigned long sp) 405 { 406 struct thread_info *ti = current_thread_info(); 407 struct mm_struct *mm = current->mm; 408 unsigned long heap = mm->start_brk; 409 410 WARN_ON(irqs_disabled()); 411 412 /* see above */ 413 if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR) 414 return; 415 416 hard_irq_disable(); 417 418 /* Userspace entry address. */ 419 if (!is_kernel_addr(start)) { 420 if (preload_add(ti, start)) 421 slb_allocate_user(mm, start); 422 } 423 424 /* Top of stack, grows down. */ 425 if (!is_kernel_addr(sp)) { 426 if (preload_add(ti, sp)) 427 slb_allocate_user(mm, sp); 428 } 429 430 /* Bottom of heap, grows up. */ 431 if (heap && !is_kernel_addr(heap)) { 432 if (preload_add(ti, heap)) 433 slb_allocate_user(mm, heap); 434 } 435 436 /* see switch_slb */ 437 asm volatile("isync" : : : "memory"); 438 439 local_irq_enable(); 440 } 441 442 static void slb_cache_slbie_kernel(unsigned int index) 443 { 444 unsigned long slbie_data = get_paca()->slb_cache[index]; 445 unsigned long ksp = get_paca()->kstack; 446 447 slbie_data <<= SID_SHIFT; 448 slbie_data |= 0xc000000000000000ULL; 449 if ((ksp & slb_esid_mask(mmu_kernel_ssize)) == slbie_data) 450 return; 451 slbie_data |= mmu_kernel_ssize << SLBIE_SSIZE_SHIFT; 452 453 asm volatile("slbie %0" : : "r" (slbie_data)); 454 } 455 456 static void slb_cache_slbie_user(unsigned int index) 457 { 458 unsigned long slbie_data = get_paca()->slb_cache[index]; 459 460 slbie_data <<= SID_SHIFT; 461 slbie_data |= user_segment_size(slbie_data) << SLBIE_SSIZE_SHIFT; 462 slbie_data |= SLBIE_C; /* user slbs have C=1 */ 463 464 asm volatile("slbie %0" : : "r" (slbie_data)); 465 } 466 467 /* Flush all user entries from the segment table of the current processor. */ 468 void switch_slb(struct task_struct *tsk, struct mm_struct *mm) 469 { 470 struct thread_info *ti = task_thread_info(tsk); 471 unsigned char i; 472 473 /* 474 * We need interrupts hard-disabled here, not just soft-disabled, 475 * so that a PMU interrupt can't occur, which might try to access 476 * user memory (to get a stack trace) and possible cause an SLB miss 477 * which would update the slb_cache/slb_cache_ptr fields in the PACA. 478 */ 479 hard_irq_disable(); 480 isync(); 481 if (stress_slb()) { 482 __slb_flush_and_restore_bolted(false); 483 isync(); 484 get_paca()->slb_cache_ptr = 0; 485 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 486 487 } else if (cpu_has_feature(CPU_FTR_ARCH_300)) { 488 /* 489 * SLBIA IH=3 invalidates all Class=1 SLBEs and their 490 * associated lookaside structures, which matches what 491 * switch_slb wants. So ARCH_300 does not use the slb 492 * cache. 493 */ 494 asm volatile(PPC_SLBIA(3)); 495 496 } else { 497 unsigned long offset = get_paca()->slb_cache_ptr; 498 499 if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) && 500 offset <= SLB_CACHE_ENTRIES) { 501 /* 502 * Could assert_slb_presence(true) here, but 503 * hypervisor or machine check could have come 504 * in and removed the entry at this point. 505 */ 506 507 for (i = 0; i < offset; i++) 508 slb_cache_slbie_user(i); 509 510 /* Workaround POWER5 < DD2.1 issue */ 511 if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1) 512 slb_cache_slbie_user(0); 513 514 } else { 515 /* Flush but retain kernel lookaside information */ 516 __slb_flush_and_restore_bolted(true); 517 isync(); 518 519 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 520 } 521 522 get_paca()->slb_cache_ptr = 0; 523 } 524 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; 525 526 copy_mm_to_paca(mm); 527 528 /* 529 * We gradually age out SLBs after a number of context switches to 530 * reduce reload overhead of unused entries (like we do with FP/VEC 531 * reload). Each time we wrap 256 switches, take an entry out of the 532 * SLB preload cache. 