1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Page table handling routines for radix page table. 4 * 5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 6 */ 7 8 #define pr_fmt(fmt) "radix-mmu: " fmt 9 10 #include <linux/io.h> 11 #include <linux/kernel.h> 12 #include <linux/sched/mm.h> 13 #include <linux/memblock.h> 14 #include <linux/of.h> 15 #include <linux/of_fdt.h> 16 #include <linux/mm.h> 17 #include <linux/hugetlb.h> 18 #include <linux/string_helpers.h> 19 #include <linux/memory.h> 20 21 #include <asm/pgalloc.h> 22 #include <asm/mmu_context.h> 23 #include <asm/dma.h> 24 #include <asm/machdep.h> 25 #include <asm/mmu.h> 26 #include <asm/firmware.h> 27 #include <asm/powernv.h> 28 #include <asm/sections.h> 29 #include <asm/smp.h> 30 #include <asm/trace.h> 31 #include <asm/uaccess.h> 32 #include <asm/ultravisor.h> 33 #include <asm/set_memory.h> 34 35 #include <trace/events/thp.h> 36 37 #include <mm/mmu_decl.h> 38 39 unsigned int mmu_base_pid; 40 41 static __ref void *early_alloc_pgtable(unsigned long size, int nid, 42 unsigned long region_start, unsigned long region_end) 43 { 44 phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT; 45 phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE; 46 void *ptr; 47 48 if (region_start) 49 min_addr = region_start; 50 if (region_end) 51 max_addr = region_end; 52 53 ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid); 54 55 if (!ptr) 56 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n", 57 __func__, size, size, nid, &min_addr, &max_addr); 58 59 return ptr; 60 } 61 62 /* 63 * When allocating pud or pmd pointers, we allocate a complete page 64 * of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This 65 * is to ensure that the page obtained from the memblock allocator 66 * can be completely used as page table page and can be freed 67 * correctly when the page table entries are removed. 68 */ 69 static int early_map_kernel_page(unsigned long ea, unsigned long pa, 70 pgprot_t flags, 71 unsigned int map_page_size, 72 int nid, 73 unsigned long region_start, unsigned long region_end) 74 { 75 unsigned long pfn = pa >> PAGE_SHIFT; 76 pgd_t *pgdp; 77 p4d_t *p4dp; 78 pud_t *pudp; 79 pmd_t *pmdp; 80 pte_t *ptep; 81 82 pgdp = pgd_offset_k(ea); 83 p4dp = p4d_offset(pgdp, ea); 84 if (p4d_none(*p4dp)) { 85 pudp = early_alloc_pgtable(PAGE_SIZE, nid, 86 region_start, region_end); 87 p4d_populate(&init_mm, p4dp, pudp); 88 } 89 pudp = pud_offset(p4dp, ea); 90 if (map_page_size == PUD_SIZE) { 91 ptep = (pte_t *)pudp; 92 goto set_the_pte; 93 } 94 if (pud_none(*pudp)) { 95 pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start, 96 region_end); 97 pud_populate(&init_mm, pudp, pmdp); 98 } 99 pmdp = pmd_offset(pudp, ea); 100 if (map_page_size == PMD_SIZE) { 101 ptep = pmdp_ptep(pmdp); 102 goto set_the_pte; 103 } 104 if (!pmd_present(*pmdp)) { 105 ptep = early_alloc_pgtable(PAGE_SIZE, nid, 106 region_start, region_end); 107 pmd_populate_kernel(&init_mm, pmdp, ptep); 108 } 109 ptep = pte_offset_kernel(pmdp, ea); 110 111 set_the_pte: 112 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags)); 113 asm volatile("ptesync": : :"memory"); 114 return 0; 115 } 116 117 /* 118 * nid, region_start, and region_end are hints to try to place the page 119 * table memory in the same node or region. 120 */ 121 static int __map_kernel_page(unsigned long ea, unsigned long pa, 122 pgprot_t flags, 123 unsigned int map_page_size, 124 int nid, 125 unsigned long region_start, unsigned long region_end) 126 { 127 unsigned long pfn = pa >> PAGE_SHIFT; 128 pgd_t *pgdp; 129 p4d_t *p4dp; 130 pud_t *pudp; 131 pmd_t *pmdp; 132 pte_t *ptep; 133 /* 134 * Make sure task size is correct as per the max adddr 135 */ 136 BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE); 137 138 #ifdef CONFIG_PPC_64K_PAGES 139 BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT)); 140 #endif 141 142 if (unlikely(!slab_is_available())) 143 return early_map_kernel_page(ea, pa, flags, map_page_size, 144 nid, region_start, region_end); 145 146 /* 147 * Should make page table allocation functions be able to take a 148 * node, so we can place kernel page tables on the right nodes after 149 * boot. 150 */ 151 pgdp = pgd_offset_k(ea); 152 p4dp = p4d_offset(pgdp, ea); 153 pudp = pud_alloc(&init_mm, p4dp, ea); 154 if (!pudp) 155 return -ENOMEM; 156 if (map_page_size == PUD_SIZE) { 157 ptep = (pte_t *)pudp; 158 goto set_the_pte; 159 } 160 pmdp = pmd_alloc(&init_mm, pudp, ea); 161 if (!pmdp) 162 return -ENOMEM; 163 if (map_page_size == PMD_SIZE) { 164 ptep = pmdp_ptep(pmdp); 165 goto set_the_pte; 166 } 167 ptep = pte_alloc_kernel(pmdp, ea); 168 if (!ptep) 169 return -ENOMEM; 170 171 set_the_pte: 172 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags)); 173 asm volatile("ptesync": : :"memory"); 174 return 0; 175 } 176 177 int radix__map_kernel_page(unsigned long ea, unsigned long pa, 178 pgprot_t flags, 179 unsigned int map_page_size) 180 { 181 return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0); 182 } 183 184 #ifdef CONFIG_STRICT_KERNEL_RWX 185 static void radix__change_memory_range(unsigned long start, unsigned long end, 186 unsigned long clear) 187 { 188 unsigned long idx; 189 pgd_t *pgdp; 190 p4d_t *p4dp; 191 pud_t *pudp; 192 pmd_t *pmdp; 193 pte_t *ptep; 194 195 start = ALIGN_DOWN(start, PAGE_SIZE); 196 end = PAGE_ALIGN(end); // aligns up 197 198 pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n", 199 start, end, clear); 200 201 for (idx = start; idx < end; idx += PAGE_SIZE) { 