xref: /openbmc/linux/arch/powerpc/mm/book3s64/radix_pgtable.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Page table handling routines for radix page table.
4  *
5  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6  */
7 
8 #define pr_fmt(fmt) "radix-mmu: " fmt
9 
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/sched/mm.h>
13 #include <linux/memblock.h>
14 #include <linux/of_fdt.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/string_helpers.h>
18 #include <linux/stop_machine.h>
19 
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/mmu_context.h>
23 #include <asm/dma.h>
24 #include <asm/machdep.h>
25 #include <asm/mmu.h>
26 #include <asm/firmware.h>
27 #include <asm/powernv.h>
28 #include <asm/sections.h>
29 #include <asm/smp.h>
30 #include <asm/trace.h>
31 #include <asm/uaccess.h>
32 #include <asm/ultravisor.h>
33 
34 #include <trace/events/thp.h>
35 
36 unsigned int mmu_pid_bits;
37 unsigned int mmu_base_pid;
38 
39 static __ref void *early_alloc_pgtable(unsigned long size, int nid,
40 			unsigned long region_start, unsigned long region_end)
41 {
42 	phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
43 	phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
44 	void *ptr;
45 
46 	if (region_start)
47 		min_addr = region_start;
48 	if (region_end)
49 		max_addr = region_end;
50 
51 	ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
52 
53 	if (!ptr)
54 		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
55 		      __func__, size, size, nid, &min_addr, &max_addr);
56 
57 	return ptr;
58 }
59 
60 static int early_map_kernel_page(unsigned long ea, unsigned long pa,
61 			  pgprot_t flags,
62 			  unsigned int map_page_size,
63 			  int nid,
64 			  unsigned long region_start, unsigned long region_end)
65 {
66 	unsigned long pfn = pa >> PAGE_SHIFT;
67 	pgd_t *pgdp;
68 	pud_t *pudp;
69 	pmd_t *pmdp;
70 	pte_t *ptep;
71 
72 	pgdp = pgd_offset_k(ea);
73 	if (pgd_none(*pgdp)) {
74 		pudp = early_alloc_pgtable(PUD_TABLE_SIZE, nid,
75 						region_start, region_end);
76 		pgd_populate(&init_mm, pgdp, pudp);
77 	}
78 	pudp = pud_offset(pgdp, ea);
79 	if (map_page_size == PUD_SIZE) {
80 		ptep = (pte_t *)pudp;
81 		goto set_the_pte;
82 	}
83 	if (pud_none(*pudp)) {
84 		pmdp = early_alloc_pgtable(PMD_TABLE_SIZE, nid,
85 						region_start, region_end);
86 		pud_populate(&init_mm, pudp, pmdp);
87 	}
88 	pmdp = pmd_offset(pudp, ea);
89 	if (map_page_size == PMD_SIZE) {
90 		ptep = pmdp_ptep(pmdp);
91 		goto set_the_pte;
92 	}
93 	if (!pmd_present(*pmdp)) {
94 		ptep = early_alloc_pgtable(PAGE_SIZE, nid,
95 						region_start, region_end);
96 		pmd_populate_kernel(&init_mm, pmdp, ptep);
97 	}
98 	ptep = pte_offset_kernel(pmdp, ea);
99 
100 set_the_pte:
101 	set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
102 	smp_wmb();
103 	return 0;
104 }
105 
106 /*
107  * nid, region_start, and region_end are hints to try to place the page
108  * table memory in the same node or region.
109  */
110 static int __map_kernel_page(unsigned long ea, unsigned long pa,
111 			  pgprot_t flags,
112 			  unsigned int map_page_size,
113 			  int nid,
114 			  unsigned long region_start, unsigned long region_end)
115 {
116 	unsigned long pfn = pa >> PAGE_SHIFT;
117 	pgd_t *pgdp;
118 	pud_t *pudp;
119 	pmd_t *pmdp;
120 	pte_t *ptep;
121 	/*
122 	 * Make sure task size is correct as per the max adddr
123 	 */
124 	BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
125 
126 #ifdef CONFIG_PPC_64K_PAGES
127 	BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
128 #endif
129 
130 	if (unlikely(!slab_is_available()))
131 		return early_map_kernel_page(ea, pa, flags, map_page_size,
132 						nid, region_start, region_end);
133 
134 	/*
135 	 * Should make page table allocation functions be able to take a
136 	 * node, so we can place kernel page tables on the right nodes after
137 	 * boot.
