xref: /openbmc/linux/arch/powerpc/mm/book3s64/slb.c (revision 1fa0a7dc)
1 /*
2  * PowerPC64 SLB support.
3  *
4  * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
5  * Based on earlier code written by:
6  * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7  *    Copyright (c) 2001 Dave Engebretsen
8  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
9  *
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16 
17 #include <asm/asm-prototypes.h>
18 #include <asm/pgtable.h>
19 #include <asm/mmu.h>
20 #include <asm/mmu_context.h>
21 #include <asm/paca.h>
22 #include <asm/ppc-opcode.h>
23 #include <asm/cputable.h>
24 #include <asm/cacheflush.h>
25 #include <asm/smp.h>
26 #include <linux/compiler.h>
27 #include <linux/context_tracking.h>
28 #include <linux/mm_types.h>
29 
30 #include <asm/udbg.h>
31 #include <asm/code-patching.h>
32 
33 enum slb_index {
34 	LINEAR_INDEX	= 0, /* Kernel linear map  (0xc000000000000000) */
35 	KSTACK_INDEX	= 1, /* Kernel stack map */
36 };
37 
38 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);
39 
40 #define slb_esid_mask(ssize)	\
41 	(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
42 
43 static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
44 					 enum slb_index index)
45 {
46 	return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
47 }
48 
49 static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
50 					 unsigned long flags)
51 {
52 	return (vsid << slb_vsid_shift(ssize)) | flags |
53 		((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
54 }
55 
56 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
57 					 unsigned long flags)
58 {
59 	return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
60 }
61 
62 static void assert_slb_presence(bool present, unsigned long ea)
63 {
64 #ifdef CONFIG_DEBUG_VM
65 	unsigned long tmp;
66 
67 	WARN_ON_ONCE(mfmsr() & MSR_EE);
68 
69 	if (!cpu_has_feature(CPU_FTR_ARCH_206))
70 		return;
71 
72 	/*
73 	 * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware
74 	 * ignores all other bits from 0-27, so just clear them all.
75 	 */
76 	ea &= ~((1UL << 28) - 1);
77 	asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0");
78 
79 	WARN_ON(present == (tmp == 0));
80 #endif
81 }
82 
83 static inline void slb_shadow_update(unsigned long ea, int ssize,
84 				     unsigned long flags,
85 				     enum slb_index index)
86 {
87 	struct slb_shadow *p = get_slb_shadow();
88 
89 	/*
90 	 * Clear the ESID first so the entry is not valid while we are
91 	 * updating it.  No write barriers are needed here, provided
92 	 * we only update the current CPU's SLB shadow buffer.
93 	 */
94 	WRITE_ONCE(p->save_area[index].esid, 0);
95 	WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
96 	WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
97 }
98 
99 static inline void slb_shadow_clear(enum slb_index index)
100 {
101 	WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
102 }
103 
104 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
105 					unsigned long flags,
106 					enum slb_index index)
107 {
108 	/*
109 	 * Updating the shadow buffer before writing the SLB ensures
110 	 * we don't get a stale entry here if we get preempted by PHYP
111 	 * between these two statements.
112 	 */
113 	slb_shadow_update(ea, ssize, flags, index);
114 
115 	assert_slb_presence(false, ea);
116 	asm volatile("slbmte  %0,%1" :
117 		     : "r" (mk_vsid_data(ea, ssize, flags)),
118 		       "r" (mk_esid_data(ea, ssize, index))
119 		     : "memory" );
120 }
121 
122 /*
123  * Insert bolted entries into SLB (which may not be empty, so don't clear
124  * slb_cache_ptr).