202 pgdp = pgd_offset_k(idx); 203 p4dp = p4d_offset(pgdp, idx); 204 pudp = pud_alloc(&init_mm, p4dp, idx); 205 if (!pudp) 206 continue; 207 if (pud_is_leaf(*pudp)) { 208 ptep = (pte_t *)pudp; 209 goto update_the_pte; 210 } 211 pmdp = pmd_alloc(&init_mm, pudp, idx); 212 if (!pmdp) 213 continue; 214 if (pmd_is_leaf(*pmdp)) { 215 ptep = pmdp_ptep(pmdp); 216 goto update_the_pte; 217 } 218 ptep = pte_alloc_kernel(pmdp, idx); 219 if (!ptep) 220 continue; 221 update_the_pte: 222 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0); 223 } 224 225 radix__flush_tlb_kernel_range(start, end); 226 } 227 228 void radix__mark_rodata_ro(void) 229 { 230 unsigned long start, end; 231 232 start = (unsigned long)_stext; 233 end = (unsigned long)__end_rodata; 234 235 radix__change_memory_range(start, end, _PAGE_WRITE); 236 237 for (start = PAGE_OFFSET; start < (unsigned long)_stext; start += PAGE_SIZE) { 238 end = start + PAGE_SIZE; 239 if (overlaps_interrupt_vector_text(start, end)) 240 radix__change_memory_range(start, end, _PAGE_WRITE); 241 else 242 break; 243 } 244 } 245 246 void radix__mark_initmem_nx(void) 247 { 248 unsigned long start = (unsigned long)__init_begin; 249 unsigned long end = (unsigned long)__init_end; 250 251 radix__change_memory_range(start, end, _PAGE_EXEC); 252 } 253 #endif /* CONFIG_STRICT_KERNEL_RWX */ 254 255 static inline void __meminit 256 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec) 257 { 258 char buf[10]; 259 260 if (end <= start) 261 return; 262 263 string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf)); 264 265 pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf, 266 exec ? " (exec)" : ""); 267 } 268 269 static unsigned long next_boundary(unsigned long addr, unsigned long end) 270 { 271 #ifdef CONFIG_STRICT_KERNEL_RWX 272 unsigned long stext_phys; 273 274 stext_phys = __pa_symbol(_stext); 275 276 // Relocatable kernel running at non-zero real address 277 if (stext_phys != 0) { 278 // The end of interrupts code at zero is a rodata boundary 279 unsigned long end_intr = __pa_symbol(__end_interrupts) - stext_phys; 280 if (addr < end_intr) 281 return end_intr; 282 283 // Start of relocated kernel text is a rodata boundary 284 if (addr < stext_phys) 285 return stext_phys; 286 } 287 288 if (addr < __pa_symbol(__srwx_boundary)) 289 return __pa_symbol(__srwx_boundary); 290 #endif 291 return end; 292 } 293 294 static int __meminit create_physical_mapping(unsigned long start, 295 unsigned long end, 296 int nid, pgprot_t _prot) 297 { 298 unsigned long vaddr, addr, mapping_size = 0; 299 bool prev_exec, exec = false; 300 pgprot_t prot; 301 int psize; 302 unsigned long max_mapping_size = memory_block_size; 303 304 if (debug_pagealloc_enabled_or_kfence()) 305 max_mapping_size = PAGE_SIZE; 306 307 start = ALIGN(start, PAGE_SIZE); 308 end = ALIGN_DOWN(end, PAGE_SIZE); 309 for (addr = start; addr < end; addr += mapping_size) { 310 unsigned long gap, previous_size; 311 int rc; 312 313 gap = next_boundary(addr, end) - addr; 314 if (gap > max_mapping_size) 315 gap = max_mapping_size; 316 previous_size = mapping_size; 317 prev_exec = exec; 318 319 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE && 320 mmu_psize_defs[MMU_PAGE_1G].shift) { 321 mapping_size = PUD_SIZE; 322 psize = MMU_PAGE_1G; 323 } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE && 324 mmu_psize_defs[MMU_PAGE_2M].shift) { 325 mapping_size = PMD_SIZE; 326 psize = MMU_PAGE_2M; 327 } else { 328 mapping_size = PAGE_SIZE; 329 psize = mmu_virtual_psize; 330 } 331 332 vaddr = (unsigned long)__va(addr); 333 334 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) || 335 overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) { 336 prot = PAGE_KERNEL_X; 337 exec = true; 338 } else { 339 prot = _prot; 340 exec = false; 341 } 342 343 if (mapping_size != previous_size || exec != prev_exec) { 344 print_mapping(start, addr, previous_size, prev_exec); 345 start = addr; 346 } 347 348 rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end); 349 if (rc) 350 return rc; 351 352 update_page_count(psize, 1); 353 } 354 355 print_mapping(start, addr, mapping_size, exec); 356 return 0; 357 } 358 359 static void __init radix_init_pgtable(void) 360 { 361 unsigned long rts_field; 362 phys_addr_t start, end; 363 u64 i; 364 365 /* We don't support slb for radix */ 366 slb_set_size(0); 367 368 /* 369 * Create the linear mapping 370 */ 371 for_each_mem_range(i, &start, &end) { 372 /* 373 * The memblock allocator is up at this point, so the 374 * page tables will be allocated within the range. No 375 * need or a node (which we don't have yet). 376 */ 377 378 if (end >= RADIX_VMALLOC_START) { 379 pr_warn("Outside the supported range\n"); 380 continue; 381 } 382 383 WARN_ON(create_physical_mapping(start, end, 384 -1, PAGE_KERNEL)); 385 } 386 387 if (!cpu_has_feature(CPU_FTR_HVMODE) && 388 cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) { 389 /* 390 * Older versions of KVM on these machines prefer if the 391 * guest only uses the low 19 PID bits. 392 */ 393 mmu_pid_bits = 19; 394 } 395 mmu_base_pid = 1; 396 397 /* 398 * Allocate Partition table and process table for the 399 * host. 400 */ 401 BUG_ON(PRTB_SIZE_SHIFT > 36); 402 process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0); 403 /* 404 * Fill in the process table. 