xref: /openbmc/linux/arch/powerpc/mm/book3s64/radix_pgtable.c (revision 2b1b1267080fe822789d0845a58ebb452724736b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Page table handling routines for radix page table.
4  *
5  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6  */
7 
8 #define pr_fmt(fmt) "radix-mmu: " fmt
9 
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/sched/mm.h>
13 #include <linux/memblock.h>
14 #include <linux/of_fdt.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/string_helpers.h>
18 #include <linux/stop_machine.h>
19 
20 #include <asm/pgalloc.h>
21 #include <asm/mmu_context.h>
22 #include <asm/dma.h>
23 #include <asm/machdep.h>
24 #include <asm/mmu.h>
25 #include <asm/firmware.h>
26 #include <asm/powernv.h>
27 #include <asm/sections.h>
28 #include <asm/smp.h>
29 #include <asm/trace.h>
30 #include <asm/uaccess.h>
31 #include <asm/ultravisor.h>
32 
33 #include <trace/events/thp.h>
34 
35 unsigned int mmu_pid_bits;
36 unsigned int mmu_base_pid;
37 
38 static __ref void *early_alloc_pgtable(unsigned long size, int nid,
39 			unsigned long region_start, unsigned long region_end)
40 {
41 	phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
42 	phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
43 	void *ptr;
44 
45 	if (region_start)
46 		min_addr = region_start;
47 	if (region_end)
48 		max_addr = region_end;
49 
50 	ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
51 
52 	if (!ptr)
53 		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
54 		      __func__, size, size, nid, &min_addr, &max_addr);
55 
56 	return ptr;
57 }
58 
59 static int early_map_kernel_page(unsigned long ea, unsigned long pa,
60 			  pgprot_t flags,
61 			  unsigned int map_page_size,
62 			  int nid,
63 			  unsigned long region_start, unsigned long region_end)
64 {
65 	unsigned long pfn = pa >> PAGE_SHIFT;
66 	pgd_t *pgdp;
67 	p4d_t *p4dp;
68 	pud_t *pudp;
69 	pmd_t *pmdp;
70 	pte_t *ptep;
71 
72 	pgdp = pgd_offset_k(ea);
73 	p4dp = p4d_offset(pgdp, ea);
74 	if (p4d_none(*p4dp)) {
75 		pudp = early_alloc_pgtable(PUD_TABLE_SIZE, nid,
76 						region_start, region_end);
77 		p4d_populate(&init_mm, p4dp, pudp);
78 	}
79 	pudp = pud_offset(p4dp, ea);
80 	if (map_page_size == PUD_SIZE) {
81 		ptep = (pte_t *)pudp;
82 		goto set_the_pte;
83 	}
84 	if (pud_none(*pudp)) {
85 		pmdp = early_alloc_pgtable(PMD_TABLE_SIZE, nid,
86 						region_start, region_end);
87 		pud_populate(&init_mm, pudp, pmdp);
88 	}
89 	pmdp = pmd_offset(pudp, ea);
90 	if (map_page_size == PMD_SIZE) {
91 		ptep = pmdp_ptep(pmdp);
92 		goto set_the_pte;
93 	}
94 	if (!pmd_present(*pmdp)) {
95 		ptep = early_alloc_pgtable(PAGE_SIZE, nid,
96 						region_start, region_end);
97 		pmd_populate_kernel(&init_mm, pmdp, ptep);
98 	}
99 	ptep = pte_offset_kernel(pmdp, ea);
100 
101 set_the_pte:
102 	set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
103 	smp_wmb();
104 	return 0;
105 }
106 
107 /*
108  * nid, region_start, and region_end are hints to try to place the page
109  * table memory in the same node or region.
