1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerPC64 SLB support. 4 * 5 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM 6 * Based on earlier code written by: 7 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com 8 * Copyright (c) 2001 Dave Engebretsen 9 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 10 */ 11 12 #include <asm/asm-prototypes.h> 13 #include <asm/interrupt.h> 14 #include <asm/mmu.h> 15 #include <asm/mmu_context.h> 16 #include <asm/paca.h> 17 #include <asm/ppc-opcode.h> 18 #include <asm/cputable.h> 19 #include <asm/cacheflush.h> 20 #include <asm/smp.h> 21 #include <linux/compiler.h> 22 #include <linux/context_tracking.h> 23 #include <linux/mm_types.h> 24 #include <linux/pgtable.h> 25 26 #include <asm/udbg.h> 27 #include <asm/code-patching.h> 28 29 #include "internal.h" 30 31 32 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea); 33 34 bool stress_slb_enabled __initdata; 35 36 static int __init parse_stress_slb(char *p) 37 { 38 stress_slb_enabled = true; 39 return 0; 40 } 41 early_param("stress_slb", parse_stress_slb); 42 43 __ro_after_init DEFINE_STATIC_KEY_FALSE(stress_slb_key); 44 45 static void assert_slb_presence(bool present, unsigned long ea) 46 { 47 #ifdef CONFIG_DEBUG_VM 48 unsigned long tmp; 49 50 WARN_ON_ONCE(mfmsr() & MSR_EE); 51 52 if (!cpu_has_feature(CPU_FTR_ARCH_206)) 53 return; 54 55 /* 56 * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware 57 * ignores all other bits from 0-27, so just clear them all. 58 */ 59 ea &= ~((1UL << SID_SHIFT) - 1); 60 asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0"); 61 62 WARN_ON(present == (tmp == 0)); 63 #endif 64 } 65 66 static inline void slb_shadow_update(unsigned long ea, int ssize, 67 unsigned long flags, 68 enum slb_index index) 69 { 70 struct slb_shadow *p = get_slb_shadow(); 71 72 /* 73 * Clear the ESID first so the entry is not valid while we are 74 * updating it. No write barriers are needed here, provided 75 * we only update the current CPU's SLB shadow buffer. 76 */ 77 WRITE_ONCE(p->save_area[index].esid, 0); 78 WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags))); 79 WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index))); 80 } 81 82 static inline void slb_shadow_clear(enum slb_index index) 83 { 84 WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index)); 85 } 86 87 static inline void create_shadowed_slbe(unsigned long ea, int ssize, 88 unsigned long flags, 89 enum slb_index index) 90 { 91 /* 92 * Updating the shadow buffer before writing the SLB ensures 93 * we don't get a stale entry here if we get preempted by PHYP 94 * between these two statements. 95 */ 96 slb_shadow_update(ea, ssize, flags, index); 97 98 assert_slb_presence(false, ea); 99 asm volatile("slbmte %0,%1" : 100 : "r" (mk_vsid_data(ea, ssize, flags)), 101 "r" (mk_esid_data(ea, ssize, index)) 102 : "memory" ); 103 } 104 105 /* 106 * Insert bolted entries into SLB (which may not be empty, so don't clear 107 * slb_cache_ptr). 108 */ 109 void __slb_restore_bolted_realmode(void) 110 { 111 struct slb_shadow *p = get_slb_shadow(); 112 enum slb_index index; 113 114 /* No isync needed because realmode. */ 115 for (index = 0; index < SLB_NUM_BOLTED; index++) { 116 asm volatile("slbmte %0,%1" : 117 : "r" (be64_to_cpu(p->save_area[index].vsid)), 118 "r" (be64_to_cpu(p->save_area[index].esid))); 119 } 120 121 assert_slb_presence(true, local_paca->kstack); 122 } 123 124 /* 125 * Insert the bolted entries into an empty SLB. 126 */ 127 void slb_restore_bolted_realmode(void) 128 { 129 __slb_restore_bolted_realmode(); 130 get_paca()->slb_cache_ptr = 0; 131 132 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 133 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; 134 } 135 136 /* 137 * This flushes all SLB entries including 0, so it must be realmode. 