405 */ 406 rts_field = radix__get_tree_size(); 407 process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE); 408 409 /* 410 * The init_mm context is given the first available (non-zero) PID, 411 * which is the "guard PID" and contains no page table. PIDR should 412 * never be set to zero because that duplicates the kernel address 413 * space at the 0x0... offset (quadrant 0)! 414 * 415 * An arbitrary PID that may later be allocated by the PID allocator 416 * for userspace processes must not be used either, because that 417 * would cause stale user mappings for that PID on CPUs outside of 418 * the TLB invalidation scheme (because it won't be in mm_cpumask). 419 * 420 * So permanently carve out one PID for the purpose of a guard PID. 421 */ 422 init_mm.context.id = mmu_base_pid; 423 mmu_base_pid++; 424 } 425 426 static void __init radix_init_partition_table(void) 427 { 428 unsigned long rts_field, dw0, dw1; 429 430 mmu_partition_table_init(); 431 rts_field = radix__get_tree_size(); 432 dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR; 433 dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR; 434 mmu_partition_table_set_entry(0, dw0, dw1, false); 435 436 pr_info("Initializing Radix MMU\n"); 437 } 438 439 static int __init get_idx_from_shift(unsigned int shift) 440 { 441 int idx = -1; 442 443 switch (shift) { 444 case 0xc: 445 idx = MMU_PAGE_4K; 446 break; 447 case 0x10: 448 idx = MMU_PAGE_64K; 449 break; 450 case 0x15: 451 idx = MMU_PAGE_2M; 452 break; 453 case 0x1e: 454 idx = MMU_PAGE_1G; 455 break; 456 } 457 return idx; 458 } 459 460 static int __init radix_dt_scan_page_sizes(unsigned long node, 461 const char *uname, int depth, 462 void *data) 463 { 464 int size = 0; 465 int shift, idx; 466 unsigned int ap; 467 const __be32 *prop; 468 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 469 470 /* We are scanning "cpu" nodes only */ 471 if (type == NULL || strcmp(type, "cpu") != 0) 472 return 0; 473 474 /* Grab page size encodings */ 475 prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size); 476 if (!prop) 477 return 0; 478 479 pr_info("Page sizes from device-tree:\n"); 480 for (; size >= 4; size -= 4, ++prop) { 481 482 struct mmu_psize_def *def; 483 484 /* top 3 bit is AP encoding */ 485 shift = be32_to_cpu(prop[0]) & ~(0xe << 28); 486 ap = be32_to_cpu(prop[0]) >> 29; 487 pr_info("Page size shift = %d AP=0x%x\n", shift, ap); 488 489 idx = get_idx_from_shift(shift); 490 if (idx < 0) 491 continue; 492 493 def = &mmu_psize_defs[idx]; 494 def->shift = shift; 495 def->ap = ap; 496 def->h_rpt_pgsize = psize_to_rpti_pgsize(idx); 497 } 498 499 /* needed ? */ 500 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B; 501 return 1; 502 } 503 504 void __init radix__early_init_devtree(void) 505 { 506 int rc; 507 508 /* 509 * Try to find the available page sizes in the device-tree 510 */ 511 rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL); 512 if (!rc) { 513 /* 514 * No page size details found in device tree. 515 * Let's assume we have page 4k and 64k support 516 */ 517 mmu_psize_defs[MMU_PAGE_4K].shift = 12; 518 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0; 519 mmu_psize_defs[MMU_PAGE_4K].h_rpt_pgsize = 520 psize_to_rpti_pgsize(MMU_PAGE_4K); 521 522 mmu_psize_defs[MMU_PAGE_64K].shift = 16; 523 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5; 524 mmu_psize_defs[MMU_PAGE_64K].h_rpt_pgsize = 525 psize_to_rpti_pgsize(MMU_PAGE_64K); 526 } 527 return; 528 } 529 530 void __init radix__early_init_mmu(void) 531 { 532 unsigned long lpcr; 533 534 #ifdef CONFIG_PPC_64S_HASH_MMU 535 #ifdef CONFIG_PPC_64K_PAGES 536 /* PAGE_SIZE mappings */ 537 mmu_virtual_psize = MMU_PAGE_64K; 538 #else 539 mmu_virtual_psize = MMU_PAGE_4K; 540 #endif 541 #endif 542 /* 543 * initialize page table size 544 */ 545 __pte_index_size = RADIX_PTE_INDEX_SIZE; 546 __pmd_index_size = RADIX_PMD_INDEX_SIZE; 547 __pud_index_size = RADIX_PUD_INDEX_SIZE; 548 __pgd_index_size = RADIX_PGD_INDEX_SIZE; 549 __pud_cache_index = RADIX_PUD_INDEX_SIZE; 550 __pte_table_size = RADIX_PTE_TABLE_SIZE; 551 __pmd_table_size = RADIX_PMD_TABLE_SIZE; 552 __pud_table_size = RADIX_PUD_TABLE_SIZE; 553 __pgd_table_size = RADIX_PGD_TABLE_SIZE; 554 555 __pmd_val_bits = RADIX_PMD_VAL_BITS; 556 __pud_val_bits = RADIX_PUD_VAL_BITS; 557 __pgd_val_bits = RADIX_PGD_VAL_BITS; 558 559 __kernel_virt_start = RADIX_KERN_VIRT_START; 560 __vmalloc_start = RADIX_VMALLOC_START; 561 __vmalloc_end = RADIX_VMALLOC_END; 562 __kernel_io_start = RADIX_KERN_IO_START; 563 __kernel_io_end = RADIX_KERN_IO_END; 564 vmemmap = (struct page *)RADIX_VMEMMAP_START; 565 ioremap_bot = IOREMAP_BASE; 566 567 #ifdef CONFIG_PCI 568 pci_io_base = ISA_IO_BASE; 569 #endif 570 __pte_frag_nr = RADIX_PTE_FRAG_NR; 571 __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT; 572 __pmd_frag_nr = RADIX_PMD_FRAG_NR; 573 __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT; 574 575 radix_init_pgtable(); 576 577 if (!firmware_has_feature(FW_FEATURE_LPAR)) { 578 lpcr = mfspr(SPRN_LPCR); 579 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR); 580 radix_init_partition_table(); 581 } else { 582 radix_init_pseries(); 583 } 584 585 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); 586 587 /* Switch to the guard PID before turning on MMU */ 588 radix__switch_mmu_context(NULL, &init_mm); 589 tlbiel_all(); 590 } 591 592 void radix__early_init_mmu_secondary(void) 593 { 594 unsigned long lpcr; 595 /* 596 * update partition table control register and UPRT 597 */ 598 if (!firmware_has_feature(FW_FEATURE_LPAR)) { 599 lpcr = mfspr(SPRN_LPCR); 600 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR); 601 602 set_ptcr_when_no_uv(__pa(partition_tb) | 603 (PATB_SIZE_SHIFT - 12)); 604 } 605 606 radix__switch_mmu_context(NULL, &init_mm); 607 tlbiel_all(); 608 609 /* Make sure userspace can't change the AMR */ 610 mtspr(SPRN_UAMOR, 0); 611 } 612 613 /* Called during kexec sequence with MMU off */ 614 notrace void radix__mmu_cleanup_all(void) 615 { 616 unsigned long lpcr; 617 618 if (!firmware_has_feature(FW_FEATURE_LPAR)) { 619 lpcr = mfspr(SPRN_LPCR); 620 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT); 621 set_ptcr_when_no_uv(0); 622 powernv_set_nmmu_ptcr(0); 623 radix__flush_tlb_all(); 624 } 625 } 626 627 #ifdef CONFIG_MEMORY_HOTPLUG 628 static void free_pte_table(pte_t *pte_start, pmd_t *pmd) 629 { 630 pte_t *pte; 631 int i; 632 633 for (i = 0; i < PTRS_PER_PTE; i++) { 634 pte = pte_start + i; 635 if (!pte_none(*pte)) 636 return; 637 } 638 639 pte_free_kernel(&init_mm, pte_start); 640 pmd_clear(pmd); 641 } 642 643 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud) 644 { 645 pmd_t *pmd; 646 int i; 647 648 for (i = 0; i < PTRS_PER_PMD; i++) { 649 pmd = pmd_start + i; 650 if (!pmd_none(*pmd)) 651 return; 652 } 653 654 pmd_free(&init_mm, pmd_start); 655 pud_clear(pud); 656 } 657 658 static void free_pud_table(pud_t *pud_start, p4d_t *p4d) 659 { 660 pud_t *pud; 661 int i; 662 663 for (i = 0; i < PTRS_PER_PUD; i++) { 664 pud = pud_start + i; 665 if (!pud_none(*pud)) 666 return; 667 } 668 669 pud_free(&init_mm, pud_start); 670 p4d_clear(p4d); 671 } 672 673 #ifdef CONFIG_SPARSEMEM_VMEMMAP 674 static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end) 675 { 676 unsigned long start = ALIGN_DOWN(addr, PMD_SIZE); 677 678 return !vmemmap_populated(start, PMD_SIZE); 679 } 680 681 static bool __meminit vmemmap_page_is_unused(unsigned long addr, unsigned long end) 682 { 683 unsigned long start = ALIGN_DOWN(addr, PAGE_SIZE); 684 685 return !vmemmap_populated(start, PAGE_SIZE); 686 687 } 688 #endif 689 690 static void __meminit free_vmemmap_pages(struct page *page, 691 struct vmem_altmap *altmap, 692 int order) 693 { 694 unsigned int nr_pages = 1 << order; 695 696 if (altmap) { 697 unsigned long alt_start, alt_end; 698 unsigned long base_pfn = page_to_pfn(page); 699 700 /* 701 * with 2M vmemmap mmaping we can have things setup 702 * such that even though atlmap is specified we never 703 * used altmap. 704 */ 705 alt_start = altmap->base_pfn; 706 alt_end = altmap->base_pfn + altmap->reserve + altmap->free; 707 708 if (base_pfn >= alt_start && base_pfn < alt_end) { 709 vmem_altmap_free(altmap, nr_pages); 710 return; 711 } 712 } 713 714 if (PageReserved(page)) { 715 /* allocated from memblock */ 716 while (nr_pages--) 717 free_reserved_page(page++); 718 } else 719 free_pages((unsigned long)page_address(page), order); 720 } 721 722 static void __meminit remove_pte_table(pte_t *pte_start, unsigned long addr, 723 unsigned long end, bool direct, 724 struct vmem_altmap *altmap) 725 { 726 unsigned long next, pages = 0; 727 pte_t *pte; 728 729 pte = pte_start + pte_index(addr); 730 for (; addr < end; addr = next, pte++) { 731 next = (addr + PAGE_SIZE) & PAGE_MASK; 732 if (next > end) 733 next = end; 734 735 if (!pte_present(*pte)) 736 continue; 737 738 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) { 739 if (!direct) 740 free_vmemmap_pages(pte_page(*pte), altmap, 0); 741 pte_clear(&init_mm, addr, pte); 742 pages++; 743 } 744 #ifdef CONFIG_SPARSEMEM_VMEMMAP 745 else if (!direct && vmemmap_page_is_unused(addr, next)) { 746 free_vmemmap_pages(pte_page(*pte), altmap, 0); 747 pte_clear(&init_mm, addr, pte); 748 } 749 #endif 750 } 751 if (direct) 752 update_page_count(mmu_virtual_psize, -pages); 753 } 754 755 static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr, 756 unsigned long end, bool direct, 757 struct vmem_altmap *altmap) 758 { 759 unsigned long next, pages = 0; 760 pte_t *pte_base; 761 pmd_t *pmd; 762 763 pmd = pmd_start + pmd_index(addr); 764 for (; addr < end; addr = next, pmd++) { 765 next = pmd_addr_end(addr, end); 766 767 if (!pmd_present(*pmd)) 768 continue; 769 770 if (pmd_is_leaf(*pmd)) { 771 if (IS_ALIGNED(addr, PMD_SIZE) && 772 IS_ALIGNED(next, PMD_SIZE)) { 773 if (!direct) 774 free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE)); 775 pte_clear(&init_mm, addr, (pte_t *)pmd); 776 pages++; 777 } 778 #ifdef CONFIG_SPARSEMEM_VMEMMAP 779 else if (!direct && vmemmap_pmd_is_unused(addr, next)) { 780 free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE)); 781 pte_clear(&init_mm, addr, (pte_t *)pmd); 782 } 783 #endif 784 continue; 785 } 786 787 pte_base = (pte_t *)pmd_page_vaddr(*pmd); 788 remove_pte_table(pte_base, addr, next, direct, altmap); 789 free_pte_table(pte_base, pmd); 790 } 791 if (direct) 792 update_page_count(MMU_PAGE_2M, -pages); 793 } 794 795 static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr, 796 unsigned long end, bool direct, 797 struct vmem_altmap *altmap) 798 { 799 unsigned long next, pages = 0; 800 pmd_t *pmd_base; 801 pud_t *pud; 802 803 pud = pud_start + pud_index(addr); 804 for (; addr < end; addr = next, pud++) { 805 next = pud_addr_end(addr, end); 806 807 if (!pud_present(*pud)) 808 continue; 809 810 if (pud_is_leaf(*pud)) { 811 if (!IS_ALIGNED(addr, PUD_SIZE) || 812 !IS_ALIGNED(next, PUD_SIZE)) { 813 WARN_ONCE(1, "%s: unaligned range\n", __func__); 814 continue; 815 } 816 pte_clear(&init_mm, addr, (pte_t *)pud); 817 pages++; 818 continue; 819 } 820 821 pmd_base = pud_pgtable(*pud); 822 remove_pmd_table(pmd_base, addr, next, direct, altmap); 823 free_pmd_table(pmd_base, pud); 824 } 825 if (direct) 826 update_page_count(MMU_PAGE_1G, -pages); 827 } 828 829 static void __meminit 830 remove_pagetable(unsigned long start, unsigned long end, bool direct, 831 struct vmem_altmap *altmap) 832 { 833 unsigned long addr, next; 834 pud_t *pud_base; 835 pgd_t *pgd; 836 p4d_t *p4d; 837 838 spin_lock(&init_mm.page_table_lock); 839 840 for (addr = start; addr < end; addr = next) { 841 next = pgd_addr_end(addr, end); 842 843 pgd = pgd_offset_k(addr); 844 p4d = p4d_offset(pgd, addr); 845 if (!p4d_present(*p4d)) 846 continue; 847 848 if (p4d_is_leaf(*p4d)) { 849 if (!IS_ALIGNED(addr, P4D_SIZE) || 850 !IS_ALIGNED(next, P4D_SIZE)) { 851 WARN_ONCE(1, "%s: unaligned range\n", __func__); 852 continue; 853 } 854 855 pte_clear(&init_mm, addr, (pte_t *)pgd); 856 continue; 857 } 858 859 pud_base = p4d_pgtable(*p4d); 860 remove_pud_table(pud_base, addr, next, direct, altmap); 861 free_pud_table(pud_base, p4d); 862 } 863 864 spin_unlock(&init_mm.page_table_lock); 865 radix__flush_tlb_kernel_range(start, end); 866 } 867 868 int __meminit radix__create_section_mapping(unsigned long start, 869 unsigned long end, int nid, 870 pgprot_t prot) 871 { 872 if (end >= RADIX_VMALLOC_START) { 873 pr_warn("Outside the supported range\n"); 874 return -1; 875 } 876 877 return create_physical_mapping(__pa(start), __pa(end), 878 nid, prot); 879 } 880 881 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end) 882 { 883 remove_pagetable(start, end, true, NULL); 884 return 0; 885 } 886 #endif /* CONFIG_MEMORY_HOTPLUG */ 887 888 #ifdef CONFIG_SPARSEMEM_VMEMMAP 889 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa, 890 pgprot_t flags, unsigned int map_page_size, 891 int nid) 892 { 893 return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0); 894 } 895 896 int __meminit radix__vmemmap_create_mapping(unsigned long start, 897 unsigned long page_size, 898 unsigned long phys) 899 { 900 /* Create a PTE encoding */ 901 int nid = early_pfn_to_nid(phys >> PAGE_SHIFT); 902 int ret; 903 904 if ((start + page_size) >= RADIX_VMEMMAP_END) { 905 pr_warn("Outside the supported range\n"); 906 return -1; 907 } 908 909 ret = __map_kernel_page_nid(start, phys, PAGE_KERNEL, page_size, nid); 910 BUG_ON(ret); 911 912 return 0; 913 } 914 915 916 bool vmemmap_can_optimize(struct vmem_altmap *altmap, struct dev_pagemap *pgmap) 917 { 918 if (radix_enabled()) 919 return __vmemmap_can_optimize(altmap, pgmap); 920 921 return false; 922 } 923 924 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node, 925 unsigned long addr, unsigned long next) 926 { 927 int large = pmd_large(*pmdp); 928 929 if (large) 930 vmemmap_verify(pmdp_ptep(pmdp), node, addr, next); 931 932 return large; 933 } 934 935 void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node, 936 unsigned long addr, unsigned long next) 937 { 938 pte_t entry; 939 pte_t *ptep = pmdp_ptep(pmdp); 940 941 VM_BUG_ON(!IS_ALIGNED(addr, PMD_SIZE)); 942 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); 943 set_pte_at(&init_mm, addr, ptep, entry); 944 asm volatile("ptesync": : :"memory"); 945 946 vmemmap_verify(ptep, node, addr, next); 947 } 948 949 static pte_t * __meminit radix__vmemmap_pte_populate(pmd_t *pmdp, unsigned long addr, 950 int node, 951 struct vmem_altmap *altmap, 952 struct page *reuse) 953 { 954 pte_t *pte = pte_offset_kernel(pmdp, addr); 955 956 if (pte_none(*pte)) { 957 pte_t entry; 958 void *p; 959 960 if (!reuse) { 961 /* 962 * make sure we don't create altmap mappings 963 * covering things outside the device. 964 */ 965 if (altmap && altmap_cross_boundary(altmap, addr, PAGE_SIZE)) 966 altmap = NULL; 967 968 p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap); 969 if (!p && altmap) 970 p = vmemmap_alloc_block_buf(PAGE_SIZE, node, NULL); 971 if (!p) 972 return NULL; 973 pr_debug("PAGE_SIZE vmemmap mapping\n"); 974 } else { 975 /* 976 * When a PTE/PMD entry is freed from the init_mm 977 * there's a free_pages() call to this page allocated 978 * above. Thus this get_page() is paired with the 979 * put_page_testzero() on the freeing path. 980 * This can only called by certain ZONE_DEVICE path, 981 * and through vmemmap_populate_compound_pages() when 982 * slab is available. 983 */ 984 get_page(reuse); 985 p = page_to_virt(reuse); 986 pr_debug("Tail page reuse vmemmap mapping\n"); 987 } 988 989 VM_BUG_ON(!PAGE_ALIGNED(addr)); 990 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); 991 set_pte_at(&init_mm, addr, pte, entry); 992 asm volatile("ptesync": : :"memory"); 993 } 994 return pte; 995 } 996 997 static inline pud_t *vmemmap_pud_alloc(p4d_t *p4dp, int node, 998 unsigned long address) 999 { 1000 pud_t *pud; 1001 1002 /* All early vmemmap mapping to keep simple do it at PAGE_SIZE */ 1003 if (unlikely(p4d_none(*p4dp))) { 1004 if (unlikely(!slab_is_available())) { 1005 pud = early_alloc_pgtable(PAGE_SIZE, node, 0, 0); 1006 p4d_populate(&init_mm, p4dp, pud); 1007 /* go to the pud_offset */ 1008 } else 1009 return pud_alloc(&init_mm, p4dp, address); 1010 } 1011 return pud_offset(p4dp, address); 1012 } 1013 1014 static inline pmd_t *vmemmap_pmd_alloc(pud_t *pudp, int node, 1015 unsigned long address) 1016 { 1017 pmd_t *pmd; 1018 1019 /* All early vmemmap mapping to keep simple do it at PAGE_SIZE */ 1020 if (unlikely(pud_none(*pudp))) { 1021 if (unlikely(!slab_is_available())) { 1022 pmd = early_alloc_pgtable(PAGE_SIZE, node, 0, 0); 1023 pud_populate(&init_mm, pudp, pmd); 1024 } else 1025 return pmd_alloc(&init_mm, pudp, address); 1026 } 1027 return pmd_offset(pudp, address); 