1 /* 2 * PowerPC64 SLB support. 3 * 4 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM 5 * Based on earlier code written by: 6 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com 7 * Copyright (c) 2001 Dave Engebretsen 8 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 9 * 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <asm/asm-prototypes.h> 18 #include <asm/pgtable.h> 19 #include <asm/mmu.h> 20 #include <asm/mmu_context.h> 21 #include <asm/paca.h> 22 #include <asm/ppc-opcode.h> 23 #include <asm/cputable.h> 24 #include <asm/cacheflush.h> 25 #include <asm/smp.h> 26 #include <linux/compiler.h> 27 #include <linux/context_tracking.h> 28 #include <linux/mm_types.h> 29 30 #include <asm/udbg.h> 31 #include <asm/code-patching.h> 32 33 enum slb_index { 34 LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */ 35 KSTACK_INDEX = 1, /* Kernel stack map */ 36 }; 37 38 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea); 39 40 #define slb_esid_mask(ssize) \ 41 (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T) 42 43 static inline unsigned long mk_esid_data(unsigned long ea, int ssize, 44 enum slb_index index) 45 { 46 return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index; 47 } 48 49 static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize, 50 unsigned long flags) 51 { 52 return (vsid << slb_vsid_shift(ssize)) | flags | 53 ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT); 54 } 55 56 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize, 57 unsigned long flags) 58 { 59 return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags); 60 } 61 62 static void assert_slb_presence(bool present, unsigned long ea) 63 { 64 #ifdef CONFIG_DEBUG_VM 65 unsigned long tmp; 66 67 WARN_ON_ONCE(mfmsr() & MSR_EE); 68 69 if (!cpu_has_feature(CPU_FTR_ARCH_206)) 70 return; 71 72 /* 73 * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware 74 * ignores all other bits from 0-27, so just clear them all. 75 */ 76 ea &= ~((1UL << 28) - 1); 77 asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0"); 78 79 WARN_ON(present == (tmp == 0)); 80 #endif 81 } 82 83 static inline void slb_shadow_update(unsigned long ea, int ssize, 84 unsigned long flags, 85 enum slb_index index) 86 { 87 struct slb_shadow *p = get_slb_shadow(); 88 89 /* 90 * Clear the ESID first so the entry is not valid while we are 91 * updating it. No write barriers are needed here, provided 92 * we only update the current CPU's SLB shadow buffer. 93 */ 94 WRITE_ONCE(p->save_area[index].esid, 0); 95 WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags))); 96 WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index))); 97 } 98 99 static inline void slb_shadow_clear(enum slb_index index) 100 { 101 WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index)); 102 } 103 104 static inline void create_shadowed_slbe(unsigned long ea, int ssize, 105 unsigned long flags, 106 enum slb_index index) 107 { 108 /* 109 * Updating the shadow buffer before writing the SLB ensures 110 * we don't get a stale entry here if we get preempted by PHYP 111 * between these two statements. 112 */ 113 slb_shadow_update(ea, ssize, flags, index); 114 115 assert_slb_presence(false, ea); 116 asm volatile("slbmte %0,%1" : 117 : "r" (mk_vsid_data(ea, ssize, flags)), 118 "r" (mk_esid_data(ea, ssize, index)) 119 : "memory" ); 120 } 121 122 /* 123 * Insert bolted entries into SLB (which may not be empty, so don't clear 124 * slb_cache_ptr). 125 */ 126 void __slb_restore_bolted_realmode(void) 127 { 128 struct slb_shadow *p = get_slb_shadow(); 129 enum slb_index index; 130 131 /* No isync needed because realmode. */ 132 for (index = 0; index < SLB_NUM_BOLTED; index++) { 133 asm volatile("slbmte %0,%1" : 134 : "r" (be64_to_cpu(p->save_area[index].vsid)), 135 "r" (be64_to_cpu(p->save_area[index].esid))); 136 } 137 138 assert_slb_presence(true, local_paca->kstack); 139 } 140 141 /* 142 * Insert the bolted entries into an empty SLB. 143 */ 144 void slb_restore_bolted_realmode(void) 145 { 146 __slb_restore_bolted_realmode(); 147 get_paca()->slb_cache_ptr = 0; 148 149 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 150 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; 151 } 152 153 /* 154 * This flushes all SLB entries including 0, so it must be realmode. 