138 	 */
139 	pgdp = pgd_offset_k(ea);
140 	pudp = pud_alloc(&init_mm, pgdp, ea);
141 	if (!pudp)
142 		return -ENOMEM;
143 	if (map_page_size == PUD_SIZE) {
144 		ptep = (pte_t *)pudp;
145 		goto set_the_pte;
146 	}
147 	pmdp = pmd_alloc(&init_mm, pudp, ea);
148 	if (!pmdp)
149 		return -ENOMEM;
150 	if (map_page_size == PMD_SIZE) {
151 		ptep = pmdp_ptep(pmdp);
152 		goto set_the_pte;
153 	}
154 	ptep = pte_alloc_kernel(pmdp, ea);
155 	if (!ptep)
156 		return -ENOMEM;
157 
158 set_the_pte:
159 	set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
160 	smp_wmb();
161 	return 0;
162 }
163 
164 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
165 			  pgprot_t flags,
166 			  unsigned int map_page_size)
167 {
168 	return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
169 }
170 
171 #ifdef CONFIG_STRICT_KERNEL_RWX
172 void radix__change_memory_range(unsigned long start, unsigned long end,
173 				unsigned long clear)
174 {
175 	unsigned long idx;
176 	pgd_t *pgdp;
177 	pud_t *pudp;
178 	pmd_t *pmdp;
179 	pte_t *ptep;
180 
181 	start = ALIGN_DOWN(start, PAGE_SIZE);
182 	end = PAGE_ALIGN(end); // aligns up
183 
184 	pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
185 		 start, end, clear);
186 
187 	for (idx = start; idx < end; idx += PAGE_SIZE) {
188 		pgdp = pgd_offset_k(idx);
189 		pudp = pud_alloc(&init_mm, pgdp, idx);
190 		if (!pudp)
191 			continue;
192 		if (pud_is_leaf(*pudp)) {
193 			ptep = (pte_t *)pudp;
194 			goto update_the_pte;
195 		}
196 		pmdp = pmd_alloc(&init_mm, pudp, idx);
197 		if (!pmdp)
198 			continue;
199 		if (pmd_is_leaf(*pmdp)) {
200 			ptep = pmdp_ptep(pmdp);
201 			goto update_the_pte;
202 		}
203 		ptep = pte_alloc_kernel(pmdp, idx);
204 		if (!ptep)
205 			continue;
206 update_the_pte:
207 		radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
208 	}
209 
210 	radix__flush_tlb_kernel_range(start, end);
211 }
212 
213 void radix__mark_rodata_ro(void)
214 {
215 	unsigned long start, end;
216 
217 	start = (unsigned long)_stext;
218 	end = (unsigned long)__init_begin;
219 
220 	radix__change_memory_range(start, end, _PAGE_WRITE);
221 }
222 
223 void radix__mark_initmem_nx(void)
224 {
225 	unsigned long start = (unsigned long)__init_begin;
226 	unsigned long end = (unsigned long)__init_end;
227 
228 	radix__change_memory_range(start, end, _PAGE_EXEC);
229 }
230 #endif /* CONFIG_STRICT_KERNEL_RWX */
231 
232 static inline void __meminit
233 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
234 {
235 	char buf[10];
236 
237 	if (end <= start)
238 		return;
239 
240 	string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
241 
242 	pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
243 		exec ? " (exec)" : "");
244 }
245 
246 static unsigned long next_boundary(unsigned long addr, unsigned long end)
247 {
248 #ifdef CONFIG_STRICT_KERNEL_RWX
249 	if (addr < __pa_symbol(__init_begin))
250 		return __pa_symbol(__init_begin);
251 #endif
252 	return end;
253 }
254 
255 static int __meminit create_physical_mapping(unsigned long start,
256 					     unsigned long end,
257 					     int nid, pgprot_t _prot)
258 {
259 	unsigned long vaddr, addr, mapping_size = 0;
260 	bool prev_exec, exec = false;
261 	pgprot_t prot;
262 	int psize;
263 
264 	start = _ALIGN_UP(start, PAGE_SIZE);
265 	for (addr = start; addr < end; addr += mapping_size) {
266 		unsigned long gap, previous_size;
267 		int rc;
268 
269 		gap = next_boundary(addr, end) - addr;
270 		previous_size = mapping_size;
271 		prev_exec = exec;
272 
273 		if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
274 		    mmu_psize_defs[MMU_PAGE_1G].shift) {
275 			mapping_size = PUD_SIZE;
276 			psize = MMU_PAGE_1G;
277 		} else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
278 			   mmu_psize_defs[MMU_PAGE_2M].shift) {
279 			mapping_size = PMD_SIZE;
280 			psize = MMU_PAGE_2M;
281 		} else {
282 			mapping_size = PAGE_SIZE;
283 			psize = mmu_virtual_psize;
284 		}
285 
286 		vaddr = (unsigned long)__va(addr);
287 
288 		if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
289 		    overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
290 			prot = PAGE_KERNEL_X;
291 			exec = true;
292 		} else {
293 			prot = _prot;
294 			exec = false;
295 		}
296 
297 		if (mapping_size != previous_size || exec != prev_exec) {
298 			print_mapping(start, addr, previous_size, prev_exec);
299 			start = addr;
300 		}
301 
302 		rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
303 		if (rc)
304 			return rc;
305 
306 		update_page_count(psize, 1);
307 	}
308 
309 	print_mapping(start, addr, mapping_size, exec);
310 	return 0;
311 }
312 
313 static void __init radix_init_pgtable(void)
314 {
315 	unsigned long rts_field;
316 	struct memblock_region *reg;
317 
318 	/* We don't support slb for radix */
319 	mmu_slb_size = 0;
320 	/*
321 	 * Create the linear mapping, using standard page size for now
322 	 */
323 	for_each_memblock(memory, reg) {
324 		/*
325 		 * The memblock allocator  is up at this point, so the
326 		 * page tables will be allocated within the range. No
327 		 * need or a node (which we don't have yet).