110  */
111 static int __map_kernel_page(unsigned long ea, unsigned long pa,
112 			  pgprot_t flags,
113 			  unsigned int map_page_size,
114 			  int nid,
115 			  unsigned long region_start, unsigned long region_end)
116 {
117 	unsigned long pfn = pa >> PAGE_SHIFT;
118 	pgd_t *pgdp;
119 	p4d_t *p4dp;
120 	pud_t *pudp;
121 	pmd_t *pmdp;
122 	pte_t *ptep;
123 	/*
124 	 * Make sure task size is correct as per the max adddr
125 	 */
126 	BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
127 
128 #ifdef CONFIG_PPC_64K_PAGES
129 	BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
130 #endif
131 
132 	if (unlikely(!slab_is_available()))
133 		return early_map_kernel_page(ea, pa, flags, map_page_size,
134 						nid, region_start, region_end);
135 
136 	/*
137 	 * Should make page table allocation functions be able to take a
138 	 * node, so we can place kernel page tables on the right nodes after
139 	 * boot.
140 	 */
141 	pgdp = pgd_offset_k(ea);
142 	p4dp = p4d_offset(pgdp, ea);
143 	pudp = pud_alloc(&init_mm, p4dp, ea);
144 	if (!pudp)
145 		return -ENOMEM;
146 	if (map_page_size == PUD_SIZE) {
147 		ptep = (pte_t *)pudp;
148 		goto set_the_pte;
149 	}
150 	pmdp = pmd_alloc(&init_mm, pudp, ea);
151 	if (!pmdp)
152 		return -ENOMEM;
153 	if (map_page_size == PMD_SIZE) {
154 		ptep = pmdp_ptep(pmdp);
155 		goto set_the_pte;
156 	}
157 	ptep = pte_alloc_kernel(pmdp, ea);
158 	if (!ptep)
159 		return -ENOMEM;
160 
161 set_the_pte:
162 	set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
163 	smp_wmb();
164 	return 0;
165 }
166 
167 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
168 			  pgprot_t flags,
169 			  unsigned int map_page_size)
170 {
171 	return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
172 }
173 
174 #ifdef CONFIG_STRICT_KERNEL_RWX
175 void radix__change_memory_range(unsigned long start, unsigned long end,
176 				unsigned long clear)
177 {
178 	unsigned long idx;
179 	pgd_t *pgdp;
180 	p4d_t *p4dp;
181 	pud_t *pudp;
182 	pmd_t *pmdp;
183 	pte_t *ptep;
184 
185 	start = ALIGN_DOWN(start, PAGE_SIZE);
186 	end = PAGE_ALIGN(end); // aligns up
187 
188 	pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
189 		 start, end, clear);
190 
191 	for (idx = start; idx < end; idx += PAGE_SIZE) {
192 		pgdp = pgd_offset_k(idx);
193 		p4dp = p4d_offset(pgdp, idx);
194 		pudp = pud_alloc(&init_mm, p4dp, idx);
195 		if (!pudp)
196 			continue;
197 		if (pud_is_leaf(*pudp)) {
198 			ptep = (pte_t *)pudp;
199 			goto update_the_pte;
200 		}
201 		pmdp = pmd_alloc(&init_mm, pudp, idx);
202 		if (!pmdp)
203 			continue;
204 		if (pmd_is_leaf(*pmdp)) {
205 			ptep = pmdp_ptep(pmdp);
206 			goto update_the_pte;
207 		}
208 		ptep = pte_alloc_kernel(pmdp, idx);
209 		if (!ptep)
210 			continue;
211 update_the_pte:
212 		radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
213 	}
214 
215 	radix__flush_tlb_kernel_range(start, end);
216 }
217 
218 void radix__mark_rodata_ro(void)
219 {
220 	unsigned long start, end;
221 
222 	start = (unsigned long)_stext;
223 	end = (unsigned long)__init_begin;
224 
225 	radix__change_memory_range(start, end, _PAGE_WRITE);
226 }
227 
228 void radix__mark_initmem_nx(void)
229 {
230 	unsigned long start = (unsigned long)__init_begin;
231 	unsigned long end = (unsigned long)__init_end;
232 
233 	radix__change_memory_range(start, end, _PAGE_EXEC);
234 }
235 #endif /* CONFIG_STRICT_KERNEL_RWX */
236 
237 static inline void __meminit
238 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
239 {
240 	char buf[10];
241 
242 	if (end <= start)
243 		return;
244 
245 	string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
246 