125  */
126 void __slb_restore_bolted_realmode(void)
127 {
128 	struct slb_shadow *p = get_slb_shadow();
129 	enum slb_index index;
130 
131 	 /* No isync needed because realmode. */
132 	for (index = 0; index < SLB_NUM_BOLTED; index++) {
133 		asm volatile("slbmte  %0,%1" :
134 		     : "r" (be64_to_cpu(p->save_area[index].vsid)),
135 		       "r" (be64_to_cpu(p->save_area[index].esid)));
136 	}
137 
138 	assert_slb_presence(true, local_paca->kstack);
139 }
140 
141 /*
142  * Insert the bolted entries into an empty SLB.
143  */
144 void slb_restore_bolted_realmode(void)
145 {
146 	__slb_restore_bolted_realmode();
147 	get_paca()->slb_cache_ptr = 0;
148 
149 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
150 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
151 }
152 
153 /*
154  * This flushes all SLB entries including 0, so it must be realmode.
155  */
156 void slb_flush_all_realmode(void)
157 {
158 	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
159 }
160 
161 /*
162  * This flushes non-bolted entries, it can be run in virtual mode. Must
163  * be called with interrupts disabled.
164  */
165 void slb_flush_and_restore_bolted(void)
166 {
167 	struct slb_shadow *p = get_slb_shadow();
168 
169 	BUILD_BUG_ON(SLB_NUM_BOLTED != 2);
170 
171 	WARN_ON(!irqs_disabled());
172 
173 	/*
174 	 * We can't take a PMU exception in the following code, so hard
175 	 * disable interrupts.
176 	 */
177 	hard_irq_disable();
178 
179 	asm volatile("isync\n"
180 		     "slbia\n"
181 		     "slbmte  %0, %1\n"
182 		     "isync\n"
183 		     :: "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].vsid)),
184 			"r" (be64_to_cpu(p->save_area[KSTACK_INDEX].esid))
185 		     : "memory");
186 	assert_slb_presence(true, get_paca()->kstack);
187 
188 	get_paca()->slb_cache_ptr = 0;
189 
190 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
191 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
192 }
193 
194 void slb_save_contents(struct slb_entry *slb_ptr)
195 {
196 	int i;
197 	unsigned long e, v;
198 
199 	/* Save slb_cache_ptr value. */
200 	get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr;
201 
202 	if (!slb_ptr)
203 		return;
204 
205 	for (i = 0; i < mmu_slb_size; i++) {
206 		asm volatile("slbmfee  %0,%1" : "=r" (e) : "r" (i));
207 		asm volatile("slbmfev  %0,%1" : "=r" (v) : "r" (i));
208 		slb_ptr->esid = e;
209 		slb_ptr->vsid = v;
210 		slb_ptr++;
211 	}
212 }
213 
214 void slb_dump_contents(struct slb_entry *slb_ptr)
215 {
216 	int i, n;
217 	unsigned long e, v;
218 	unsigned long llp;
219 
220 	if (!slb_ptr)
221 		return;
222 
223 	pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
224 	pr_err("Last SLB entry inserted at slot %d\n", get_paca()->stab_rr);
225 
226 	for (i = 0; i < mmu_slb_size; i++) {
227 		e = slb_ptr->esid;
228 		v = slb_ptr->vsid;
229 		slb_ptr++;
230 
231 		if (!e && !v)
232 			continue;
233 
234 		pr_err("%02d %016lx %016lx\n", i, e, v);
235 
236 		if (!(e & SLB_ESID_V)) {
237 			pr_err("\n");
238 			continue;
239 		}
240 		llp = v & SLB_VSID_LLP;
241 		if (v & SLB_VSID_B_1T) {
242 			pr_err("  1T  ESID=%9lx  VSID=%13lx LLP:%3lx\n",
243 			       GET_ESID_1T(e),
244 			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp);
245 		} else {
246 			pr_err(" 256M ESID=%9lx  VSID=%13lx LLP:%3lx\n",
247 			       GET_ESID(e),
248 			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp);
249 		}
250 	}
251 	pr_err("----------------------------------\n");
252 
253 	/* Dump slb cache entires as well. */
254 	pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr);
255 	pr_err("Valid SLB cache entries:\n");
256 	n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES);
257 	for (i = 0; i < n; i++)
258 		pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
259 	pr_err("Rest of SLB cache entries:\n");
260 	for (i = n; i < SLB_CACHE_ENTRIES; i++)
261 		pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
262 }
263 
264 void slb_vmalloc_update(void)
265 {
266 	/*
267 	 * vmalloc is not bolted, so just have to flush non-bolted.