155 */ 156 void slb_flush_all_realmode(void) 157 { 158 asm volatile("slbmte %0,%0; slbia" : : "r" (0)); 159 } 160 161 /* 162 * This flushes non-bolted entries, it can be run in virtual mode. Must 163 * be called with interrupts disabled. 164 */ 165 void slb_flush_and_restore_bolted(void) 166 { 167 struct slb_shadow *p = get_slb_shadow(); 168 169 BUILD_BUG_ON(SLB_NUM_BOLTED != 2); 170 171 WARN_ON(!irqs_disabled()); 172 173 /* 174 * We can't take a PMU exception in the following code, so hard 175 * disable interrupts. 176 */ 177 hard_irq_disable(); 178 179 asm volatile("isync\n" 180 "slbia\n" 181 "slbmte %0, %1\n" 182 "isync\n" 183 :: "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].vsid)), 184 "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].esid)) 185 : "memory"); 186 assert_slb_presence(true, get_paca()->kstack); 187 188 get_paca()->slb_cache_ptr = 0; 189 190 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 191 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; 192 } 193 194 void slb_save_contents(struct slb_entry *slb_ptr) 195 { 196 int i; 197 unsigned long e, v; 198 199 /* Save slb_cache_ptr value. */ 200 get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr; 201 202 if (!slb_ptr) 203 return; 204 205 for (i = 0; i < mmu_slb_size; i++) { 206 asm volatile("slbmfee %0,%1" : "=r" (e) : "r" (i)); 207 asm volatile("slbmfev %0,%1" : "=r" (v) : "r" (i)); 208 slb_ptr->esid = e; 209 slb_ptr->vsid = v; 210 slb_ptr++; 211 } 212 } 213 214 void slb_dump_contents(struct slb_entry *slb_ptr) 215 { 216 int i, n; 217 unsigned long e, v; 218 unsigned long llp; 219 220 if (!slb_ptr) 221 return; 222 223 pr_err("SLB contents of cpu 0x%x\n", smp_processor_id()); 224 pr_err("Last SLB entry inserted at slot %d\n", get_paca()->stab_rr); 225 226 for (i = 0; i < mmu_slb_size; i++) { 227 e = slb_ptr->esid; 228 v = slb_ptr->vsid; 229 slb_ptr++; 230 231 if (!e && !v) 232 continue; 233 234 pr_err("%02d %016lx %016lx\n", i, e, v); 235 236 if (!(e & SLB_ESID_V)) { 237 pr_err("\n"); 238 continue; 239 } 240 llp = v & SLB_VSID_LLP; 241 if (v & SLB_VSID_B_1T) { 242 pr_err(" 1T ESID=%9lx VSID=%13lx LLP:%3lx\n", 243 GET_ESID_1T(e), 244 (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp); 245 } else { 246 pr_err(" 256M ESID=%9lx VSID=%13lx LLP:%3lx\n", 247 GET_ESID(e), 248 (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp); 249 } 250 } 251 pr_err("----------------------------------\n"); 252 253 /* Dump slb cache entires as well. */ 254 pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr); 255 pr_err("Valid SLB cache entries:\n"); 256 n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES); 257 for (i = 0; i < n; i++) 258 pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); 259 pr_err("Rest of SLB cache entries:\n"); 260 for (i = n; i < SLB_CACHE_ENTRIES; i++) 261 pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); 262 } 263 264 void slb_vmalloc_update(void) 265 { 266 /* 267 * vmalloc is not bolted, so just have to flush non-bolted. 268 */ 269 slb_flush_and_restore_bolted(); 270 } 271 272 static bool preload_hit(struct thread_info *ti, unsigned long esid) 273 { 274 unsigned char i; 275 276 for (i = 0; i < ti->slb_preload_nr; i++) { 277 unsigned char idx; 278 279 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR; 280 if (esid == ti->slb_preload_esid[idx]) 281 return true; 282 } 283 return false; 284 } 285 286 static bool preload_add(struct thread_info *ti, unsigned long ea) 287 { 288 unsigned char idx; 289 unsigned long esid; 290 291 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) { 292 /* EAs are stored >> 