247 	pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
248 		exec ? " (exec)" : "");
249 }
250 
251 static unsigned long next_boundary(unsigned long addr, unsigned long end)
252 {
253 #ifdef CONFIG_STRICT_KERNEL_RWX
254 	if (addr < __pa_symbol(__init_begin))
255 		return __pa_symbol(__init_begin);
256 #endif
257 	return end;
258 }
259 
260 static int __meminit create_physical_mapping(unsigned long start,
261 					     unsigned long end,
262 					     int nid, pgprot_t _prot)
263 {
264 	unsigned long vaddr, addr, mapping_size = 0;
265 	bool prev_exec, exec = false;
266 	pgprot_t prot;
267 	int psize;
268 
269 	start = ALIGN(start, PAGE_SIZE);
270 	for (addr = start; addr < end; addr += mapping_size) {
271 		unsigned long gap, previous_size;
272 		int rc;
273 
274 		gap = next_boundary(addr, end) - addr;
275 		previous_size = mapping_size;
276 		prev_exec = exec;
277 
278 		if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
279 		    mmu_psize_defs[MMU_PAGE_1G].shift) {
280 			mapping_size = PUD_SIZE;
281 			psize = MMU_PAGE_1G;
282 		} else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
283 			   mmu_psize_defs[MMU_PAGE_2M].shift) {
284 			mapping_size = PMD_SIZE;
285 			psize = MMU_PAGE_2M;
286 		} else {
287 			mapping_size = PAGE_SIZE;
288 			psize = mmu_virtual_psize;
289 		}
290 
291 		vaddr = (unsigned long)__va(addr);
292 
293 		if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
294 		    overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
295 			prot = PAGE_KERNEL_X;
296 			exec = true;
297 		} else {
298 			prot = _prot;
299 			exec = false;
300 		}
301 
302 		if (mapping_size != previous_size || exec != prev_exec) {
303 			print_mapping(start, addr, previous_size, prev_exec);
304 			start = addr;
305 		}
306 
307 		rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
308 		if (rc)
309 			return rc;
310 
311 		update_page_count(psize, 1);
312 	}
313 
314 	print_mapping(start, addr, mapping_size, exec);
315 	return 0;
316 }
317 
318 static void __init radix_init_pgtable(void)
319 {
320 	unsigned long rts_field;
321 	struct memblock_region *reg;
322 
323 	/* We don't support slb for radix */
324 	mmu_slb_size = 0;
325 	/*
326 	 * Create the linear mapping, using standard page size for now
327 	 */
328 	for_each_memblock(memory, reg) {
329 		/*
330 		 * The memblock allocator  is up at this point, so the
331 		 * page tables will be allocated within the range. No
332 		 * need or a node (which we don't have yet).
333 		 */
334 
335 		if ((reg->base + reg->size) >= RADIX_VMALLOC_START) {
336 			pr_warn("Outside the supported range\n");
337 			continue;
338 		}
339 
340 		WARN_ON(create_physical_mapping(reg->base,
341 						reg->base + reg->size,
342 						-1, PAGE_KERNEL));
343 	}
344 
345 	/* Find out how many PID bits are supported */
346 	if (!cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
347 		if (!mmu_pid_bits)
348 			mmu_pid_bits = 20;
349 		mmu_base_pid = 1;
350 	} else if (cpu_has_feature(CPU_FTR_HVMODE)) {
351 		if (!mmu_pid_bits)
352 			mmu_pid_bits = 20;
353 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
354 		/*
355 		 * When KVM is possible, we only use the top half of the
356 		 * PID space to avoid collisions between host and guest PIDs
357 		 * which can cause problems due to prefetch when exiting the
358 		 * guest with AIL=3
359 		 */
360 		mmu_base_pid = 1 << (mmu_pid_bits - 1);
361 #else
362 		mmu_base_pid = 1;
363 #endif
364 	} else {
365 		/* The guest uses the bottom half of the PID space */
366 		if (!mmu_pid_bits)
367 			mmu_pid_bits = 19;
368 		mmu_base_pid = 1;
369 	}
370 
371 	/*
372 	 * Allocate Partition table and process table for the
373 	 * host.