328 		 */
329 
330 		if ((reg->base + reg->size) >= RADIX_VMALLOC_START) {
331 			pr_warn("Outside the supported range\n");
332 			continue;
333 		}
334 
335 		WARN_ON(create_physical_mapping(reg->base,
336 						reg->base + reg->size,
337 						-1, PAGE_KERNEL));
338 	}
339 
340 	/* Find out how many PID bits are supported */
341 	if (!cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
342 		if (!mmu_pid_bits)
343 			mmu_pid_bits = 20;
344 		mmu_base_pid = 1;
345 	} else if (cpu_has_feature(CPU_FTR_HVMODE)) {
346 		if (!mmu_pid_bits)
347 			mmu_pid_bits = 20;
348 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
349 		/*
350 		 * When KVM is possible, we only use the top half of the
351 		 * PID space to avoid collisions between host and guest PIDs
352 		 * which can cause problems due to prefetch when exiting the
353 		 * guest with AIL=3
354 		 */
355 		mmu_base_pid = 1 << (mmu_pid_bits - 1);
356 #else
357 		mmu_base_pid = 1;
358 #endif
359 	} else {
360 		/* The guest uses the bottom half of the PID space */
361 		if (!mmu_pid_bits)
362 			mmu_pid_bits = 19;
363 		mmu_base_pid = 1;
364 	}
365 
366 	/*
367 	 * Allocate Partition table and process table for the
368 	 * host.
369 	 */
370 	BUG_ON(PRTB_SIZE_SHIFT > 36);
371 	process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
372 	/*
373 	 * Fill in the process table.
374 	 */
375 	rts_field = radix__get_tree_size();
376 	process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
377 
378 	/*
379 	 * The init_mm context is given the first available (non-zero) PID,
380 	 * which is the "guard PID" and contains no page table. PIDR should
381 	 * never be set to zero because that duplicates the kernel address
382 	 * space at the 0x0... offset (quadrant 0)!
383 	 *
384 	 * An arbitrary PID that may later be allocated by the PID allocator
385 	 * for userspace processes must not be used either, because that
386 	 * would cause stale user mappings for that PID on CPUs outside of
387 	 * the TLB invalidation scheme (because it won't be in mm_cpumask).
388 	 *
389 	 * So permanently carve out one PID for the purpose of a guard PID.