28 so 256MB segments don't need clearing */ 293 if (ea & ESID_MASK_1T) 294 ea &= ESID_MASK_1T; 295 } 296 297 esid = ea >> SID_SHIFT; 298 299 if (preload_hit(ti, esid)) 300 return false; 301 302 idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR; 303 ti->slb_preload_esid[idx] = esid; 304 if (ti->slb_preload_nr == SLB_PRELOAD_NR) 305 ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR; 306 else 307 ti->slb_preload_nr++; 308 309 return true; 310 } 311 312 static void preload_age(struct thread_info *ti) 313 { 314 if (!ti->slb_preload_nr) 315 return; 316 ti->slb_preload_nr--; 317 ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR; 318 } 319 320 void slb_setup_new_exec(void) 321 { 322 struct thread_info *ti = current_thread_info(); 323 struct mm_struct *mm = current->mm; 324 unsigned long exec = 0x10000000; 325 326 WARN_ON(irqs_disabled()); 327 328 /* 329 * preload cache can only be used to determine whether a SLB 330 * entry exists if it does not start to overflow. 331 */ 332 if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR) 333 return; 334 335 hard_irq_disable(); 336 337 /* 338 * We have no good place to clear the slb preload cache on exec, 339 * flush_thread is about the earliest arch hook but that happens 340 * after we switch to the mm and have aleady preloaded the SLBEs. 341 * 342 * For the most part that's probably okay to use entries from the 343 * previous exec, they will age out if unused. It may turn out to 344 * be an advantage to clear the cache before switching to it, 345 * however. 346 */ 347 348 /* 349 * preload some userspace segments into the SLB. 350 * Almost all 32 and 64bit PowerPC executables are linked at 351 * 0x10000000 so it makes sense to preload this segment. 352 */ 353 if (!is_kernel_addr(exec)) { 354 if (preload_add(ti, exec)) 355 slb_allocate_user(mm, exec); 356 } 357 358 /* Libraries and mmaps. */ 359 if (!is_kernel_addr(mm->mmap_base)) { 360 if (preload_add(ti, mm->mmap_base)) 361 slb_allocate_user(mm, mm->mmap_base); 362 } 363 364 /* see switch_slb */ 365 asm volatile("isync" : : : "memory"); 366 367 local_irq_enable(); 368 } 369 370 void preload_new_slb_context(unsigned long start, unsigned long sp) 371 { 372 struct thread_info *ti = current_thread_info(); 373 struct mm_struct *mm = current->mm; 374 unsigned long heap = mm->start_brk; 375 376 WARN_ON(irqs_disabled()); 377 378 /* see above */ 379 if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR) 380 return; 381 382 hard_irq_disable(); 383 384 /* Userspace entry address. */ 385 if (!is_kernel_addr(start)) { 386 if (preload_add(ti, start)) 387 slb_allocate_user(mm, start); 388 } 389 390 /* Top of stack, grows down. */ 391 if (!is_kernel_addr(sp)) { 392 if (preload_add(ti, sp)) 393 slb_allocate_user(mm, sp); 394 } 395 396 /* Bottom of heap, grows up. */ 397 if (heap && !is_kernel_addr(heap)) { 398 if (preload_add(ti, heap)) 399 slb_allocate_user(mm, heap); 400 } 401 402 /* see switch_slb */ 403 asm volatile("isync" : : : "memory"); 404 405 local_irq_enable(); 406 } 407 408 409 /* Flush all user entries from the segment table of the current processor. */ 410 void switch_slb(struct task_struct *tsk, struct mm_struct *mm) 411 { 412 struct thread_info *ti = task_thread_info(tsk); 413 unsigned char i; 414 415 /* 416 * We need interrupts hard-disabled here, not just soft-disabled, 417 * so that a PMU interrupt can't occur, which might try to access 418 * user memory (to get a stack trace) and possible cause an SLB miss 419 * which would update the slb_cache/slb_cache_ptr fields in the PACA. 420 */ 421 hard_irq_disable(); 422 asm volatile("isync" : : : "memory"); 423 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 424 /* 425 * SLBIA IH=3 invalidates all Class=1 SLBEs and their 426 * associated lookaside structures, which matches what 427 * switch_slb wants. So ARCH_300 does not use the slb 428 * cache. 