374 	 */
375 	BUG_ON(PRTB_SIZE_SHIFT > 36);
376 	process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
377 	/*
378 	 * Fill in the process table.
379 	 */
380 	rts_field = radix__get_tree_size();
381 	process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
382 
383 	/*
384 	 * The init_mm context is given the first available (non-zero) PID,
385 	 * which is the "guard PID" and contains no page table. PIDR should
386 	 * never be set to zero because that duplicates the kernel address
387 	 * space at the 0x0... offset (quadrant 0)!
388 	 *
389 	 * An arbitrary PID that may later be allocated by the PID allocator
390 	 * for userspace processes must not be used either, because that
391 	 * would cause stale user mappings for that PID on CPUs outside of
392 	 * the TLB invalidation scheme (because it won't be in mm_cpumask).
393 	 *
394 	 * So permanently carve out one PID for the purpose of a guard PID.
395 	 */
396 	init_mm.context.id = mmu_base_pid;
397 	mmu_base_pid++;
398 }
399 
400 static void __init radix_init_partition_table(void)
401 {
402 	unsigned long rts_field, dw0, dw1;
403 
404 	mmu_partition_table_init();
405 	rts_field = radix__get_tree_size();
406 	dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
407 	dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
408 	mmu_partition_table_set_entry(0, dw0, dw1, false);
409 
410 	pr_info("Initializing Radix MMU\n");
411 }
412 
413 static int __init get_idx_from_shift(unsigned int shift)
414 {
415 	int idx = -1;
416 
417 	switch (shift) {
418 	case 0xc:
419 		idx = MMU_PAGE_4K;
420 		break;
421 	case 0x10:
422 		idx = MMU_PAGE_64K;
423 		break;
424 	case 0x15:
425 		idx = MMU_PAGE_2M;
426 		break;
427 	case 0x1e:
428 		idx = MMU_PAGE_1G;
429 		break;
430 	}
431 	return idx;
432 }
433 
434 static int __init radix_dt_scan_page_sizes(unsigned long node,
435 					   const char *uname, int depth,
436 					   void *data)
437 {
438 	int size = 0;
439 	int shift, idx;
440 	unsigned int ap;
441 	const __be32 *prop;
442 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
443 
444 	/* We are scanning "cpu" nodes only */
445 	if (type == NULL || strcmp(type, "cpu") != 0)
446 		return 0;
447 
448 	/* Find MMU PID size */
449 	prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
450 	if (prop && size == 4)
451 		mmu_pid_bits = be32_to_cpup(prop);
452 
453 	/* Grab page size encodings */
454 	prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
455 	if (!prop)
456 		return 0;
457 
458 	pr_info("Page sizes from device-tree:\n");
459 	for (; size >= 4; size -= 4, ++prop) {
460 
461 		struct mmu_psize_def *def;
462 
463 		/* top 3 bit is AP encoding */
464 		shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
465 		ap = be32_to_cpu(prop[0]) >> 29;
466 		pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
467 
468 		idx = get_idx_from_shift(shift);
469 		if (idx < 0)
470 			continue;
471 
472 		def = &mmu_psize_defs[idx];
473 		def->shift = shift;
474 		def->ap  = ap;
475 	}
476 
477 	/* needed ? */
478 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
479 	return 1;
480 }
481 
482 void __init radix__early_init_devtree(void)
483 {
484 	int rc;
485 
486 	/*
487 	 * Try to find the available page sizes in the device-tree
488 	 */
489 	rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
490 	if (rc != 0)  /* Found */
491 		goto found;
492 	/*
493 	 * let's assume we have page 4k and 64k support
494 	 */
495 	mmu_psize_defs[MMU_PAGE_4K].shift = 12;
496 	mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
497 
498 	mmu_psize_defs[MMU_PAGE_64K].shift = 16;
499 	mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
500 found:
501 	return;
502 }
503 
504 static void radix_init_amor(void)
505 {
506 	/*
507 	* In HV mode, we init AMOR (Authority Mask Override Register) so that
508 	* the hypervisor and guest can setup IAMR (Instruction Authority Mask
509 	* Register), enable key 0 and set it to 1.