268 	 */
269 	slb_flush_and_restore_bolted();
270 }
271 
272 static bool preload_hit(struct thread_info *ti, unsigned long esid)
273 {
274 	unsigned char i;
275 
276 	for (i = 0; i < ti->slb_preload_nr; i++) {
277 		unsigned char idx;
278 
279 		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
280 		if (esid == ti->slb_preload_esid[idx])
281 			return true;
282 	}
283 	return false;
284 }
285 
286 static bool preload_add(struct thread_info *ti, unsigned long ea)
287 {
288 	unsigned char idx;
289 	unsigned long esid;
290 
291 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
292 		/* EAs are stored >> 28 so 256MB segments don't need clearing */
293 		if (ea & ESID_MASK_1T)
294 			ea &= ESID_MASK_1T;
295 	}
296 
297 	esid = ea >> SID_SHIFT;
298 
299 	if (preload_hit(ti, esid))
300 		return false;
301 
302 	idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
303 	ti->slb_preload_esid[idx] = esid;
304 	if (ti->slb_preload_nr == SLB_PRELOAD_NR)
305 		ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
306 	else
307 		ti->slb_preload_nr++;
308 
309 	return true;
310 }
311 
312 static void preload_age(struct thread_info *ti)
313 {
314 	if (!ti->slb_preload_nr)
315 		return;
316 	ti->slb_preload_nr--;
317 	ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
318 }
319 
320 void slb_setup_new_exec(void)
321 {
322 	struct thread_info *ti = current_thread_info();
323 	struct mm_struct *mm = current->mm;
324 	unsigned long exec = 0x10000000;
325 
326 	WARN_ON(irqs_disabled());
327 
328 	/*
329 	 * preload cache can only be used to determine whether a SLB
330 	 * entry exists if it does not start to overflow.
331 	 */
332 	if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
333 		return;
334 
335 	hard_irq_disable();
336 
337 	/*
338 	 * We have no good place to clear the slb preload cache on exec,
339 	 * flush_thread is about the earliest arch hook but that happens
340 	 * after we switch to the mm and have aleady preloaded the SLBEs.
341 	 *
342 	 * For the most part that's probably okay to use entries from the
343 	 * previous exec, they will age out if unused. It may turn out to
344 	 * be an advantage to clear the cache before switching to it,
345 	 * however.
346 	 */
347 
348 	/*
349 	 * preload some userspace segments into the SLB.
350 	 * Almost all 32 and 64bit PowerPC executables are linked at
351 	 * 0x10000000 so it makes sense to preload this segment.