390 	 */
391 	init_mm.context.id = mmu_base_pid;
392 	mmu_base_pid++;
393 }
394 
395 static void __init radix_init_partition_table(void)
396 {
397 	unsigned long rts_field, dw0, dw1;
398 
399 	mmu_partition_table_init();
400 	rts_field = radix__get_tree_size();
401 	dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
402 	dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
403 	mmu_partition_table_set_entry(0, dw0, dw1, false);
404 
405 	pr_info("Initializing Radix MMU\n");
406 }
407 
408 static int __init get_idx_from_shift(unsigned int shift)
409 {
410 	int idx = -1;
411 
412 	switch (shift) {
413 	case 0xc:
414 		idx = MMU_PAGE_4K;
415 		break;
416 	case 0x10:
417 		idx = MMU_PAGE_64K;
418 		break;
419 	case 0x15:
420 		idx = MMU_PAGE_2M;
421 		break;
422 	case 0x1e:
423 		idx = MMU_PAGE_1G;
424 		break;
425 	}
426 	return idx;
427 }
428 
429 static int __init radix_dt_scan_page_sizes(unsigned long node,
430 					   const char *uname, int depth,
431 					   void *data)
432 {
433 	int size = 0;
434 	int shift, idx;
435 	unsigned int ap;
436 	const __be32 *prop;
437 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
438 
439 	/* We are scanning "cpu" nodes only */
440 	if (type == NULL || strcmp(type, "cpu") != 0)
441 		return 0;
442 
443 	/* Find MMU PID size */
444 	prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
445 	if (prop && size == 4)
446 		mmu_pid_bits = be32_to_cpup(prop);
447 
448 	/* Grab page size encodings */
449 	prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
450 	if (!prop)
451 		return 0;
452 
453 	pr_info("Page sizes from device-tree:\n");
454 	for (; size >= 4; size -= 4, ++prop) {
455 
456 		struct mmu_psize_def *def;
457 
458 		/* top 3 bit is AP encoding */
459 		shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
460 		ap = be32_to_cpu(prop[0]) >> 29;
461 		pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
462 
463 		idx = get_idx_from_shift(shift);
464 		if (idx < 0)
465 			continue;
466 
467 		def = &mmu_psize_defs[idx];
468 		def->shift = shift;
469 		def->ap  = ap;
470 	}
471 
472 	/* needed ? */
473 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
474 	return 1;
475 }
476 
477 void __init radix__early_init_devtree(void)
478 {
479 	int rc;
480 
481 	/*
482 	 * Try to find the available page sizes in the device-tree
483 	 */
484 	rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
485 	if (rc != 0)  /* Found */
486 		goto found;
487 	/*
488 	 * let's assume we have page 4k and 64k support
489 	 */
490 	mmu_psize_defs[MMU_PAGE_4K].shift = 12;
491 	mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
492 
493 	mmu_psize_defs[MMU_PAGE_64K].shift = 16;
494 	mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
495 found:
496 	return;
497 }
498 
499 static void radix_init_amor(void)
500 {
501 	/*
502 	* In HV mode, we init AMOR (Authority Mask Override Register) so that
503 	* the hypervisor and guest can setup IAMR (Instruction Authority Mask
504 	* Register), enable key 0 and set it to 1.
505 	*
506 	* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
507 	*/
508 	mtspr(SPRN_AMOR, (3ul << 62));
509 }
510 
511 #ifdef CONFIG_PPC_KUEP
512 void setup_kuep(bool disabled)
513 {
514 	if (disabled || !early_radix_enabled())
515 		return;
516 
517 	if (smp_processor_id() == boot_cpuid)
518 		pr_info("Activating Kernel Userspace Execution Prevention\n");
519 
520 	/*
521 	 * Radix always uses key0 of the IAMR to determine if an access is
522 	 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
523 	 * fetch.
524 	 */
525 	mtspr(SPRN_IAMR, (1ul << 62));
526 }
527 #endif
528 
529 #ifdef CONFIG_PPC_KUAP
530 void setup_kuap(bool disabled)
531 {
532 	if (disabled || !early_radix_enabled())
533 		return;
534 
535 	if (smp_processor_id() == boot_cpuid) {
536 		pr_info("Activating Kernel Userspace Access Prevention\n");
537 		cur_cpu_spec->mmu_features |= MMU_FTR_RADIX_KUAP;
538 	}
539 
540 	/* Make sure userspace can't change the AMR */
541 	mtspr(SPRN_UAMOR, 0);
542 	mtspr(SPRN_AMR, AMR_KUAP_BLOCKED);
543 	isync();
544 }
545 #endif
546 
547 void __init radix__early_init_mmu(void)
548 {
549 	unsigned long lpcr;
550 
551 #ifdef CONFIG_PPC_64K_PAGES
552 	/* PAGE_SIZE mappings */
553 	mmu_virtual_psize = MMU_PAGE_64K;
554 #else
555 	mmu_virtual_psize = MMU_PAGE_4K;
556 #endif
557 
558 #ifdef CONFIG_SPARSEMEM_VMEMMAP
559 	/* vmemmap mapping */
560 	if (mmu_psize_defs[MMU_PAGE_2M].shift) {
561 		/*
562 		 * map vmemmap using 2M if available
563 		 */
564 		mmu_vmemmap_psize = MMU_PAGE_2M;
565 	} else
566 		mmu_vmemmap_psize = mmu_virtual_psize;
567 #endif
568 	/*
569 	 * initialize page table size
570 	 */
571 	__pte_index_size = RADIX_PTE_INDEX_SIZE;
572 	__pmd_index_size = RADIX_PMD_INDEX_SIZE;