510 	*
511 	* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
512 	*/
513 	mtspr(SPRN_AMOR, (3ul << 62));
514 }
515 
516 #ifdef CONFIG_PPC_KUEP
517 void setup_kuep(bool disabled)
518 {
519 	if (disabled || !early_radix_enabled())
520 		return;
521 
522 	if (smp_processor_id() == boot_cpuid)
523 		pr_info("Activating Kernel Userspace Execution Prevention\n");
524 
525 	/*
526 	 * Radix always uses key0 of the IAMR to determine if an access is
527 	 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
528 	 * fetch.
529 	 */
530 	mtspr(SPRN_IAMR, (1ul << 62));
531 }
532 #endif
533 
534 #ifdef CONFIG_PPC_KUAP
535 void setup_kuap(bool disabled)
536 {
537 	if (disabled || !early_radix_enabled())
538 		return;
539 
540 	if (smp_processor_id() == boot_cpuid) {
541 		pr_info("Activating Kernel Userspace Access Prevention\n");
542 		cur_cpu_spec->mmu_features |= MMU_FTR_RADIX_KUAP;
543 	}
544 
545 	/* Make sure userspace can't change the AMR */
546 	mtspr(SPRN_UAMOR, 0);
547 	mtspr(SPRN_AMR, AMR_KUAP_BLOCKED);
548 	isync();
549 }
550 #endif
551 
552 void __init radix__early_init_mmu(void)
553 {
554 	unsigned long lpcr;
555 
556 #ifdef CONFIG_PPC_64K_PAGES
557 	/* PAGE_SIZE mappings */
558 	mmu_virtual_psize = MMU_PAGE_64K;
559 #else
560 	mmu_virtual_psize = MMU_PAGE_4K;
561 #endif
562 
563 #ifdef CONFIG_SPARSEMEM_VMEMMAP
564 	/* vmemmap mapping */
565 	if (mmu_psize_defs[MMU_PAGE_2M].shift) {
566 		/*
567 		 * map vmemmap using 2M if available
568 		 */
569 		mmu_vmemmap_psize = MMU_PAGE_2M;
570 	} else
571 		mmu_vmemmap_psize = mmu_virtual_psize;
572 #endif
573 	/*
574 	 * initialize page table size
575 	 */
576 	__pte_index_size = RADIX_PTE_INDEX_SIZE;
577 	__pmd_index_size = RADIX_PMD_INDEX_SIZE;
578 	__pud_index_size = RADIX_PUD_INDEX_SIZE;
579 	__pgd_index_size = RADIX_PGD_INDEX_SIZE;
580 	__pud_cache_index = RADIX_PUD_INDEX_SIZE;
581 	__pte_table_size = RADIX_PTE_TABLE_SIZE;
582 	__pmd_table_size = RADIX_PMD_TABLE_SIZE;
583 	__pud_table_size = RADIX_PUD_TABLE_SIZE;
584 	__pgd_table_size = RADIX_PGD_TABLE_SIZE;
585 
586 	__pmd_val_bits = RADIX_PMD_VAL_BITS;
587 	__pud_val_bits = RADIX_PUD_VAL_BITS;
588 	__pgd_val_bits = RADIX_PGD_VAL_BITS;
589 
590 	__kernel_virt_start = RADIX_KERN_VIRT_START;
591 	__vmalloc_start = RADIX_VMALLOC_START;
592 	__vmalloc_end = RADIX_VMALLOC_END;
593 	__kernel_io_start = RADIX_KERN_IO_START;
594 	__kernel_io_end = RADIX_KERN_IO_END;
595 	vmemmap = (struct page *)RADIX_VMEMMAP_START;
596 	ioremap_bot = IOREMAP_BASE;
597 
598 #ifdef CONFIG_PCI
599 	pci_io_base = ISA_IO_BASE;
600 #endif
601 	__pte_frag_nr = RADIX_PTE_FRAG_NR;
602 	__pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
603 	__pmd_frag_nr = RADIX_PMD_FRAG_NR;
604 	__pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
605 
606 	radix_init_pgtable();
607 
608 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
609 		lpcr = mfspr(SPRN_LPCR);
610 		mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
611 		radix_init_partition_table();
612 		radix_init_amor();
613 	} else {
614 		radix_init_pseries();
615 	}
616 
617 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
618 
619 	/* Switch to the guard PID before turning on MMU */
620 	radix__switch_mmu_context(NULL, &init_mm);