352 	 */
353 	if (!is_kernel_addr(exec)) {
354 		if (preload_add(ti, exec))
355 			slb_allocate_user(mm, exec);
356 	}
357 
358 	/* Libraries and mmaps. */
359 	if (!is_kernel_addr(mm->mmap_base)) {
360 		if (preload_add(ti, mm->mmap_base))
361 			slb_allocate_user(mm, mm->mmap_base);
362 	}
363 
364 	/* see switch_slb */
365 	asm volatile("isync" : : : "memory");
366 
367 	local_irq_enable();
368 }
369 
370 void preload_new_slb_context(unsigned long start, unsigned long sp)
371 {
372 	struct thread_info *ti = current_thread_info();
373 	struct mm_struct *mm = current->mm;
374 	unsigned long heap = mm->start_brk;
375 
376 	WARN_ON(irqs_disabled());
377 
378 	/* see above */
379 	if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
380 		return;
381 
382 	hard_irq_disable();
383 
384 	/* Userspace entry address. */
385 	if (!is_kernel_addr(start)) {
386 		if (preload_add(ti, start))
387 			slb_allocate_user(mm, start);
388 	}
389 
390 	/* Top of stack, grows down. */
391 	if (!is_kernel_addr(sp)) {
392 		if (preload_add(ti, sp))
393 			slb_allocate_user(mm, sp);
394 	}
395 
396 	/* Bottom of heap, grows up. */
397 	if (heap && !is_kernel_addr(heap)) {
398 		if (preload_add(ti, heap))
399 			slb_allocate_user(mm, heap);
400 	}
401 
402 	/* see switch_slb */
403 	asm volatile("isync" : : : "memory");
404 
405 	local_irq_enable();
406 }
407 
408 
409 /* Flush all user entries from the segment table of the current processor. */
410 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
411 {
412 	struct thread_info *ti = task_thread_info(tsk);
413 	unsigned char i;
414 
415 	/*
416 	 * We need interrupts hard-disabled here, not just soft-disabled,
417 	 * so that a PMU interrupt can't occur, which might try to access
418 	 * user memory (to get a stack trace) and possible cause an SLB miss
419 	 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
420 	 */
421 	hard_irq_disable();
422 	asm volatile("isync" : : : "memory");
423 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
424 		/*
425 		 * SLBIA IH=3 invalidates all Class=1 SLBEs and their
426 		 * associated lookaside structures, which matches what
427 		 * switch_slb wants. So ARCH_300 does not use the slb
428 		 * cache.
429 		 */
430 		asm volatile(PPC_SLBIA(3));
431 	} else {
432 		unsigned long offset = get_paca()->slb_cache_ptr;
433 
434 		if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
435 		    offset <= SLB_CACHE_ENTRIES) {
436 			unsigned long slbie_data = 0;
437 
438 			for (i = 0; i < offset; i++) {
439 				unsigned long ea;
440 
441 				ea = (unsigned long)
442 					get_paca()->slb_cache[i] << SID_SHIFT;
443 				/*
444 				 * Could assert_slb_presence(true) here, but
445 				 * hypervisor or machine check could have come
446 				 * in and removed the entry at this point.
447 				 */
448 
449 				slbie_data = ea;
450 				slbie_data |= user_segment_size(slbie_data)
451 						<< SLBIE_SSIZE_SHIFT;
452 				slbie_data |= SLBIE_C; /* user slbs have C=1 */
453 				asm volatile("slbie %0" : : "r" (slbie_data));
454 			}
455 
456 			/* Workaround POWER5 < DD2.1 issue */
457 			if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1)
458 				asm volatile("slbie %0" : : "r" (slbie_data));
459 
460 		} else {
461 			struct slb_shadow *p = get_slb_shadow();
462 			unsigned long ksp_esid_data =
463 				be64_to_cpu(p->save_area[KSTACK_INDEX].esid);
464 			unsigned long ksp_vsid_data =
465 				be64_to_cpu(p->save_area[KSTACK_INDEX].vsid);
466 
467 			asm volatile(PPC_SLBIA(1) "\n"
468 				     "slbmte	%0,%1\n"
469 				     "isync"
470 				     :: "r"(ksp_vsid_data),
471 					"r"(ksp_esid_data));
472 
473 			get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
474 		}
475 
476 		get_paca()->slb_cache_ptr = 0;
477 	}
478 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
479 
480 	copy_mm_to_paca(mm);
481 
482 	/*
483 	 * We gradually age out SLBs after a number of context switches to
484 	 * reduce reload overhead of unused entries (like we do with FP/VEC
485 	 * reload). Each time we wrap 256 switches, take an entry out of the
486 	 * SLB preload cache.