1028 } 1029 1030 static inline pte_t *vmemmap_pte_alloc(pmd_t *pmdp, int node, 1031 unsigned long address) 1032 { 1033 pte_t *pte; 1034 1035 /* All early vmemmap mapping to keep simple do it at PAGE_SIZE */ 1036 if (unlikely(pmd_none(*pmdp))) { 1037 if (unlikely(!slab_is_available())) { 1038 pte = early_alloc_pgtable(PAGE_SIZE, node, 0, 0); 1039 pmd_populate(&init_mm, pmdp, pte); 1040 } else 1041 return pte_alloc_kernel(pmdp, address); 1042 } 1043 return pte_offset_kernel(pmdp, address); 1044 } 1045 1046 1047 1048 int __meminit radix__vmemmap_populate(unsigned long start, unsigned long end, int node, 1049 struct vmem_altmap *altmap) 1050 { 1051 unsigned long addr; 1052 unsigned long next; 1053 pgd_t *pgd; 1054 p4d_t *p4d; 1055 pud_t *pud; 1056 pmd_t *pmd; 1057 pte_t *pte; 1058 1059 for (addr = start; addr < end; addr = next) { 1060 next = pmd_addr_end(addr, end); 1061 1062 pgd = pgd_offset_k(addr); 1063 p4d = p4d_offset(pgd, addr); 1064 pud = vmemmap_pud_alloc(p4d, node, addr); 1065 if (!pud) 1066 return -ENOMEM; 1067 pmd = vmemmap_pmd_alloc(pud, node, addr); 1068 if (!pmd) 1069 return -ENOMEM; 1070 1071 if (pmd_none(READ_ONCE(*pmd))) { 1072 void *p; 1073 1074 /* 1075 * keep it simple by checking addr PMD_SIZE alignment 1076 * and verifying the device boundary condition. 1077 * For us to use a pmd mapping, both addr and pfn should 1078 * be aligned. We skip if addr is not aligned and for 1079 * pfn we hope we have extra area in the altmap that 1080 * can help to find an aligned block. This can result 1081 * in altmap block allocation failures, in which case 1082 * we fallback to RAM for vmemmap allocation. 1083 */ 1084 if (altmap && (!IS_ALIGNED(addr, PMD_SIZE) || 1085 altmap_cross_boundary(altmap, addr, PMD_SIZE))) { 1086 /* 1087 * make sure we don't create altmap mappings 1088 * covering things outside the device. 1089 */ 1090 goto base_mapping; 1091 } 1092 1093 p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap); 1094 if (p) { 1095 vmemmap_set_pmd(pmd, p, node, addr, next); 1096 pr_debug("PMD_SIZE vmemmap mapping\n"); 1097 continue; 1098 } else if (altmap) { 1099 /* 1100 * A vmemmap block allocation can fail due to 1101 * alignment requirements and we trying to align 1102 * things aggressively there by running out of 1103 * space. Try base mapping on failure. 1104 */ 1105 goto base_mapping; 1106 } 1107 } else if (vmemmap_check_pmd(pmd, node, addr, next)) { 1108 /* 1109 * If a huge mapping exist due to early call to 1110 * vmemmap_populate, let's try to use that. 1111 */ 1112 continue; 1113 } 1114 base_mapping: 1115 /* 1116 * Not able allocate higher order memory to back memmap 1117 * or we found a pointer to pte page. Allocate base page 1118 * size vmemmap 1119 */ 1120 pte = vmemmap_pte_alloc(pmd, node, addr); 1121 if (!pte) 1122 return -ENOMEM; 1123 1124 pte = radix__vmemmap_pte_populate(pmd, addr, node, altmap, NULL); 1125 if (!pte) 1126 return -ENOMEM; 1127 1128 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); 1129 next = addr + PAGE_SIZE; 1130 } 1131 return 0; 1132 } 1133 1134 static pte_t * __meminit radix__vmemmap_populate_address(unsigned long addr, int node, 1135 struct vmem_altmap *altmap, 1136 struct page *reuse) 1137 { 1138 pgd_t *pgd; 1139 p4d_t *p4d; 1140 pud_t *pud; 1141 pmd_t *pmd; 1142 pte_t *pte; 1143 1144 pgd = pgd_offset_k(addr); 1145 p4d = p4d_offset(pgd, addr); 1146 pud = vmemmap_pud_alloc(p4d, node, addr); 1147 if (!pud) 1148 return NULL; 1149 pmd = vmemmap_pmd_alloc(pud, node, addr); 1150 if (!pmd) 1151 return NULL; 1152 if (pmd_leaf(*pmd)) 1153 /* 1154 * The second page is mapped as a hugepage due to a nearby request. 1155 * Force our mapping to page size without deduplication 1156 */ 1157 return NULL; 1158 pte = vmemmap_pte_alloc(pmd, node, addr); 1159 if (!pte) 1160 return NULL; 1161 radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL); 1162 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); 1163 1164 return pte; 1165 } 1166 1167 static pte_t * __meminit vmemmap_compound_tail_page(unsigned long addr, 1168 unsigned long pfn_offset, int node) 1169 { 1170 pgd_t *pgd; 1171 p4d_t *p4d; 1172 pud_t *pud; 1173 pmd_t *pmd; 1174 pte_t *pte; 1175 unsigned long map_addr; 1176 1177 /* the second vmemmap page which we use for duplication */ 1178 map_addr = addr - pfn_offset * sizeof(struct page) + PAGE_SIZE; 1179 pgd = pgd_offset_k(map_addr); 1180 p4d = p4d_offset(pgd, map_addr); 1181 pud = vmemmap_pud_alloc(p4d, node, map_addr); 1182 if (!pud) 1183 return NULL; 1184 pmd = vmemmap_pmd_alloc(pud, node, map_addr); 1185 if (!pmd) 1186 return NULL; 1187 if (pmd_leaf(*pmd)) 1188 /* 1189 * The second page is mapped as a hugepage due to a nearby request. 1190 * Force our mapping to page size without deduplication 1191 */ 1192 return NULL; 1193 pte = vmemmap_pte_alloc(pmd, node, map_addr); 1194 if (!pte) 1195 return NULL; 1196 /* 1197 * Check if there exist a mapping to the left 1198 */ 1199 if (pte_none(*pte)) { 1200 /* 1201 * Populate the head page vmemmap page. 1202 * It can fall in different pmd, hence 1203 * vmemmap_populate_address() 1204 */ 1205 pte = radix__vmemmap_populate_address(map_addr - PAGE_SIZE, node, NULL, NULL); 1206 if (!pte) 1207 return NULL; 1208 /* 1209 * Populate the tail pages vmemmap page 1210 */ 1211 pte = radix__vmemmap_pte_populate(pmd, map_addr, node, NULL, NULL); 1212 if (!pte) 1213 return NULL; 1214 vmemmap_verify(pte, node, map_addr, map_addr + PAGE_SIZE); 1215 return pte; 1216 } 1217 return pte; 1218 } 1219 1220 int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn, 1221 unsigned long start, 1222 unsigned long end, int node, 1223 struct dev_pagemap *pgmap) 1224 { 1225 /* 1226 * we want to map things as base page size mapping so that 1227 * we can save space in vmemmap. We could have huge mapping 1228 * covering out both edges. 