573 	__pud_index_size = RADIX_PUD_INDEX_SIZE;
574 	__pgd_index_size = RADIX_PGD_INDEX_SIZE;
575 	__pud_cache_index = RADIX_PUD_INDEX_SIZE;
576 	__pte_table_size = RADIX_PTE_TABLE_SIZE;
577 	__pmd_table_size = RADIX_PMD_TABLE_SIZE;
578 	__pud_table_size = RADIX_PUD_TABLE_SIZE;
579 	__pgd_table_size = RADIX_PGD_TABLE_SIZE;
580 
581 	__pmd_val_bits = RADIX_PMD_VAL_BITS;
582 	__pud_val_bits = RADIX_PUD_VAL_BITS;
583 	__pgd_val_bits = RADIX_PGD_VAL_BITS;
584 
585 	__kernel_virt_start = RADIX_KERN_VIRT_START;
586 	__vmalloc_start = RADIX_VMALLOC_START;
587 	__vmalloc_end = RADIX_VMALLOC_END;
588 	__kernel_io_start = RADIX_KERN_IO_START;
589 	__kernel_io_end = RADIX_KERN_IO_END;
590 	vmemmap = (struct page *)RADIX_VMEMMAP_START;
591 	ioremap_bot = IOREMAP_BASE;
592 
593 #ifdef CONFIG_PCI
594 	pci_io_base = ISA_IO_BASE;
595 #endif
596 	__pte_frag_nr = RADIX_PTE_FRAG_NR;
597 	__pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
598 	__pmd_frag_nr = RADIX_PMD_FRAG_NR;
599 	__pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
600 
601 	radix_init_pgtable();
602 
603 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
604 		lpcr = mfspr(SPRN_LPCR);
605 		mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
606 		radix_init_partition_table();
607 		radix_init_amor();
608 	} else {
609 		radix_init_pseries();
610 	}
611 
612 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
613 
614 	/* Switch to the guard PID before turning on MMU */
615 	radix__switch_mmu_context(NULL, &init_mm);
616 	tlbiel_all();
617 }
618 
619 void radix__early_init_mmu_secondary(void)
620 {
621 	unsigned long lpcr;
622 	/*
623 	 * update partition table control register and UPRT
624 	 */
625 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
626 		lpcr = mfspr(SPRN_LPCR);
627 		mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
628 
629 		set_ptcr_when_no_uv(__pa(partition_tb) |
630 				    (PATB_SIZE_SHIFT - 12));
631 
632 		radix_init_amor();
633 	}
634 
635 	radix__switch_mmu_context(NULL, &init_mm);
636 	tlbiel_all();
637 }
638 
639 void radix__mmu_cleanup_all(void)
640 {
641 	unsigned long lpcr;
642 
643 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
644 		lpcr = mfspr(SPRN_LPCR);
645 		mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
646 		set_ptcr_when_no_uv(0);
647 		powernv_set_nmmu_ptcr(0);
648 		radix__flush_tlb_all();
649 	}
650 }
651 
652 void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
653 				phys_addr_t first_memblock_size)
654 {
655 	/*
656 	 * We don't currently support the first MEMBLOCK not mapping 0
657 	 * physical on those processors
658 	 */
659 	BUG_ON(first_memblock_base != 0);
660 
661 	/*
662 	 * Radix mode is not limited by RMA / VRMA addressing.
663 	 */
664 	ppc64_rma_size = ULONG_MAX;
665 }
666 
667 #ifdef CONFIG_MEMORY_HOTPLUG
668 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
669 {
670 	pte_t *pte;
671 	int i;
672 
673 	for (i = 0; i < PTRS_PER_PTE; i++) {
674 		pte = pte_start + i;
675 		if (!pte_none(*pte))
676 			return;
677 	}
678 
679 	pte_free_kernel(&init_mm, pte_start);
680 	pmd_clear(pmd);
681 }
682 
683 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
684 {
685 	pmd_t *pmd;
686 	int i;
687 
688 	for (i = 0; i < PTRS_PER_PMD; i++) {
689 		pmd = pmd_start + i;
690 		if (!pmd_none(*pmd))
691 			return;
692 	}
693 
694 	pmd_free(&init_mm, pmd_start);
695 	pud_clear(pud);
696 }
697 
698 struct change_mapping_params {
699 	pte_t *pte;
700 	unsigned long start;
701 	unsigned long end;
702 	unsigned long aligned_start;
703 	unsigned long aligned_end;
704 };
705 
706 static int __meminit stop_machine_change_mapping(void *data)
707 {
708 	struct change_mapping_params *params =
709 			(struct change_mapping_params *)data;
710 
711 	if (!data)
712 		return -1;
713 
714 	spin_unlock(&init_mm.page_table_lock);
715 	pte_clear(&init_mm, params->aligned_start, params->pte);
716 	create_physical_mapping(__pa(params->aligned_start),
717 				__pa(params->start), -1, PAGE_KERNEL);
718 	create_physical_mapping(__pa(params->end), __pa(params->aligned_end),
719 				-1, PAGE_KERNEL);
720 	spin_lock(&init_mm.page_table_lock);
721 	return 0;
722 }
723 
724 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
725 			     unsigned long end)
726 {
727 	unsigned long next;
728 	pte_t *pte;
729 
730 	pte = pte_start + pte_index(addr);
731 	for (; addr < end; addr = next, pte++) {
732 		next = (addr + PAGE_SIZE) & PAGE_MASK;
733 		if (next > end)
734 			next = end;
735 
736 		if (!pte_present(*pte))
737 			continue;
738 
739 		if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
740 			/*
741 			 * The vmemmap_free() and remove_section_mapping()
742 			 * codepaths call us with aligned addresses.