487 	 */
488 	tsk->thread.load_slb++;
489 	if (!tsk->thread.load_slb) {
490 		unsigned long pc = KSTK_EIP(tsk);
491 
492 		preload_age(ti);
493 		preload_add(ti, pc);
494 	}
495 
496 	for (i = 0; i < ti->slb_preload_nr; i++) {
497 		unsigned char idx;
498 		unsigned long ea;
499 
500 		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
501 		ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;
502 
503 		slb_allocate_user(mm, ea);
504 	}
505 
506 	/*
507 	 * Synchronize slbmte preloads with possible subsequent user memory
508 	 * address accesses by the kernel (user mode won't happen until
509 	 * rfid, which is safe).
510 	 */
511 	asm volatile("isync" : : : "memory");
512 }
513 
514 void slb_set_size(u16 size)
515 {
516 	mmu_slb_size = size;
517 }
518 
519 void slb_initialize(void)
520 {
521 	unsigned long linear_llp, vmalloc_llp, io_llp;
522 	unsigned long lflags;
523 	static int slb_encoding_inited;
524 #ifdef CONFIG_SPARSEMEM_VMEMMAP
525 	unsigned long vmemmap_llp;
526 #endif
527 
528 	/* Prepare our SLB miss handler based on our page size */
529 	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
530 	io_llp = mmu_psize_defs[mmu_io_psize].sllp;
531 	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
532 	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
533 #ifdef CONFIG_SPARSEMEM_VMEMMAP
534 	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
535 #endif
536 	if (!slb_encoding_inited) {
537 		slb_encoding_inited = 1;
538 		pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
539 		pr_devel("SLB: io      LLP = %04lx\n", io_llp);
540 #ifdef CONFIG_SPARSEMEM_VMEMMAP
541 		pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
542 #endif
543 	}
544 
545 	get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
546 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
547 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
548 
549 	lflags = SLB_VSID_KERNEL | linear_llp;
550 
551 	/* Invalidate the entire SLB (even entry 0) & all the ERATS */
552 	asm volatile("isync":::"memory");
553 	asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
554 	asm volatile("isync; slbia; isync":::"memory");
555 	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
556 
557 	/*
558 	 * For the boot cpu, we're running on the stack in init_thread_union,
559 	 * which is in the first segment of the linear mapping, and also
560 	 * get_paca()->kstack hasn't been initialized yet.
561 	 * For secondary cpus, we need to bolt the kernel stack entry now.
562 	 */
563 	slb_shadow_clear(KSTACK_INDEX);
564 	if (raw_smp_processor_id() != boot_cpuid &&
565 	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
566 		create_shadowed_slbe(get_paca()->kstack,
567 				     mmu_kernel_ssize, lflags, KSTACK_INDEX);
568 
569 	asm volatile("isync":::"memory");
570 }
571 
572 static void slb_cache_update(unsigned long esid_data)
573 {
574 	int slb_cache_index;
575 
576 	if (cpu_has_feature(CPU_FTR_ARCH_300))
577 		return; /* ISAv3.0B and later does not use slb_cache */
578 
579 	/*
580 	 * Now update slb cache entries
581 	 */
582 	slb_cache_index = local_paca->slb_cache_ptr;
583 	if (slb_cache_index < SLB_CACHE_ENTRIES) {
584 		/*
585 		 * We have space in slb cache for optimized switch_slb().
586 		 * Top 36 bits from esid_data as per ISA
587 		 */
588 		local_paca->slb_cache[slb_cache_index++] = esid_data >> 28;
589 		local_paca->slb_cache_ptr++;
590 	} else {
591 		/*
592 		 * Our cache is full and the current cache content strictly
593 		 * doesn't indicate the active SLB conents. Bump the ptr
594 		 * so that switch_slb() will ignore the cache.