1229 */ 1230 unsigned long addr; 1231 unsigned long addr_pfn = start_pfn; 1232 unsigned long next; 1233 pgd_t *pgd; 1234 p4d_t *p4d; 1235 pud_t *pud; 1236 pmd_t *pmd; 1237 pte_t *pte; 1238 1239 for (addr = start; addr < end; addr = next) { 1240 1241 pgd = pgd_offset_k(addr); 1242 p4d = p4d_offset(pgd, addr); 1243 pud = vmemmap_pud_alloc(p4d, node, addr); 1244 if (!pud) 1245 return -ENOMEM; 1246 pmd = vmemmap_pmd_alloc(pud, node, addr); 1247 if (!pmd) 1248 return -ENOMEM; 1249 1250 if (pmd_leaf(READ_ONCE(*pmd))) { 1251 /* existing huge mapping. Skip the range */ 1252 addr_pfn += (PMD_SIZE >> PAGE_SHIFT); 1253 next = pmd_addr_end(addr, end); 1254 continue; 1255 } 1256 pte = vmemmap_pte_alloc(pmd, node, addr); 1257 if (!pte) 1258 return -ENOMEM; 1259 if (!pte_none(*pte)) { 1260 /* 1261 * This could be because we already have a compound 1262 * page whose VMEMMAP_RESERVE_NR pages were mapped and 1263 * this request fall in those pages. 1264 */ 1265 addr_pfn += 1; 1266 next = addr + PAGE_SIZE; 1267 continue; 1268 } else { 1269 unsigned long nr_pages = pgmap_vmemmap_nr(pgmap); 1270 unsigned long pfn_offset = addr_pfn - ALIGN_DOWN(addr_pfn, nr_pages); 1271 pte_t *tail_page_pte; 1272 1273 /* 1274 * if the address is aligned to huge page size it is the 1275 * head mapping. 1276 */ 1277 if (pfn_offset == 0) { 1278 /* Populate the head page vmemmap page */ 1279 pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL); 1280 if (!pte) 1281 return -ENOMEM; 1282 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); 1283 1284 /* 1285 * Populate the tail pages vmemmap page 1286 * It can fall in different pmd, hence 1287 * vmemmap_populate_address() 1288 */ 1289 pte = radix__vmemmap_populate_address(addr + PAGE_SIZE, node, NULL, NULL); 1290 if (!pte) 1291 return -ENOMEM; 1292 1293 addr_pfn += 2; 1294 next = addr + 2 * PAGE_SIZE; 1295 continue; 1296 } 1297 /* 1298 * get the 2nd mapping details 1299 * Also create it if that doesn't exist 1300 */ 1301 tail_page_pte = vmemmap_compound_tail_page(addr, pfn_offset, node); 1302 if (!tail_page_pte) { 1303 1304 pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL); 1305 if (!pte) 1306 return -ENOMEM; 1307 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); 1308 1309 addr_pfn += 1; 1310 next = addr + PAGE_SIZE; 1311 continue; 1312 } 1313 1314 pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, pte_page(*tail_page_pte)); 1315 if (!pte) 1316 return -ENOMEM; 1317 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); 1318 1319 addr_pfn += 1; 1320 next = addr + PAGE_SIZE; 1321 continue; 1322 } 1323 } 1324 return 0; 1325 } 1326 1327 1328 #ifdef CONFIG_MEMORY_HOTPLUG 1329 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size) 1330 { 1331 remove_pagetable(start, start + page_size, true, NULL); 1332 } 1333 1334 void __ref radix__vmemmap_free(unsigned long start, unsigned long end, 1335 struct vmem_altmap *altmap) 1336 { 1337 remove_pagetable(start, end, false, altmap); 1338 } 1339 #endif 1340 #endif 1341 1342 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE) 1343 void radix__kernel_map_pages(struct page *page, int numpages, int enable) 1344 { 1345 unsigned long addr; 1346 1347 addr = (unsigned long)page_address(page); 1348 1349 if (enable) 1350 set_memory_p(addr, numpages); 1351 else 1352 set_memory_np(addr, numpages); 1353 } 1354 #endif 1355 1356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1357 1358 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, 1359 pmd_t *pmdp, unsigned long clr, 1360 unsigned long set) 1361 { 1362 unsigned long old; 1363 1364 #ifdef CONFIG_DEBUG_VM 1365 WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); 1366 assert_spin_locked(pmd_lockptr(mm, pmdp)); 1367 #endif 1368 1369 old = radix__pte_update(mm, addr, pmdp_ptep(pmdp), clr, set, 1); 1370 trace_hugepage_update_pmd(addr, old, clr, set); 1371 1372 return old; 1373 } 1374 1375 unsigned long radix__pud_hugepage_update(struct mm_struct *mm, unsigned long addr, 1376 pud_t *pudp, unsigned long clr, 1377 unsigned long set) 1378 { 1379 unsigned long old; 1380 1381 #ifdef CONFIG_DEBUG_VM 1382 WARN_ON(!pud_devmap(*pudp)); 1383 assert_spin_locked(pud_lockptr(mm, pudp)); 1384 #endif 1385 1386 old = radix__pte_update(mm, addr, pudp_ptep(pudp), clr, set, 1); 1387 trace_hugepage_update_pud(addr, old, clr, set); 1388 1389 return old; 1390 } 1391 1392 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, 1393 pmd_t *pmdp) 1394 1395 { 1396 pmd_t pmd; 1397 1398 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1399 VM_BUG_ON(radix__pmd_trans_huge(*pmdp)); 1400 VM_BUG_ON(pmd_devmap(*pmdp)); 1401 /* 1402 * khugepaged calls this for normal pmd 1403 */ 1404 pmd = *pmdp; 1405 pmd_clear(pmdp); 1406 1407 radix__flush_tlb_collapsed_pmd(vma->vm_mm, address); 1408 1409 return pmd; 1410 } 1411 1412 /* 1413 * For us pgtable_t is pte_t *. Inorder to save the deposisted 1414 * page table, we consider the allocated page table as a list 1415 * head. On withdraw we need to make sure we zero out the used 1416 * list_head memory area. 1417 */ 1418 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1419 pgtable_t pgtable) 1420 { 1421 struct list_head *lh = (struct list_head *) pgtable; 