138 */ 139 void slb_flush_all_realmode(void) 140 { 141 asm volatile("slbmte %0,%0; slbia" : : "r" (0)); 142 } 143 144 static __always_inline void __slb_flush_and_restore_bolted(bool preserve_kernel_lookaside) 145 { 146 struct slb_shadow *p = get_slb_shadow(); 147 unsigned long ksp_esid_data, ksp_vsid_data; 148 u32 ih; 149 150 /* 151 * SLBIA IH=1 on ISA v2.05 and newer processors may preserve lookaside 152 * information created with Class=0 entries, which we use for kernel 153 * SLB entries (the SLB entries themselves are still invalidated). 154 * 155 * Older processors will ignore this optimisation. Over-invalidation 156 * is fine because we never rely on lookaside information existing. 157 */ 158 if (preserve_kernel_lookaside) 159 ih = 1; 160 else 161 ih = 0; 162 163 ksp_esid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].esid); 164 ksp_vsid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].vsid); 165 166 asm volatile(PPC_SLBIA(%0)" \n" 167 "slbmte %1, %2 \n" 168 :: "i" (ih), 169 "r" (ksp_vsid_data), 170 "r" (ksp_esid_data) 171 : "memory"); 172 } 173 174 /* 175 * This flushes non-bolted entries, it can be run in virtual mode. Must 176 * be called with interrupts disabled. 177 */ 178 void slb_flush_and_restore_bolted(void) 179 { 180 BUILD_BUG_ON(SLB_NUM_BOLTED != 2); 181 182 WARN_ON(!irqs_disabled()); 183 184 /* 185 * We can't take a PMU exception in the following code, so hard 186 * disable interrupts. 187 */ 188 hard_irq_disable(); 189 190 isync(); 191 __slb_flush_and_restore_bolted(false); 192 isync(); 193 194 assert_slb_presence(true, get_paca()->kstack); 195 196 get_paca()->slb_cache_ptr = 0; 197 198 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 199 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; 200 } 201 202 void slb_save_contents(struct slb_entry *slb_ptr) 203 { 204 int i; 205 unsigned long e, v; 206 207 /* Save slb_cache_ptr value. */ 208 get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr; 209 210 if (!slb_ptr) 211 return; 212 213 for (i = 0; i < mmu_slb_size; i++) { 214 asm volatile("slbmfee %0,%1" : "=r" (e) : "r" (i)); 215 asm volatile("slbmfev %0,%1" : "=r" (v) : "r" (i)); 216 slb_ptr->esid = e; 217 slb_ptr->vsid = v; 218 slb_ptr++; 219 } 220 } 221 222 void slb_dump_contents(struct slb_entry *slb_ptr) 223 { 224 int i, n; 225 unsigned long e, v; 226 unsigned long llp; 227 228 if (!slb_ptr) 229 return; 230 231 pr_err("SLB contents of cpu 0x%x\n", smp_processor_id()); 232 233 for (i = 0; i < mmu_slb_size; i++) { 234 e = slb_ptr->esid; 235 v = slb_ptr->vsid; 236 slb_ptr++; 237 238 if (!e && !v) 239 continue; 240 241 pr_err("%02d %016lx %016lx %s\n", i, e, v, 242 (e & SLB_ESID_V) ? "VALID" : "NOT VALID"); 243 244 if (!(e & SLB_ESID_V)) 245 continue; 246 247 llp = v & SLB_VSID_LLP; 248 if (v & SLB_VSID_B_1T) { 249 pr_err(" 1T ESID=%9lx VSID=%13lx LLP:%3lx\n", 250 GET_ESID_1T(e), 251 (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp); 252 } else { 253 pr_err(" 256M ESID=%9lx VSID=%13lx LLP:%3lx\n", 254 GET_ESID(e), 255 (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp); 256 } 257 } 258 259 if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) { 260 /* RR is not so useful as it's often not used for allocation */ 261 pr_err("SLB RR allocator index %d\n", get_paca()->stab_rr); 262 263 /* Dump slb cache entires as well. */ 264 pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr); 265 pr_err("Valid SLB cache entries:\n"); 266 n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES); 267 for (i = 0; i < n; i++) 268 pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); 269 pr_err("Rest of SLB cache entries:\n"); 270 for (i = n; i < SLB_CACHE_ENTRIES; i++) 271 pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); 272 } 273 } 274 275 void slb_vmalloc_update(void) 276 { 277 /* 278 * vmalloc is not bolted, so just have to flush non-bolted. 