429 */ 430 asm volatile(PPC_SLBIA(3)); 431 } else { 432 unsigned long offset = get_paca()->slb_cache_ptr; 433 434 if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) && 435 offset <= SLB_CACHE_ENTRIES) { 436 unsigned long slbie_data = 0; 437 438 for (i = 0; i < offset; i++) { 439 unsigned long ea; 440 441 ea = (unsigned long) 442 get_paca()->slb_cache[i] << SID_SHIFT; 443 /* 444 * Could assert_slb_presence(true) here, but 445 * hypervisor or machine check could have come 446 * in and removed the entry at this point. 447 */ 448 449 slbie_data = ea; 450 slbie_data |= user_segment_size(slbie_data) 451 << SLBIE_SSIZE_SHIFT; 452 slbie_data |= SLBIE_C; /* user slbs have C=1 */ 453 asm volatile("slbie %0" : : "r" (slbie_data)); 454 } 455 456 /* Workaround POWER5 < DD2.1 issue */ 457 if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1) 458 asm volatile("slbie %0" : : "r" (slbie_data)); 459 460 } else { 461 struct slb_shadow *p = get_slb_shadow(); 462 unsigned long ksp_esid_data = 463 be64_to_cpu(p->save_area[KSTACK_INDEX].esid); 464 unsigned long ksp_vsid_data = 465 be64_to_cpu(p->save_area[KSTACK_INDEX].vsid); 466 467 asm volatile(PPC_SLBIA(1) "\n" 468 "slbmte %0,%1\n" 469 "isync" 470 :: "r"(ksp_vsid_data), 471 "r"(ksp_esid_data)); 472 473 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 474 } 475 476 get_paca()->slb_cache_ptr = 0; 477 } 478 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; 479 480 copy_mm_to_paca(mm); 481 482 /* 483 * We gradually age out SLBs after a number of context switches to 484 * reduce reload overhead of unused entries (like we do with FP/VEC 485 * reload). Each time we wrap 256 switches, take an entry out of the 486 * SLB preload cache. 487 */ 488 tsk->thread.load_slb++; 489 if (!tsk->thread.load_slb) { 490 unsigned long pc = KSTK_EIP(tsk); 491 492 preload_age(ti); 493 preload_add(ti, pc); 494 } 495 496 for (i = 0; i < ti->slb_preload_nr; i++) { 497 unsigned char idx; 498 unsigned long ea; 499 500 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR; 501 ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT; 502 503 slb_allocate_user(mm, ea); 504 } 505 506 /* 507 * Synchronize slbmte preloads with possible subsequent user memory 508 * address accesses by the kernel (user mode won't happen until 509 * rfid, which is safe). 510 */ 511 asm volatile("isync" : : : "memory"); 512 } 513 514 void slb_set_size(u16 size) 515 { 516 mmu_slb_size = size; 517 } 518 519 void slb_initialize(void) 520 { 521 unsigned long linear_llp, vmalloc_llp, io_llp; 522 unsigned long lflags; 523 static int slb_encoding_inited; 524 #ifdef CONFIG_SPARSEMEM_VMEMMAP 525 unsigned long vmemmap_llp; 526 #endif 527 528 /* Prepare our SLB miss handler based on our page size */ 529 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; 530 io_llp = mmu_psize_defs[mmu_io_psize].sllp; 531 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp; 532 get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp; 533 #ifdef CONFIG_SPARSEMEM_VMEMMAP 534 vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp; 535 #endif 536 if (!slb_encoding_inited) { 537 slb_encoding_inited = 1; 538 pr_devel("SLB: linear LLP = %04lx\n", linear_llp); 539 pr_devel("SLB: io LLP = %04lx\n", io_llp); 540 #ifdef CONFIG_SPARSEMEM_VMEMMAP 541 pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp); 542 #endif 543 } 544 545 get_paca()->stab_rr = SLB_NUM_BOLTED - 1; 546 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 547 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; 548 549 lflags = SLB_VSID_KERNEL | linear_llp; 550 551 /* Invalidate the entire SLB (even entry 0) & all the ERATS */ 552 asm volatile("isync":::"memory"); 553 asm volatile("slbmte %0,%0"::"r" (0) : "memory"); 554 asm volatile("isync; slbia; isync":::"memory"); 555 create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX); 556 557 /* 558 * For the boot cpu, we're running on the stack in init_thread_union, 559 * which is in the first segment of the linear mapping, and also 560 * get_paca()->kstack