1422 1423 assert_spin_locked(pmd_lockptr(mm, pmdp)); 1424 1425 /* FIFO */ 1426 if (!pmd_huge_pte(mm, pmdp)) 1427 INIT_LIST_HEAD(lh); 1428 else 1429 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); 1430 pmd_huge_pte(mm, pmdp) = pgtable; 1431 } 1432 1433 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) 1434 { 1435 pte_t *ptep; 1436 pgtable_t pgtable; 1437 struct list_head *lh; 1438 1439 assert_spin_locked(pmd_lockptr(mm, pmdp)); 1440 1441 /* FIFO */ 1442 pgtable = pmd_huge_pte(mm, pmdp); 1443 lh = (struct list_head *) pgtable; 1444 if (list_empty(lh)) 1445 pmd_huge_pte(mm, pmdp) = NULL; 1446 else { 1447 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; 1448 list_del(lh); 1449 } 1450 ptep = (pte_t *) pgtable; 1451 *ptep = __pte(0); 1452 ptep++; 1453 *ptep = __pte(0); 1454 return pgtable; 1455 } 1456 1457 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm, 1458 unsigned long addr, pmd_t *pmdp) 1459 { 1460 pmd_t old_pmd; 1461 unsigned long old; 1462 1463 old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0); 1464 old_pmd = __pmd(old); 1465 return old_pmd; 1466 } 1467 1468 pud_t radix__pudp_huge_get_and_clear(struct mm_struct *mm, 1469 unsigned long addr, pud_t *pudp) 1470 { 1471 pud_t old_pud; 1472 unsigned long old; 1473 1474 old = radix__pud_hugepage_update(mm, addr, pudp, ~0UL, 0); 1475 old_pud = __pud(old); 1476 return old_pud; 1477 } 1478 1479 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1480 1481 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep, 1482 pte_t entry, unsigned long address, int psize) 1483 { 1484 struct mm_struct *mm = vma->vm_mm; 1485 unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_SOFT_DIRTY | 1486 _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); 1487 1488 unsigned long change = pte_val(entry) ^ pte_val(*ptep); 1489 /* 1490 * On POWER9, the NMMU is not able to relax PTE access permissions 1491 * for a translation with a TLB. The PTE must be invalidated, TLB 1492 * flushed before the new PTE is installed. 1493 * 1494 * This only needs to be done for radix, because hash translation does 1495 * flush when updating the linux pte (and we don't support NMMU 1496 * accelerators on HPT on POWER9 anyway XXX: do we?). 1497 * 1498 * POWER10 (and P9P) NMMU does behave as per ISA. 1499 */ 1500 if (!cpu_has_feature(CPU_FTR_ARCH_31) && (change & _PAGE_RW) && 1501 atomic_read(&mm->context.copros) > 0) { 1502 unsigned long old_pte, new_pte; 1503 1504 old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID); 1505 new_pte = old_pte | set; 1506 radix__flush_tlb_page_psize(mm, address, psize); 1507 __radix_pte_update(ptep, _PAGE_INVALID, new_pte); 1508 } else { 1509 __radix_pte_update(ptep, 0, set); 1510 /* 1511 * Book3S does not require a TLB flush when relaxing access 1512 * restrictions when the address space (modulo the POWER9 nest 1513 * MMU issue above) because the MMU will reload the PTE after 1514 * taking an access fault, as defined by the architecture. See 1515 * "Setting a Reference or Change Bit or Upgrading Access 1516 * Authority (PTE Subject to Atomic Hardware Updates)" in 1517 * Power ISA Version 3.1B. 1518 */ 1519 } 1520 /* See ptesync comment in radix__set_pte_at */ 1521 } 1522 1523 void radix__ptep_modify_prot_commit(struct vm_area_struct *vma, 1524 unsigned long addr, pte_t *ptep, 1525 pte_t old_pte, pte_t pte) 1526 { 1527 struct mm_struct *mm = vma->vm_mm; 1528 1529 /* 1530 * POWER9 NMMU must flush the TLB after clearing the PTE before 1531 * installing a PTE with more relaxed access permissions, see 1532 * radix__ptep_set_access_flags. 1533 */ 1534 if (!cpu_has_feature(CPU_FTR_ARCH_31) && 1535 is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) && 1536 (atomic_read(&mm->context.copros) > 0)) 1537 radix__flush_tlb_page(vma, addr); 1538 1539 set_pte_at(mm, addr, ptep, pte); 1540 } 1541 1542 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1543 { 1544 pte_t *ptep = (pte_t *)pud; 1545 pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot); 1546 1547 if (!radix_enabled()) 1548 return 0; 1549 1550 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud); 1551 1552 return 1; 1553 } 1554 1555 int pud_clear_huge(pud_t *pud) 1556 { 1557 if (pud_is_leaf(*pud)) { 1558 pud_clear(pud); 1559 return 1; 1560 } 1561 1562 return 0; 1563 } 1564 1565 int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1566 { 1567 pmd_t *pmd; 1568 int i; 1569 1570 pmd = pud_pgtable(*pud); 1571 pud_clear(pud); 1572 1573 flush_tlb_kernel_range(addr, addr + PUD_SIZE); 1574 1575 for (i = 0; i < PTRS_PER_PMD; i++) { 1576 if (!pmd_none(pmd[i])) { 1577 pte_t *pte; 1578 pte = (pte_t *)pmd_page_vaddr(pmd[i]); 1579 1580 pte_free_kernel(&init_mm, pte); 1581 } 1582 } 1583 1584 pmd_free(&init_mm, pmd); 1585 1586 return 1; 1587 } 1588 1589 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1590 { 1591 pte_t *ptep = (pte_t *)pmd; 1592 pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot); 1593 1594 if (!radix_enabled()) 1595 return 0; 1596 1597 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd); 1598 1599 return 1; 1600 } 1601 1602 int pmd_clear_huge(pmd_t *pmd) 1603 { 1604 if (pmd_is_leaf(*pmd)) { 1605 pmd_clear(pmd); 1606 return 1; 1607 } 1608 1609 return 0; 1610 } 1611 1612 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1613 { 1614 pte_t *pte; 1615 1616 pte = (pte_t *)pmd_page_vaddr(*pmd); 1617 pmd_clear(pmd); 1618 1619 flush_tlb_kernel_range(addr, addr + PMD_SIZE); 1620 1621 pte_free_kernel(&init_mm, pte); 1622 1623 return 1; 1624 } 1625