595 		 */
596 		local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
597 	}
598 }
599 
600 static enum slb_index alloc_slb_index(bool kernel)
601 {
602 	enum slb_index index;
603 
604 	/*
605 	 * The allocation bitmaps can become out of synch with the SLB
606 	 * when the _switch code does slbie when bolting a new stack
607 	 * segment and it must not be anywhere else in the SLB. This leaves
608 	 * a kernel allocated entry that is unused in the SLB. With very
609 	 * large systems or small segment sizes, the bitmaps could slowly
610 	 * fill with these entries. They will eventually be cleared out
611 	 * by the round robin allocator in that case, so it's probably not
612 	 * worth accounting for.
613 	 */
614 
615 	/*
616 	 * SLBs beyond 32 entries are allocated with stab_rr only
617 	 * POWER7/8/9 have 32 SLB entries, this could be expanded if a
618 	 * future CPU has more.
619 	 */
620 	if (local_paca->slb_used_bitmap != U32_MAX) {
621 		index = ffz(local_paca->slb_used_bitmap);
622 		local_paca->slb_used_bitmap |= 1U << index;
623 		if (kernel)
624 			local_paca->slb_kern_bitmap |= 1U << index;
625 	} else {
626 		/* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
627 		index = local_paca->stab_rr;
628 		if (index < (mmu_slb_size - 1))
629 			index++;
630 		else
631 			index = SLB_NUM_BOLTED;
632 		local_paca->stab_rr = index;
633 		if (index < 32) {
634 			if (kernel)
635 				local_paca->slb_kern_bitmap |= 1U << index;
636 			else
637 				local_paca->slb_kern_bitmap &= ~(1U << index);
638 		}
639 	}
640 	BUG_ON(index < SLB_NUM_BOLTED);
641 
642 	return index;
643 }
644 
645 static long slb_insert_entry(unsigned long ea, unsigned long context,
646 				unsigned long flags, int ssize, bool kernel)
647 {
648 	unsigned long vsid;
649 	unsigned long vsid_data, esid_data;
650 	enum slb_index index;
651 
652 	vsid = get_vsid(context, ea, ssize);
653 	if (!vsid)
654 		return -EFAULT;
655 
656 	/*
657 	 * There must not be a kernel SLB fault in alloc_slb_index or before
658 	 * slbmte here or the allocation bitmaps could get out of whack with
659 	 * the SLB.
660 	 *
661 	 * User SLB faults or preloads take this path which might get inlined
662 	 * into the caller, so add compiler barriers here to ensure unsafe
663 	 * memory accesses do not come between.
664 	 */
665 	barrier();
666 
667 	index = alloc_slb_index(kernel);
668 
669 	vsid_data = __mk_vsid_data(vsid, ssize, flags);
670 	esid_data = mk_esid_data(ea, ssize, index);
671 
672 	/*
673 	 * No need for an isync before or after this slbmte. The exception
674 	 * we enter with and the rfid we exit with are context synchronizing.
675 	 * User preloads should add isync afterwards in case the kernel
676 	 * accesses user memory before it returns to userspace with rfid.
677 	 */
678 	assert_slb_presence(false, ea);
679 	asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));
680 
681 	barrier();
682 
683 	if (!kernel)
684 		slb_cache_update(esid_data);
685 
686 	return 0;
687 }
688 
689 static long slb_allocate_kernel(unsigned long ea, unsigned long id)
690 {
691 	unsigned long context;
692 	unsigned long flags;
693 	int ssize;
694 
695 	if (id == LINEAR_MAP_REGION_ID) {
696 
697 		/* We only support upto MAX_PHYSMEM_BITS */
698 		if ((ea & EA_MASK) > (1UL << MAX_PHYSMEM_BITS))
699 			return -EFAULT;
700 
701 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;
702 
703 #ifdef CONFIG_SPARSEMEM_VMEMMAP
704 	} else if (id == VMEMMAP_REGION_ID) {
705 
706 		if (ea >= H_VMEMMAP_END)
707 			return -EFAULT;
708 
709 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
710 #endif
711 	} else if (id == VMALLOC_REGION_ID) {
712 
713 		if (ea >= H_VMALLOC_END)
714 			return -EFAULT;
715 
716 		flags = local_paca->vmalloc_sllp;
717 
718 	} else if (id == IO_REGION_ID) {
719 
720 		if (ea >= H_KERN_IO_END)
721 			return -EFAULT;
722 
723 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;
724 
725 	} else {
726 		return -EFAULT;
727 	}
728 
729 	ssize = MMU_SEGSIZE_1T;
730 	if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
731 		ssize = MMU_SEGSIZE_256M;
732 
733 	context = get_kernel_context(ea);
734 
735 	return slb_insert_entry(ea, context, flags, ssize, true);
736 }
737 
738 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
739 {
740 	unsigned long context;
741 	unsigned long flags;
742 	int bpsize;
743 	int ssize;
744 
745 	/*
746 	 * consider this as bad access if we take a SLB miss
747 	 * on an address above addr limit.