533 */ 534 tsk->thread.load_slb++; 535 if (!tsk->thread.load_slb) { 536 unsigned long pc = KSTK_EIP(tsk); 537 538 preload_age(ti); 539 preload_add(ti, pc); 540 } 541 542 for (i = 0; i < ti->slb_preload_nr; i++) { 543 unsigned char idx; 544 unsigned long ea; 545 546 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR; 547 ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT; 548 549 slb_allocate_user(mm, ea); 550 } 551 552 /* 553 * Synchronize slbmte preloads with possible subsequent user memory 554 * address accesses by the kernel (user mode won't happen until 555 * rfid, which is safe). 556 */ 557 isync(); 558 } 559 560 void slb_set_size(u16 size) 561 { 562 mmu_slb_size = size; 563 } 564 565 void slb_initialize(void) 566 { 567 unsigned long linear_llp, vmalloc_llp, io_llp; 568 unsigned long lflags; 569 static int slb_encoding_inited; 570 #ifdef CONFIG_SPARSEMEM_VMEMMAP 571 unsigned long vmemmap_llp; 572 #endif 573 574 /* Prepare our SLB miss handler based on our page size */ 575 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; 576 io_llp = mmu_psize_defs[mmu_io_psize].sllp; 577 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp; 578 get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp; 579 #ifdef CONFIG_SPARSEMEM_VMEMMAP 580 vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp; 581 #endif 582 if (!slb_encoding_inited) { 583 slb_encoding_inited = 1; 584 pr_devel("SLB: linear LLP = %04lx\n", linear_llp); 585 pr_devel("SLB: io LLP = %04lx\n", io_llp); 586 #ifdef CONFIG_SPARSEMEM_VMEMMAP 587 pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp); 588 #endif 589 } 590 591 get_paca()->stab_rr = SLB_NUM_BOLTED - 1; 592 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 593 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; 594 595 lflags = SLB_VSID_KERNEL | linear_llp; 596 597 /* Invalidate the entire SLB (even entry 0) & all the ERATS */ 598 asm volatile("isync":::"memory"); 599 asm volatile("slbmte %0,%0"::"r" (0) : "memory"); 600 asm volatile("isync; slbia; isync":::"memory"); 601 create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX); 602 603 /* 604 * For the boot cpu, we're running on the stack in init_thread_union, 605 * which is in the first segment of the linear mapping, and also 606 * get_paca()->kstack hasn't been initialized yet. 607 * For secondary cpus, we need to bolt the kernel stack entry now. 608 */ 609 slb_shadow_clear(KSTACK_INDEX); 610 if (raw_smp_processor_id() != boot_cpuid && 611 (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET) 612 create_shadowed_slbe(get_paca()->kstack, 613 mmu_kernel_ssize, lflags, KSTACK_INDEX); 614 615 asm volatile("isync":::"memory"); 616 } 617 618 static void slb_cache_update(unsigned long esid_data) 619 { 620 int slb_cache_index; 621 622 if (cpu_has_feature(CPU_FTR_ARCH_300)) 623 return; /* ISAv3.0B and later does not use slb_cache */ 624 625 if (stress_slb()) 626 return; 627 628 /* 629 * Now update slb cache entries 630 */ 631 slb_cache_index = local_paca->slb_cache_ptr; 632 if (slb_cache_index < SLB_CACHE_ENTRIES) { 633 /* 634 * We have space in slb cache for optimized switch_slb(). 635 * Top 36 bits from esid_data as per ISA 636 */ 637 local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT; 638 local_paca->slb_cache_ptr++; 639 } else { 640 /* 641 * Our cache is full and the current cache content strictly 642 * doesn't indicate the active SLB conents. Bump the ptr 643 * so that switch_slb() will ignore the cache. 