279 */ 280 slb_flush_and_restore_bolted(); 281 } 282 283 static bool preload_hit(struct thread_info *ti, unsigned long esid) 284 { 285 unsigned char i; 286 287 for (i = 0; i < ti->slb_preload_nr; i++) { 288 unsigned char idx; 289 290 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR; 291 if (esid == ti->slb_preload_esid[idx]) 292 return true; 293 } 294 return false; 295 } 296 297 static bool preload_add(struct thread_info *ti, unsigned long ea) 298 { 299 unsigned char idx; 300 unsigned long esid; 301 302 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) { 303 /* EAs are stored >> 28 so 256MB segments don't need clearing */ 304 if (ea & ESID_MASK_1T) 305 ea &= ESID_MASK_1T; 306 } 307 308 esid = ea >> SID_SHIFT; 309 310 if (preload_hit(ti, esid)) 311 return false; 312 313 idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR; 314 ti->slb_preload_esid[idx] = esid; 315 if (ti->slb_preload_nr == SLB_PRELOAD_NR) 316 ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR; 317 else 318 ti->slb_preload_nr++; 319 320 return true; 321 } 322 323 static void preload_age(struct thread_info *ti) 324 { 325 if (!ti->slb_preload_nr) 326 return; 327 ti->slb_preload_nr--; 328 ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR; 329 } 330 331 void slb_setup_new_exec(void) 332 { 333 struct thread_info *ti = current_thread_info(); 334 struct mm_struct *mm = current->mm; 335 unsigned long exec = 0x10000000; 336 337 WARN_ON(irqs_disabled()); 338 339 /* 340 * preload cache can only be used to determine whether a SLB 341 * entry exists if it does not start to overflow. 342 */ 343 if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR) 344 return; 345 346 hard_irq_disable(); 347 348 /* 349 * We have no good place to clear the slb preload cache on exec, 350 * flush_thread is about the earliest arch hook but that happens 351 * after we switch to the mm and have aleady preloaded the SLBEs. 352 * 353 * For the most part that's probably okay to use entries from the 354 * previous exec, they will age out if unused. It may turn out to 355 * be an advantage to clear the cache before switching to it, 356 * however. 357 */ 358 359 /* 360 * preload some userspace segments into the SLB. 361 * Almost all 32 and 64bit PowerPC executables are linked at 362 * 0x10000000 so it makes sense to preload this segment. 363 */ 364 if (!is_kernel_addr(exec)) { 365 if (preload_add(ti, exec)) 366 slb_allocate_user(mm, exec); 367 } 368 369 /* Libraries and mmaps. */ 370 if (!is_kernel_addr(mm->mmap_base)) { 371 if (preload_add(ti, mm->mmap_base)) 372 slb_allocate_user(mm, mm->mmap_base); 373 } 374 375 /* see switch_slb */ 376 asm volatile("isync" : : : "memory"); 377 378 local_irq_enable(); 379 } 380 381 void preload_new_slb_context(unsigned long start, unsigned long sp) 382 { 383 struct thread_info *ti = current_thread_info(); 384 struct mm_struct *mm = current->mm; 385 unsigned long heap = mm->start_brk; 386 387 WARN_ON(irqs_disabled()); 388 389 /* see above */ 390 if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR) 391 return; 392 393 hard_irq_disable(); 394 395 /* Userspace entry address. */ 396 if (!is_kernel_addr(start)) { 397 if (preload_add(ti, start)) 398 slb_allocate_user(mm, start); 399 } 400 401 /* Top of stack, grows down. */ 402 if (!is_kernel_addr(sp)) { 403 if (preload_add(ti, sp)) 404 slb_allocate_user(mm, sp); 405 } 406 407 /* Bottom of heap, grows up. */ 408 if (heap && !is_kernel_addr(heap)) { 409 if (preload_add(ti, heap)) 410 slb_allocate_user(mm, heap); 411 } 412 413 /* see switch_slb */ 414 asm volatile("isync" : : : "memory"); 415 416 local_irq_enable(); 417 } 418 419 static void slb_cache_slbie_kernel(unsigned int index) 420 { 421 unsigned long slbie_data = get_paca()->slb_cache[index]; 422 unsigned long ksp = get_paca()->kstack; 423 424 slbie_data <<= SID_SHIFT; 425 slbie_data |= 0xc000000000000000ULL; 426 if ((ksp & slb_esid_mask(mmu_kernel_ssize)) == slbie_data) 427 return; 428 slbie_data |= mmu_kernel_ssize << SLBIE_SSIZE_SHIFT; 429 430 asm volatile("slbie %0" : : "r" (slbie_data)); 431 } 432 433 static void slb_cache_slbie_user(unsigned int index) 434 { 435 unsigned long slbie_data = get_paca()->slb_cache[index]; 436 437 slbie_data <<= SID_SHIFT; 438 slbie_data |= user_segment_size(slbie_data) << SLBIE_SSIZE_SHIFT; 439 slbie_data |= SLBIE_C; /* user slbs have C=1 */ 440 441 asm volatile("slbie %0" : : "r" (slbie_data)); 442 } 443 444 /* Flush all user entries from the segment table of the current processor. */ 445 void switch_slb(struct task_struct *tsk, struct mm_struct *mm) 446 { 447 struct thread_info *ti = task_thread_info(tsk); 448 unsigned char i; 449 450 /* 451 * We need interrupts hard-disabled here, not just soft-disabled, 452 * so that a PMU interrupt can't occur, which might try to access 453 * user memory (to get a stack trace) and possible cause an SLB miss 454 * which would update the slb_cache/slb_cache_ptr fields in the PACA. 455 */ 456 hard_irq_disable(); 457 isync(); 458 if (stress_slb()) { 459 __slb_flush_and_restore_bolted(false); 460 isync(); 461 get_paca()->slb_cache_ptr = 0; 462 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 463 464 } else if (cpu_has_feature(CPU_FTR_ARCH_300)) { 465 /* 466 * SLBIA IH=3 invalidates all Class=1 SLBEs and their 467 * associated lookaside structures, which matches what 468 * switch_slb wants. So ARCH_300 does not use the slb 469 * cache. 470 */ 471 asm volatile(PPC_SLBIA(3)); 472 473 } else { 474 unsigned long offset = get_paca()->slb_cache_ptr; 475 476 if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) && 477 offset <= SLB_CACHE_ENTRIES) { 478 /* 479 * Could assert_slb_presence(true) here, but 480 * hypervisor or machine check could have come 481 * in and removed the entry at this point. 482 */ 483 484 for (i = 0; i < offset; i++) 485 slb_cache_slbie_user(i); 486 487 /* Workaround POWER5 < DD2.1 issue */ 488 if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1) 489 slb_cache_slbie_user(0); 490 491 } else { 492 /* Flush but retain kernel lookaside information */ 493 __slb_flush_and_restore_bolted(true); 494 isync(); 495 496 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 497 } 498 499 get_paca()->slb_cache_ptr = 0; 500 } 501 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; 502 503 copy_mm_to_paca(mm); 504 505 /* 506 * We gradually age out SLBs after a number of context switches to 507 * reduce reload overhead of unused entries (like we do with FP/VEC 508 * reload). Each time we wrap 256 switches, take an entry out of the 509 * SLB preload cache. 