748 	 */
749 	if (ea >= mm_ctx_slb_addr_limit(&mm->context))
750 		return -EFAULT;
751 
752 	context = get_user_context(&mm->context, ea);
753 	if (!context)
754 		return -EFAULT;
755 
756 	if (unlikely(ea >= H_PGTABLE_RANGE)) {
757 		WARN_ON(1);
758 		return -EFAULT;
759 	}
760 
761 	ssize = user_segment_size(ea);
762 
763 	bpsize = get_slice_psize(mm, ea);
764 	flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
765 
766 	return slb_insert_entry(ea, context, flags, ssize, false);
767 }
768 
769 long do_slb_fault(struct pt_regs *regs, unsigned long ea)
770 {
771 	unsigned long id = get_region_id(ea);
772 
773 	/* IRQs are not reconciled here, so can't check irqs_disabled */
774 	VM_WARN_ON(mfmsr() & MSR_EE);
775 
776 	if (unlikely(!(regs->msr & MSR_RI)))
777 		return -EINVAL;
778 
779 	/*
780 	 * SLB kernel faults must be very careful not to touch anything
781 	 * that is not bolted. E.g., PACA and global variables are okay,
782 	 * mm->context stuff is not.
783 	 *
784 	 * SLB user faults can access all of kernel memory, but must be
785 	 * careful not to touch things like IRQ state because it is not
786 	 * "reconciled" here. The difficulty is that we must use
787 	 * fast_exception_return to return from kernel SLB faults without
788 	 * looking at possible non-bolted memory. We could test user vs
789 	 * kernel faults in the interrupt handler asm and do a full fault,
790 	 * reconcile, ret_from_except for user faults which would make them
791 	 * first class kernel code. But for performance it's probably nicer
792 	 * if they go via fast_exception_return too.
793 	 */
794 	if (id >= LINEAR_MAP_REGION_ID) {
795 		long err;
796 #ifdef CONFIG_DEBUG_VM
797 		/* Catch recursive kernel SLB faults. */
798 		BUG_ON(local_paca->in_kernel_slb_handler);
799 		local_paca->in_kernel_slb_handler = 1;
800 #endif
801 		err = slb_allocate_kernel(ea, id);
802 #ifdef CONFIG_DEBUG_VM
803 		local_paca->in_kernel_slb_handler = 0;
804 #endif
805 		return err;
806 	} else {
807 		struct mm_struct *mm = current->mm;
808 		long err;
809 
810 		if (unlikely(!mm))
811 			return -EFAULT;
812 
813 		err = slb_allocate_user(mm, ea);
814 		if (!err)
815 			preload_add(current_thread_info(), ea);
816 
817 		return err;
818 	}
819 }
820 
821 void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err)
822 {
823 	if (err == -EFAULT) {
824 		if (user_mode(regs))
825 			_exception(SIGSEGV, regs, SEGV_BNDERR, ea);
826 		else
827 			bad_page_fault(regs, ea, SIGSEGV);
828 	} else if (err == -EINVAL) {
829 		unrecoverable_exception(regs);
830 	} else {
831 		BUG();
832 	}
833 }
834