hasn't been initialized yet. 561 * For secondary cpus, we need to bolt the kernel stack entry now. 562 */ 563 slb_shadow_clear(KSTACK_INDEX); 564 if (raw_smp_processor_id() != boot_cpuid && 565 (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET) 566 create_shadowed_slbe(get_paca()->kstack, 567 mmu_kernel_ssize, lflags, KSTACK_INDEX); 568 569 asm volatile("isync":::"memory"); 570 } 571 572 static void slb_cache_update(unsigned long esid_data) 573 { 574 int slb_cache_index; 575 576 if (cpu_has_feature(CPU_FTR_ARCH_300)) 577 return; /* ISAv3.0B and later does not use slb_cache */ 578 579 /* 580 * Now update slb cache entries 581 */ 582 slb_cache_index = local_paca->slb_cache_ptr; 583 if (slb_cache_index < SLB_CACHE_ENTRIES) { 584 /* 585 * We have space in slb cache for optimized switch_slb(). 586 * Top 36 bits from esid_data as per ISA 587 */ 588 local_paca->slb_cache[slb_cache_index++] = esid_data >> 28; 589 local_paca->slb_cache_ptr++; 590 } else { 591 /* 592 * Our cache is full and the current cache content strictly 593 * doesn't indicate the active SLB conents. Bump the ptr 594 * so that switch_slb() will ignore the cache. 595 */ 596 local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1; 597 } 598 } 599 600 static enum slb_index alloc_slb_index(bool kernel) 601 { 602 enum slb_index index; 603 604 /* 605 * The allocation bitmaps can become out of synch with the SLB 606 * when the _switch code does slbie when bolting a new stack 607 * segment and it must not be anywhere else in the SLB. This leaves 608 * a kernel allocated entry that is unused in the SLB. With very 609 * large systems or small segment sizes, the bitmaps could slowly 610 * fill with these entries. They will eventually be cleared out 611 * by the round robin allocator in that case, so it's probably not 612 * worth accounting for. 613 */ 614 615 /* 616 * SLBs beyond 32 entries are allocated with stab_rr only 617 * POWER7/8/9 have 32 SLB entries, this could be expanded if a 618 * future CPU has more. 619 */ 620 if (local_paca->slb_used_bitmap != U32_MAX) { 621 index = ffz(local_paca->slb_used_bitmap); 622 local_paca->slb_used_bitmap |= 1U << index; 623 if (kernel) 624 local_paca->slb_kern_bitmap |= 1U << index; 625 } else { 626 /* round-robin replacement of slb starting at SLB_NUM_BOLTED. */ 627 index = local_paca->stab_rr; 628 if (index < (mmu_slb_size - 1)) 629 index++; 630 else 631 index = SLB_NUM_BOLTED; 632 local_paca->stab_rr = index; 633 if (index < 32) { 634 if (kernel) 635 local_paca->slb_kern_bitmap |= 1U << index; 636 else 637 local_paca->slb_kern_bitmap &= ~(1U << index); 638 } 639 } 640 BUG_ON(index < SLB_NUM_BOLTED); 641 642 return index; 643 } 644 645 static long slb_insert_entry(unsigned long ea, unsigned long context, 646 unsigned long flags, int ssize, bool kernel) 647 { 648 unsigned long vsid; 649 unsigned long vsid_data, esid_data; 650 enum slb_index index; 651 652 vsid = get_vsid(context, ea, ssize); 653 if (!vsid) 654 return -EFAULT; 655 656 /* 657 * There must not be a kernel SLB fault in alloc_slb_index or before 658 * slbmte here or the allocation bitmaps could get out of whack with 659 * the SLB. 660 * 661 * User SLB faults or preloads take this path which might get inlined 662 * into the caller, so add compiler barriers here to ensure unsafe 663 * memory accesses do not come between. 664 */ 665 barrier(); 666 667 index = alloc_slb_index(kernel); 668 669 vsid_data = __mk_vsid_data(vsid, ssize, flags); 670 esid_data = mk_esid_data(ea, ssize, index); 671 672 /* 673 * No need for an isync before or after this slbmte. The exception 674 * we enter with and the rfid we exit with are context synchronizing. 