510 */ 511 tsk->thread.load_slb++; 512 if (!tsk->thread.load_slb) { 513 unsigned long pc = KSTK_EIP(tsk); 514 515 preload_age(ti); 516 preload_add(ti, pc); 517 } 518 519 for (i = 0; i < ti->slb_preload_nr; i++) { 520 unsigned char idx; 521 unsigned long ea; 522 523 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR; 524 ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT; 525 526 slb_allocate_user(mm, ea); 527 } 528 529 /* 530 * Synchronize slbmte preloads with possible subsequent user memory 531 * address accesses by the kernel (user mode won't happen until 532 * rfid, which is safe). 533 */ 534 isync(); 535 } 536 537 void slb_set_size(u16 size) 538 { 539 mmu_slb_size = size; 540 } 541 542 void slb_initialize(void) 543 { 544 unsigned long linear_llp, vmalloc_llp, io_llp; 545 unsigned long lflags; 546 static int slb_encoding_inited; 547 #ifdef CONFIG_SPARSEMEM_VMEMMAP 548 unsigned long vmemmap_llp; 549 #endif 550 551 /* Prepare our SLB miss handler based on our page size */ 552 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; 553 io_llp = mmu_psize_defs[mmu_io_psize].sllp; 554 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp; 555 get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp; 556 #ifdef CONFIG_SPARSEMEM_VMEMMAP 557 vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp; 558 #endif 559 if (!slb_encoding_inited) { 560 slb_encoding_inited = 1; 561 pr_devel("SLB: linear LLP = %04lx\n", linear_llp); 562 pr_devel("SLB: io LLP = %04lx\n", io_llp); 563 #ifdef CONFIG_SPARSEMEM_VMEMMAP 564 pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp); 565 #endif 566 } 567 568 get_paca()->stab_rr = SLB_NUM_BOLTED - 1; 569 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 570 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; 571 572 lflags = SLB_VSID_KERNEL | linear_llp; 573 574 /* Invalidate the entire SLB (even entry 0) & all the ERATS */ 575 asm volatile("isync":::"memory"); 576 asm volatile("slbmte %0,%0"::"r" (0) : "memory"); 577 asm volatile("isync; slbia; isync":::"memory"); 578 create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX); 579 580 /* 581 * For the boot cpu, we're running on the stack in init_thread_union, 582 * which is in the first segment of the linear mapping, and also 583 * get_paca()->kstack hasn't been initialized yet. 584 * For secondary cpus, we need to bolt the kernel stack entry now. 585 */ 586 slb_shadow_clear(KSTACK_INDEX); 587 if (raw_smp_processor_id() != boot_cpuid && 588 (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET) 589 create_shadowed_slbe(get_paca()->kstack, 590 mmu_kernel_ssize, lflags, KSTACK_INDEX); 591 592 asm volatile("isync":::"memory"); 593 } 594 595 static void slb_cache_update(unsigned long esid_data) 596 { 597 int slb_cache_index; 598 599 if (cpu_has_feature(CPU_FTR_ARCH_300)) 600 return; /* ISAv3.0B and later does not use slb_cache */ 601 602 if (stress_slb()) 603 return; 604 605 /* 606 * Now update slb cache entries 607 */ 608 slb_cache_index = local_paca->slb_cache_ptr; 609 if (slb_cache_index < SLB_CACHE_ENTRIES) { 610 /* 611 * We have space in slb cache for optimized switch_slb(). 612 * Top 36 bits from esid_data as per ISA 613 */ 614 local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT; 615 local_paca->slb_cache_ptr++; 616 } else { 617 /* 618 * Our cache is full and the current cache content strictly 619 * doesn't indicate the active SLB conents. Bump the ptr 620 * so that switch_slb() will ignore the cache. 