644 */ 645 local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1; 646 } 647 } 648 649 static enum slb_index alloc_slb_index(bool kernel) 650 { 651 enum slb_index index; 652 653 /* 654 * The allocation bitmaps can become out of synch with the SLB 655 * when the _switch code does slbie when bolting a new stack 656 * segment and it must not be anywhere else in the SLB. This leaves 657 * a kernel allocated entry that is unused in the SLB. With very 658 * large systems or small segment sizes, the bitmaps could slowly 659 * fill with these entries. They will eventually be cleared out 660 * by the round robin allocator in that case, so it's probably not 661 * worth accounting for. 662 */ 663 664 /* 665 * SLBs beyond 32 entries are allocated with stab_rr only 666 * POWER7/8/9 have 32 SLB entries, this could be expanded if a 667 * future CPU has more. 668 */ 669 if (local_paca->slb_used_bitmap != U32_MAX) { 670 index = ffz(local_paca->slb_used_bitmap); 671 local_paca->slb_used_bitmap |= 1U << index; 672 if (kernel) 673 local_paca->slb_kern_bitmap |= 1U << index; 674 } else { 675 /* round-robin replacement of slb starting at SLB_NUM_BOLTED. */ 676 index = local_paca->stab_rr; 677 if (index < (mmu_slb_size - 1)) 678 index++; 679 else 680 index = SLB_NUM_BOLTED; 681 local_paca->stab_rr = index; 682 if (index < 32) { 683 if (kernel) 684 local_paca->slb_kern_bitmap |= 1U << index; 685 else 686 local_paca->slb_kern_bitmap &= ~(1U << index); 687 } 688 } 689 BUG_ON(index < SLB_NUM_BOLTED); 690 691 return index; 692 } 693 694 static long slb_insert_entry(unsigned long ea, unsigned long context, 695 unsigned long flags, int ssize, bool kernel) 696 { 697 unsigned long vsid; 698 unsigned long vsid_data, esid_data; 699 enum slb_index index; 700 701 vsid = get_vsid(context, ea, ssize); 702 if (!vsid) 703 return -EFAULT; 704 705 /* 706 * There must not be a kernel SLB fault in alloc_slb_index or before 707 * slbmte here or the allocation bitmaps could get out of whack with 708 * the SLB. 709 * 710 * User SLB faults or preloads take this path which might get inlined 711 * into the caller, so add compiler barriers here to ensure unsafe 712 * memory accesses do not come between. 713 */ 714 barrier(); 715 716 index = alloc_slb_index(kernel); 717 718 vsid_data = __mk_vsid_data(vsid, ssize, flags); 719 esid_data = mk_esid_data(ea, ssize, index); 720 721 /* 722 * No need for an isync before or after this slbmte. The exception 723 * we enter with and the rfid we exit with are context synchronizing. 724 * User preloads should add isync afterwards in case the kernel 725 * accesses user memory before it returns to userspace with rfid. 726 */ 727 assert_slb_presence(false, ea); 728 if (stress_slb()) { 729 int slb_cache_index = local_paca->slb_cache_ptr; 730 731 /* 732 * stress_slb() does not use slb cache, repurpose as a 733 * cache of inserted (non-bolted) kernel SLB entries. All 734 * non-bolted kernel entries are flushed on any user fault, 735 * or if there are already 3 non-boled kernel entries. 736 */ 737 BUILD_BUG_ON(SLB_CACHE_ENTRIES < 3); 738 if (!kernel || slb_cache_index == 3) { 739 int i; 740 741 for (i = 0; i < slb_cache_index; i++) 742 slb_cache_slbie_kernel(i); 743 slb_cache_index = 0; 744 } 745 746 if (kernel) 747 local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT; 748 local_paca->slb_cache_ptr = slb_cache_index; 749 } 750 asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)); 751 752 barrier(); 753 754 if (!kernel) 755 slb_cache_update(esid_data); 756 757 return 0; 758 } 759 760 static long slb_allocate_kernel(unsigned long ea, unsigned long id) 761 { 762 unsigned long context; 763 unsigned long flags; 764 int ssize; 765 766 if (id == LINEAR_MAP_REGION_ID) { 767 768 /* We only support