621 	tlbiel_all();
622 }
623 
624 void radix__early_init_mmu_secondary(void)
625 {
626 	unsigned long lpcr;
627 	/*
628 	 * update partition table control register and UPRT
629 	 */
630 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
631 		lpcr = mfspr(SPRN_LPCR);
632 		mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
633 
634 		set_ptcr_when_no_uv(__pa(partition_tb) |
635 				    (PATB_SIZE_SHIFT - 12));
636 
637 		radix_init_amor();
638 	}
639 
640 	radix__switch_mmu_context(NULL, &init_mm);
641 	tlbiel_all();
642 }
643 
644 void radix__mmu_cleanup_all(void)
645 {
646 	unsigned long lpcr;
647 
648 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
649 		lpcr = mfspr(SPRN_LPCR);
650 		mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
651 		set_ptcr_when_no_uv(0);
652 		powernv_set_nmmu_ptcr(0);
653 		radix__flush_tlb_all();
654 	}
655 }
656 
657 void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
658 				phys_addr_t first_memblock_size)
659 {
660 	/*
661 	 * We don't currently support the first MEMBLOCK not mapping 0
662 	 * physical on those processors
663 	 */
664 	BUG_ON(first_memblock_base != 0);
665 
666 	/*
667 	 * Radix mode is not limited by RMA / VRMA addressing.
668 	 */
669 	ppc64_rma_size = ULONG_MAX;
670 }
671 
672 #ifdef CONFIG_MEMORY_HOTPLUG
673 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
674 {
675 	pte_t *pte;
676 	int i;
677 
678 	for (i = 0; i < PTRS_PER_PTE; i++) {
679 		pte = pte_start + i;
680 		if (!pte_none(*pte))
681 			return;
682 	}
683 
684 	pte_free_kernel(&init_mm, pte_start);
685 	pmd_clear(pmd);
686 }
687 
688 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
689 {
690 	pmd_t *pmd;
691 	int i;
692 
693 	for (i = 0; i < PTRS_PER_PMD; i++) {
694 		pmd = pmd_start + i;
695 		if (!pmd_none(*pmd))
696 			return;
697 	}
698 
699 	pmd_free(&init_mm, pmd_start);
700 	pud_clear(pud);
701 }
702 
703 struct change_mapping_params {
704 	pte_t *pte;
705 	unsigned long start;
706 	unsigned long end;
707 	unsigned long aligned_start;
708 	unsigned long aligned_end;
709 };
710 
711 static int __meminit stop_machine_change_mapping(void *data)
712 {
713 	struct change_mapping_params *params =
714 			(struct change_mapping_params *)data;
715 
716 	if (!data)
717 		return -1;
718 
719 	spin_unlock(&init_mm.page_table_lock);
720 	pte_clear(&init_mm, params->aligned_start, params->pte);
721 	create_physical_mapping(__pa(params->aligned_start),
722 				__pa(params->start), -1, PAGE_KERNEL);
723 	create_physical_mapping(__pa(params->end), __pa(params->aligned_end),
724 				-1, PAGE_KERNEL);
725 	spin_lock(&init_mm.page_table_lock);
726 	return 0;
727 }
728 
729 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
730 			     unsigned long end)
731 {
732 	unsigned long next;
733 	pte_t *pte;
734 
735 	pte = pte_start + pte_index(addr);
736 	for (; addr < end; addr = next, pte++) {
737 		next = (addr + PAGE_SIZE) & PAGE_MASK;
738 		if (next > end)
739 			next = end;
740 
741 		if (!pte_present(*pte))
742 			continue;
743 
744 		if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
745 			/*
746 			 * The vmemmap_free() and remove_section_mapping()
747 			 * codepaths call us with aligned addresses.