621 */ 622 local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1; 623 } 624 } 625 626 static enum slb_index alloc_slb_index(bool kernel) 627 { 628 enum slb_index index; 629 630 /* 631 * The allocation bitmaps can become out of synch with the SLB 632 * when the _switch code does slbie when bolting a new stack 633 * segment and it must not be anywhere else in the SLB. This leaves 634 * a kernel allocated entry that is unused in the SLB. With very 635 * large systems or small segment sizes, the bitmaps could slowly 636 * fill with these entries. They will eventually be cleared out 637 * by the round robin allocator in that case, so it's probably not 638 * worth accounting for. 639 */ 640 641 /* 642 * SLBs beyond 32 entries are allocated with stab_rr only 643 * POWER7/8/9 have 32 SLB entries, this could be expanded if a 644 * future CPU has more. 645 */ 646 if (local_paca->slb_used_bitmap != U32_MAX) { 647 index = ffz(local_paca->slb_used_bitmap); 648 local_paca->slb_used_bitmap |= 1U << index; 649 if (kernel) 650 local_paca->slb_kern_bitmap |= 1U << index; 651 } else { 652 /* round-robin replacement of slb starting at SLB_NUM_BOLTED. */ 653 index = local_paca->stab_rr; 654 if (index < (mmu_slb_size - 1)) 655 index++; 656 else 657 index = SLB_NUM_BOLTED; 658 local_paca->stab_rr = index; 659 if (index < 32) { 660 if (kernel) 661 local_paca->slb_kern_bitmap |= 1U << index; 662 else 663 local_paca->slb_kern_bitmap &= ~(1U << index); 664 } 665 } 666 BUG_ON(index < SLB_NUM_BOLTED); 667 668 return index; 669 } 670 671 static long slb_insert_entry(unsigned long ea, unsigned long context, 672 unsigned long flags, int ssize, bool kernel) 673 { 674 unsigned long vsid; 675 unsigned long vsid_data, esid_data; 676 enum slb_index index; 677 678 vsid = get_vsid(context, ea, ssize); 679 if (!vsid) 680 return -EFAULT; 681 682 /* 683 * There must not be a kernel SLB fault in alloc_slb_index or before 684 * slbmte here or the allocation bitmaps could get out of whack with 685 * the SLB. 686 * 687 * User SLB faults or preloads take this path which might get inlined 688 * into the caller, so add compiler barriers here to ensure unsafe 689 * memory accesses do not come between. 690 */ 691 barrier(); 692 693 index = alloc_slb_index(kernel); 694 695 vsid_data = __mk_vsid_data(vsid, ssize, flags); 696 esid_data = mk_esid_data(ea, ssize, index); 697 698 /* 699 * No need for an isync before or after this slbmte. The exception 700 * we enter with and the rfid we exit with are context synchronizing. 701 * User preloads should add isync afterwards in case the kernel 702 * accesses user memory before it returns to userspace with rfid. 703 */ 704 assert_slb_presence(false, ea); 705 if (stress_slb()) { 706 int slb_cache_index = local_paca->slb_cache_ptr; 707 708 /* 709 * stress_slb() does not use slb cache, repurpose as a 710 * cache of inserted (non-bolted) kernel SLB entries. All 711 * non-bolted kernel entries are flushed on any user fault, 712 * or if there are already 3 non-boled kernel entries. 713 */ 714 BUILD_BUG_ON(SLB_CACHE_ENTRIES < 3); 715 if (!kernel || slb_cache_index == 3) { 716 int i; 717 718 for (i = 0; i < slb_cache_index; i++) 719 slb_cache_slbie_kernel(i); 720 slb_cache_index = 0; 721 } 722 723 if (kernel) 724 local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT; 725 local_paca->slb_cache_ptr = slb_cache_index; 726 } 727 asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)); 728 729 barrier(); 730 731 if (!kernel) 732 slb_cache_update(esid_data); 733 734 return 0; 735 } 736 737 static long slb_allocate_kernel(unsigned long ea, unsigned long id) 738 { 739 unsigned long context; 740 unsigned long flags; 741 int ssize; 742 743 if (id == LINEAR_MAP_REGION_ID) { 744 745 /* We only support upto H_MAX_PHYSMEM_BITS */ 746 if ((ea & EA_MASK) > (1UL << H_MAX_PHYSMEM_BITS)) 747 return -EFAULT; 748 749 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp; 