743 			 */
744 			WARN_ONCE(1, "%s: unaligned range\n", __func__);
745 			continue;
746 		}
747 
748 		pte_clear(&init_mm, addr, pte);
749 	}
750 }
751 
752 /*
753  * clear the pte and potentially split the mapping helper
754  */
755 static void __meminit split_kernel_mapping(unsigned long addr, unsigned long end,
756 				unsigned long size, pte_t *pte)
757 {
758 	unsigned long mask = ~(size - 1);
759 	unsigned long aligned_start = addr & mask;
760 	unsigned long aligned_end = addr + size;
761 	struct change_mapping_params params;
762 	bool split_region = false;
763 
764 	if ((end - addr) < size) {
765 		/*
766 		 * We're going to clear the PTE, but not flushed
767 		 * the mapping, time to remap and flush. The
768 		 * effects if visible outside the processor or
769 		 * if we are running in code close to the
770 		 * mapping we cleared, we are in trouble.
771 		 */
772 		if (overlaps_kernel_text(aligned_start, addr) ||
773 			overlaps_kernel_text(end, aligned_end)) {
774 			/*
775 			 * Hack, just return, don't pte_clear
776 			 */
777 			WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
778 				  "text, not splitting\n", addr, end);
779 			return;
780 		}
781 		split_region = true;
782 	}
783 
784 	if (split_region) {
785 		params.pte = pte;
786 		params.start = addr;
787 		params.end = end;
788 		params.aligned_start = addr & ~(size - 1);
789 		params.aligned_end = min_t(unsigned long, aligned_end,
790 				(unsigned long)__va(memblock_end_of_DRAM()));
791 		stop_machine(stop_machine_change_mapping, &params, NULL);
792 		return;
793 	}
794 
795 	pte_clear(&init_mm, addr, pte);
796 }
797 
798 static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
799 			     unsigned long end)
800 {
801 	unsigned long next;
802 	pte_t *pte_base;
803 	pmd_t *pmd;
804 
805 	pmd = pmd_start + pmd_index(addr);
806 	for (; addr < end; addr = next, pmd++) {
807 		next = pmd_addr_end(addr, end);
808 
809 		if (!pmd_present(*pmd))
810 			continue;
811 
812 		if (pmd_is_leaf(*pmd)) {
813 			split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd);
814 			continue;
815 		}
816 
817 		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
818 		remove_pte_table(pte_base, addr, next);
819 		free_pte_table(pte_base, pmd);
820 	}
821 }
822 
823 static void remove_pud_table(pud_t *pud_start, unsigned long addr,
824 			     unsigned long end)
825 {
826 	unsigned long next;
827 	pmd_t *pmd_base;
828 	pud_t *pud;
829 
830 	pud = pud_start + pud_index(addr);
831 	for (; addr < end; addr = next, pud++) {
832 		next = pud_addr_end(addr, end);
833 
834 		if (!pud_present(*pud))
835 			continue;
836 
837 		if (pud_is_leaf(*pud)) {
838 			split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud);
839 			continue;
840 		}
841 
842 		pmd_base = (pmd_t *)pud_page_vaddr(*pud);
843 		remove_pmd_table(pmd_base, addr, next);
844 		free_pmd_table(pmd_base, pud);
845 	}
846 }
847 
848 static void __meminit remove_pagetable(unsigned long start, unsigned long end)
849 {
850 	unsigned long addr, next;
851 	pud_t *pud_base;
852 	pgd_t *pgd;
853 
854 	spin_lock(&init_mm.page_table_lock);
855 
856 	for (addr = start; addr < end; addr = next) {
857 		next = pgd_addr_end(addr, end);
858 
859 		pgd = pgd_offset_k(addr);
860 		if (!pgd_present(*pgd))
861 			continue;
862 
863 		if (pgd_is_leaf(*pgd)) {
864 			split_kernel_mapping(addr, end, PGDIR_SIZE, (pte_t *)pgd);
865 			continue;
866 		}
867 
868 		pud_base = (pud_t *)pgd_page_vaddr(*pgd);
869 		remove_pud_table(pud_base, addr, next);
870 	}
871 
872 	spin_unlock(&init_mm.page_table_lock);
873 	radix__flush_tlb_kernel_range(start, end);
874 }
875 
876 int __meminit radix__create_section_mapping(unsigned long start,
877 					    unsigned long end, int nid,
878 					    pgprot_t prot)
879 {
880 	if (end >= RADIX_VMALLOC_START) {
881 		pr_warn("Outside the supported range\n");
882 		return -1;
883 	}
884 
885 	return create_physical_mapping(__pa(start), __pa(end), nid, prot);
886 }
887 
888 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
889 {