upto MAX_PHYSMEM_BITS */ 769 if ((ea & EA_MASK) > (1UL << MAX_PHYSMEM_BITS)) 770 return -EFAULT; 771 772 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp; 773 774 #ifdef CONFIG_SPARSEMEM_VMEMMAP 775 } else if (id == VMEMMAP_REGION_ID) { 776 777 if (ea >= H_VMEMMAP_END) 778 return -EFAULT; 779 780 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp; 781 #endif 782 } else if (id == VMALLOC_REGION_ID) { 783 784 if (ea >= H_VMALLOC_END) 785 return -EFAULT; 786 787 flags = local_paca->vmalloc_sllp; 788 789 } else if (id == IO_REGION_ID) { 790 791 if (ea >= H_KERN_IO_END) 792 return -EFAULT; 793 794 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp; 795 796 } else { 797 return -EFAULT; 798 } 799 800 ssize = MMU_SEGSIZE_1T; 801 if (!mmu_has_feature(MMU_FTR_1T_SEGMENT)) 802 ssize = MMU_SEGSIZE_256M; 803 804 context = get_kernel_context(ea); 805 806 return slb_insert_entry(ea, context, flags, ssize, true); 807 } 808 809 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea) 810 { 811 unsigned long context; 812 unsigned long flags; 813 int bpsize; 814 int ssize; 815 816 /* 817 * consider this as bad access if we take a SLB miss 818 * on an address above addr limit. 819 */ 820 if (ea >= mm_ctx_slb_addr_limit(&mm->context)) 821 return -EFAULT; 822 823 context = get_user_context(&mm->context, ea); 824 if (!context) 825 return -EFAULT; 826 827 if (unlikely(ea >= H_PGTABLE_RANGE)) { 828 WARN_ON(1); 829 return -EFAULT; 830 } 831 832 ssize = user_segment_size(ea); 833 834 bpsize = get_slice_psize(mm, ea); 835 flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp; 836 837 return slb_insert_entry(ea, context, flags, ssize, false); 838 } 839 840 long do_slb_fault(struct pt_regs *regs, unsigned long ea) 841 { 842 unsigned long id = get_region_id(ea); 843 844 /* IRQs are not reconciled here, so can't check irqs_disabled */ 845 VM_WARN_ON(mfmsr() & MSR_EE); 846 847 if (unlikely(!(regs->msr & MSR_RI))) 848 return -EINVAL; 849 850 /* 851 * SLB kernel faults must be very careful not to touch anything 852 * that is not bolted. E.g., PACA and global variables are okay, 853 * mm->context stuff is not. 854 * 855 * SLB user faults can access all of kernel memory, but must be 856 * careful not to touch things like IRQ state because it is not 857 * "reconciled" here. The difficulty is that we must use 858 * fast_exception_return to return from kernel SLB faults without 859 * looking at possible non-bolted memory. We could test user vs 860 * kernel faults in the interrupt handler asm and do a full fault, 861 * reconcile, ret_from_except for user faults which would make them 862 * first class kernel code. But for performance it's probably nicer 863 * if they go via fast_exception_return too. 864 */ 865 if (id >= LINEAR_MAP_REGION_ID) { 866 long err; 867 #ifdef CONFIG_DEBUG_VM 868 /* Catch recursive kernel SLB faults. */ 869 BUG_ON(local_paca->in_kernel_slb_handler); 870 local_paca->in_kernel_slb_handler = 1; 871 #endif 872 err = slb_allocate_kernel(ea, id); 873 #ifdef CONFIG_DEBUG_VM 874 local_paca->in_kernel_slb_handler = 0; 875 #endif 876 return err; 877 } else { 878 struct mm_struct *mm = current->mm; 879 long err; 880 881 if (unlikely(!mm)) 882 return -EFAULT; 883 884 err = slb_allocate_user(mm, ea); 885 if (!err) 886 preload_add(current_thread_info(), ea); 887 888 return err; 889 } 890 } 891 892 void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err) 893 { 894 if (err == -EFAULT) { 895 if (user_mode(regs)) 896 _exception(SIGSEGV, regs, SEGV_BNDERR, ea); 897 else 898 bad_page_fault(regs, ea, SIGSEGV); 899 } else if (err == -EINVAL) { 900 unrecoverable_exception(regs); 901 } else { 902 BUG(); 903 } 904 } 905