750 751 #ifdef CONFIG_SPARSEMEM_VMEMMAP 752 } else if (id == VMEMMAP_REGION_ID) { 753 754 if (ea >= H_VMEMMAP_END) 755 return -EFAULT; 756 757 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp; 758 #endif 759 } else if (id == VMALLOC_REGION_ID) { 760 761 if (ea >= H_VMALLOC_END) 762 return -EFAULT; 763 764 flags = local_paca->vmalloc_sllp; 765 766 } else if (id == IO_REGION_ID) { 767 768 if (ea >= H_KERN_IO_END) 769 return -EFAULT; 770 771 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp; 772 773 } else { 774 return -EFAULT; 775 } 776 777 ssize = MMU_SEGSIZE_1T; 778 if (!mmu_has_feature(MMU_FTR_1T_SEGMENT)) 779 ssize = MMU_SEGSIZE_256M; 780 781 context = get_kernel_context(ea); 782 783 return slb_insert_entry(ea, context, flags, ssize, true); 784 } 785 786 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea) 787 { 788 unsigned long context; 789 unsigned long flags; 790 int bpsize; 791 int ssize; 792 793 /* 794 * consider this as bad access if we take a SLB miss 795 * on an address above addr limit. 796 */ 797 if (ea >= mm_ctx_slb_addr_limit(&mm->context)) 798 return -EFAULT; 799 800 context = get_user_context(&mm->context, ea); 801 if (!context) 802 return -EFAULT; 803 804 if (unlikely(ea >= H_PGTABLE_RANGE)) { 805 WARN_ON(1); 806 return -EFAULT; 807 } 808 809 ssize = user_segment_size(ea); 810 811 bpsize = get_slice_psize(mm, ea); 812 flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp; 813 814 return slb_insert_entry(ea, context, flags, ssize, false); 815 } 816 817 DEFINE_INTERRUPT_HANDLER_RAW(do_slb_fault) 818 { 819 unsigned long ea = regs->dar; 820 unsigned long id = get_region_id(ea); 821 822 /* IRQs are not reconciled here, so can't check irqs_disabled */ 823 VM_WARN_ON(mfmsr() & MSR_EE); 824 825 if (regs_is_unrecoverable(regs)) 826 return -EINVAL; 827 828 /* 829 * SLB kernel faults must be very careful not to touch anything that is 830 * not bolted. E.g., PACA and global variables are okay, mm->context 831 * stuff is not. SLB user faults may access all of memory (and induce 832 * one recursive SLB kernel fault), so the kernel fault must not 833 * trample on the user fault state at those points. 834 */ 835 836 /* 837 * This is a raw interrupt handler, for performance, so that 838 * fast_interrupt_return can be used. The handler must not touch local 839 * irq state, or schedule. We could test for usermode and upgrade to a 840 * normal process context (synchronous) interrupt for those, which 841 * would make them first-class kernel code and able to be traced and 842 * instrumented, although performance would suffer a bit, it would 843 * probably be a good tradeoff. 844 */ 845 if (id >= LINEAR_MAP_REGION_ID) { 846 long err; 847 #ifdef CONFIG_DEBUG_VM 848 /* Catch recursive kernel SLB faults. */ 849 BUG_ON(local_paca->in_kernel_slb_handler); 850 local_paca->in_kernel_slb_handler = 1; 851 #endif 852 err = slb_allocate_kernel(ea, id); 853 #ifdef CONFIG_DEBUG_VM 854 local_paca->in_kernel_slb_handler = 0; 855 #endif 856 return err; 857 } else { 858 struct mm_struct *mm = current->mm; 859 long err; 860 861 if (unlikely(!mm)) 862 return -EFAULT; 863 864 err = slb_allocate_user(mm, ea); 865 if (!err) 866 preload_add(current_thread_info(), ea); 867 868 return err; 869 } 870 } 871 872 DEFINE_INTERRUPT_HANDLER(do_bad_slb_fault) 873 { 874 int err = regs->result; 875 876 if (err == -EFAULT) { 877 if (user_mode(regs)) 878 _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar); 879 else 880 bad_page_fault(regs, SIGSEGV); 881 } else if (err == -EINVAL) { 882 unrecoverable_exception(regs); 883 } else { 884 BUG(); 885 } 886 } 887