890 	remove_pagetable(start, end);
891 	return 0;
892 }
893 #endif /* CONFIG_MEMORY_HOTPLUG */
894 
895 #ifdef CONFIG_SPARSEMEM_VMEMMAP
896 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
897 				 pgprot_t flags, unsigned int map_page_size,
898 				 int nid)
899 {
900 	return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
901 }
902 
903 int __meminit radix__vmemmap_create_mapping(unsigned long start,
904 				      unsigned long page_size,
905 				      unsigned long phys)
906 {
907 	/* Create a PTE encoding */
908 	unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
909 	int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
910 	int ret;
911 
912 	if ((start + page_size) >= RADIX_VMEMMAP_END) {
913 		pr_warn("Outside the supported range\n");
914 		return -1;
915 	}
916 
917 	ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
918 	BUG_ON(ret);
919 
920 	return 0;
921 }
922 
923 #ifdef CONFIG_MEMORY_HOTPLUG
924 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
925 {
926 	remove_pagetable(start, start + page_size);
927 }
928 #endif
929 #endif
930 
931 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
932 
933 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
934 				  pmd_t *pmdp, unsigned long clr,
935 				  unsigned long set)
936 {
937 	unsigned long old;
938 
939 #ifdef CONFIG_DEBUG_VM
940 	WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
941 	assert_spin_locked(pmd_lockptr(mm, pmdp));
942 #endif
943 
944 	old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
945 	trace_hugepage_update(addr, old, clr, set);
946 
947 	return old;
948 }
949 
950 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
951 			pmd_t *pmdp)
952 
953 {
954 	pmd_t pmd;
955 
956 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
957 	VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
958 	VM_BUG_ON(pmd_devmap(*pmdp));
959 	/*
960 	 * khugepaged calls this for normal pmd
961 	 */
962 	pmd = *pmdp;
963 	pmd_clear(pmdp);
964 
965 	/*FIXME!!  Verify whether we need this kick below */
966 	serialize_against_pte_lookup(vma->vm_mm);
967 
968 	radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
969 
970 	return pmd;
971 }
972 
973 /*
974  * For us pgtable_t is pte_t *. Inorder to save the deposisted
975  * page table, we consider the allocated page table as a list
976  * head. On withdraw we need to make sure we zero out the used
977  * list_head memory area.
978  */
979 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
980 				 pgtable_t pgtable)
981 {
982 	struct list_head *lh = (struct list_head *) pgtable;
983 
984 	assert_spin_locked(pmd_lockptr(mm, pmdp));
985 
986 	/* FIFO */
987 	if (!pmd_huge_pte(mm, pmdp))
988 		INIT_LIST_HEAD(lh);
989 	else
990 		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
991 	pmd_huge_pte(mm, pmdp) = pgtable;
992 }
993 
994 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
995 {
996 	pte_t *ptep;
997 	pgtable_t pgtable;
998 	struct list_head *lh;
999 
1000 	assert_spin_locked(pmd_lockptr(mm, pmdp));
1001 
1002 	/* FIFO */
1003 	pgtable = pmd_huge_pte(mm, pmdp);
1004 	lh = (struct list_head *) pgtable;
1005 	if (list_empty(lh))
1006 		pmd_huge_pte(mm, pmdp) = NULL;
1007 	else {
1008 		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1009 		list_del(lh);
1010 	}
1011 	ptep = (pte_t *) pgtable;
1012 	*ptep = __pte(0);
1013 	ptep++;
1014 	*ptep = __pte(0);
1015 	return pgtable;
1016 }
1017 
1018 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1019 				     unsigned long addr, pmd_t *pmdp)
1020 {
1021 	pmd_t old_pmd;
1022 	unsigned long old;
1023 
1024 	old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1025 	old_pmd = __pmd(old);
1026 	/*
1027 	 * Serialize against find_current_mm_pte which does lock-less
1028 	 * lookup in page tables with local interrupts disabled. For huge pages
1029 	 * it casts pmd_t to pte_t. Since format of pte_t is different from
1030 	 * pmd_t we want to prevent transit from pmd pointing to page table
1031 	 * to pmd pointing to huge page (and back) while interrupts are disabled.