675 * User preloads should add isync afterwards in case the kernel 676 * accesses user memory before it returns to userspace with rfid. 677 */ 678 assert_slb_presence(false, ea); 679 asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)); 680 681 barrier(); 682 683 if (!kernel) 684 slb_cache_update(esid_data); 685 686 return 0; 687 } 688 689 static long slb_allocate_kernel(unsigned long ea, unsigned long id) 690 { 691 unsigned long context; 692 unsigned long flags; 693 int ssize; 694 695 if (id == LINEAR_MAP_REGION_ID) { 696 697 /* We only support upto MAX_PHYSMEM_BITS */ 698 if ((ea & EA_MASK) > (1UL << MAX_PHYSMEM_BITS)) 699 return -EFAULT; 700 701 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp; 702 703 #ifdef CONFIG_SPARSEMEM_VMEMMAP 704 } else if (id == VMEMMAP_REGION_ID) { 705 706 if (ea >= H_VMEMMAP_END) 707 return -EFAULT; 708 709 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp; 710 #endif 711 } else if (id == VMALLOC_REGION_ID) { 712 713 if (ea >= H_VMALLOC_END) 714 return -EFAULT; 715 716 flags = local_paca->vmalloc_sllp; 717 718 } else if (id == IO_REGION_ID) { 719 720 if (ea >= H_KERN_IO_END) 721 return -EFAULT; 722 723 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp; 724 725 } else { 726 return -EFAULT; 727 } 728 729 ssize = MMU_SEGSIZE_1T; 730 if (!mmu_has_feature(MMU_FTR_1T_SEGMENT)) 731 ssize = MMU_SEGSIZE_256M; 732 733 context = get_kernel_context(ea); 734 735 return slb_insert_entry(ea, context, flags, ssize, true); 736 } 737 738 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea) 739 { 740 unsigned long context; 741 unsigned long flags; 742 int bpsize; 743 int ssize; 744 745 /* 746 * consider this as bad access if we take a SLB miss 747 * on an address above addr limit. 748 */ 749 if (ea >= mm_ctx_slb_addr_limit(&mm->context)) 750 return -EFAULT; 751 752 context = get_user_context(&mm->context, ea); 753 if (!context) 754 return -EFAULT; 755 756 if (unlikely(ea >= H_PGTABLE_RANGE)) { 757 WARN_ON(1); 758 return -EFAULT; 759 } 760 761 ssize = user_segment_size(ea); 762 763 bpsize = get_slice_psize(mm, ea); 764 flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp; 765 766 return slb_insert_entry(ea, context, flags, ssize, false); 767 } 768 769 long do_slb_fault(struct pt_regs *regs, unsigned long ea) 770 { 771 unsigned long id = get_region_id(ea); 772 773 /* IRQs are not reconciled here, so can't check irqs_disabled */ 774 VM_WARN_ON(mfmsr() & MSR_EE); 775 776 if (unlikely(!(regs->msr & MSR_RI))) 777 return -EINVAL; 778 779 /* 780 * SLB kernel faults must be very careful not to touch anything 781 * that is not bolted. E.g., PACA and global variables are okay, 782 * mm->context stuff is not. 783 * 784 * SLB user faults can access all of kernel memory, but must be 785 * careful not to touch things like IRQ state because it is not 786 * "reconciled" here. The difficulty is that we must use 787 * fast_exception_return to return from kernel SLB faults without 788 * looking at possible non-bolted memory. We could test user vs 789 * kernel faults in the interrupt handler asm and do a full fault, 790 * reconcile, ret_from_except for user faults which would make them 791 * first class kernel code. But for performance it's probably nicer 792 * if they go via fast_exception_return too. 793 */ 794 if (id >= LINEAR_MAP_REGION_ID) { 795 long err; 796 #ifdef CONFIG_DEBUG_VM 797 /* Catch recursive kernel SLB faults. */ 798 BUG_ON(local_paca->in_kernel_slb_handler); 799 local_paca->in_kernel_slb_handler = 1; 800 #endif 801 err = slb_allocate_kernel(ea, id); 802 #ifdef CONFIG_DEBUG_VM 803 local_paca->in_kernel_slb_handler = 0; 804 #endif 805 return err; 806 } else { 807 struct mm_struct *mm = current->mm; 808 long err; 809 810 if (unlikely(!mm)) 811 return -EFAULT; 812 813 err = slb_allocate_user(mm, ea); 814 if (!err) 815 preload_add(current_thread_info(), ea); 816 817 return err; 818 } 819 } 820 821 void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err) 822 { 823 if (err == -EFAULT) { 824 if (user_mode(regs)) 825 _exception(SIGSEGV, regs, SEGV_BNDERR, ea); 826 else 827 bad_page_fault(regs, ea, SIGSEGV); 828 } else if (err == -EINVAL) { 829 unrecoverable_exception(regs); 830 } else { 831 BUG(); 832 } 833 } 834