1032 	 * We clear pmd to possibly replace it with page table pointer in
1033 	 * different code paths. So make sure we wait for the parallel
1034 	 * find_current_mm_pte to finish.
1035 	 */
1036 	serialize_against_pte_lookup(mm);
1037 	return old_pmd;
1038 }
1039 
1040 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1041 
1042 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1043 				  pte_t entry, unsigned long address, int psize)
1044 {
1045 	struct mm_struct *mm = vma->vm_mm;
1046 	unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
1047 					      _PAGE_RW | _PAGE_EXEC);
1048 
1049 	unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1050 	/*
1051 	 * To avoid NMMU hang while relaxing access, we need mark
1052 	 * the pte invalid in between.
1053 	 */
1054 	if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
1055 		unsigned long old_pte, new_pte;
1056 
1057 		old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1058 		/*
1059 		 * new value of pte
1060 		 */
1061 		new_pte = old_pte | set;
1062 		radix__flush_tlb_page_psize(mm, address, psize);
1063 		__radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1064 	} else {
1065 		__radix_pte_update(ptep, 0, set);
1066 		/*
1067 		 * Book3S does not require a TLB flush when relaxing access
1068 		 * restrictions when the address space is not attached to a
1069 		 * NMMU, because the core MMU will reload the pte after taking
1070 		 * an access fault, which is defined by the architectue.
1071 		 */
1072 	}
1073 	/* See ptesync comment in radix__set_pte_at */
1074 }
1075 
1076 void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
1077 				    unsigned long addr, pte_t *ptep,
1078 				    pte_t old_pte, pte_t pte)
1079 {
1080 	struct mm_struct *mm = vma->vm_mm;
1081 
1082 	/*
1083 	 * To avoid NMMU hang while relaxing access we need to flush the tlb before
1084 	 * we set the new value. We need to do this only for radix, because hash
1085 	 * translation does flush when updating the linux pte.
1086 	 */
1087 	if (is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
1088 	    (atomic_read(&mm->context.copros) > 0))
1089 		radix__flush_tlb_page(vma, addr);
1090 
1091 	set_pte_at(mm, addr, ptep, pte);
1092 }
1093 
1094 int __init arch_ioremap_pud_supported(void)
1095 {
1096 	/* HPT does not cope with large pages in the vmalloc area */
1097 	return radix_enabled();
1098 }
1099 
1100 int __init arch_ioremap_pmd_supported(void)
1101 {
1102 	return radix_enabled();
1103 }
1104 
1105 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1106 {
1107 	return 0;
1108 }
1109 
1110 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1111 {
1112 	pte_t *ptep = (pte_t *)pud;
1113 	pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
1114 
1115 	if (!radix_enabled())
1116 		return 0;
1117 
1118 	set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
1119 
1120 	return 1;
1121 }
1122 
1123 int pud_clear_huge(pud_t *pud)
1124 {
1125 	if (pud_huge(*pud)) {
1126 		pud_clear(pud);
1127 		return 1;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1134 {
1135 	pmd_t *pmd;
1136 	int i;
1137 
1138 	pmd = (pmd_t *)pud_page_vaddr(*pud);
1139 	pud_clear(pud);
1140 
1141 	flush_tlb_kernel_range(addr, addr + PUD_SIZE);
1142 
1143 	for (i = 0; i < PTRS_PER_PMD; i++) {
1144 		if (!pmd_none(pmd[i])) {
1145 			pte_t *pte;
1146 			pte = (pte_t *)pmd_page_vaddr(pmd[i]);
1147 
1148 			pte_free_kernel(&init_mm, pte);
1149 		}
1150 	}
1151 
1152 	pmd_free(&init_mm, pmd);
1153 
1154 	return 1;
1155 }
1156 
1157 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1158 {
1159 	pte_t *ptep = (pte_t *)pmd;
1160 	pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
1161 
1162 	if (!radix_enabled())
1163 		return 0;
1164 
1165 	set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
1166 
1167 	return 1;
1168 }
1169 
1170 int pmd_clear_huge(pmd_t *pmd)
1171 {
1172 	if (pmd_huge(*pmd)) {
1173 		pmd_clear(pmd);
1174 		return 1;
1175 	}
1176 
1177 	return 0;
1178 }
1179 
1180 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1181 {
1182 	pte_t *pte;
1183 
1184 	pte = (pte_t *)pmd_page_vaddr(*pmd);
1185 	pmd_clear(pmd);
1186 
1187 	flush_tlb_kernel_range(addr, addr + PMD_SIZE);
1188 
1189 	pte_free_kernel(&init_mm, pte);
1190 
1191 	return 1;
1192 }
1193 
1194 int __init arch_ioremap_p4d_supported(void)
1195 {
1196 	return 0;
1197 }
1198