748 			 */
749 			WARN_ONCE(1, "%s: unaligned range\n", __func__);
750 			continue;
751 		}
752 
753 		pte_clear(&init_mm, addr, pte);
754 	}
755 }
756 
757 /*
758  * clear the pte and potentially split the mapping helper
759  */
760 static void __meminit split_kernel_mapping(unsigned long addr, unsigned long end,
761 				unsigned long size, pte_t *pte)
762 {
763 	unsigned long mask = ~(size - 1);
764 	unsigned long aligned_start = addr & mask;
765 	unsigned long aligned_end = addr + size;
766 	struct change_mapping_params params;
767 	bool split_region = false;
768 
769 	if ((end - addr) < size) {
770 		/*
771 		 * We're going to clear the PTE, but not flushed
772 		 * the mapping, time to remap and flush. The
773 		 * effects if visible outside the processor or
774 		 * if we are running in code close to the
775 		 * mapping we cleared, we are in trouble.
776 		 */
777 		if (overlaps_kernel_text(aligned_start, addr) ||
778 			overlaps_kernel_text(end, aligned_end)) {
779 			/*
780 			 * Hack, just return, don't pte_clear
781 			 */
782 			WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
783 				  "text, not splitting\n", addr, end);
784 			return;
785 		}
786 		split_region = true;
787 	}
788 
789 	if (split_region) {
790 		params.pte = pte;
791 		params.start = addr;
792 		params.end = end;
793 		params.aligned_start = addr & ~(size - 1);
794 		params.aligned_end = min_t(unsigned long, aligned_end,
795 				(unsigned long)__va(memblock_end_of_DRAM()));
796 		stop_machine(stop_machine_change_mapping, &params, NULL);
797 		return;
798 	}
799 
800 	pte_clear(&init_mm, addr, pte);
801 }
802 
803 static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
804 			     unsigned long end)
805 {
806 	unsigned long next;
807 	pte_t *pte_base;
808 	pmd_t *pmd;
809 
810 	pmd = pmd_start + pmd_index(addr);
811 	for (; addr < end; addr = next, pmd++) {
812 		next = pmd_addr_end(addr, end);
813 
814 		if (!pmd_present(*pmd))
815 			continue;
816 
817 		if (pmd_is_leaf(*pmd)) {
818 			split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd);
819 			continue;
820 		}
821 
822 		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
823 		remove_pte_table(pte_base, addr, next);
824 		free_pte_table(pte_base, pmd);
825 	}
826 }
827 
828 static void remove_pud_table(pud_t *pud_start, unsigned long addr,
829 			     unsigned long end)
830 {
831 	unsigned long next;
832 	pmd_t *pmd_base;
833 	pud_t *pud;
834 
835 	pud = pud_start + pud_index(addr);
836 	for (; addr < end; addr = next, pud++) {
837 		next = pud_addr_end(addr, end);
838 
839 		if (!pud_present(*pud))
840 			continue;
841 
842 		if (pud_is_leaf(*pud)) {
843 			split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud);
844 			continue;
845 		}
846 
847 		pmd_base = (pmd_t *)pud_page_vaddr(*pud);
848 		remove_pmd_table(pmd_base, addr, next);
849 		free_pmd_table(pmd_base, pud);
850 	}
851 }
852 
853 static void __meminit remove_pagetable(unsigned long start, unsigned long end)
854 {
855 	unsigned long addr, next;
856 	pud_t *pud_base;
857 	pgd_t *pgd;
858 	p4d_t *p4d;
859 
860 	spin_lock(&init_mm.page_table_lock);
861 
862 	for (addr = start; addr < end; addr = next) {
863 		next = pgd_addr_end(addr, end);
864 
865 		pgd = pgd_offset_k(addr);
866 		p4d = p4d_offset(pgd, addr);
867 		if (!p4d_present(*p4d))
868 			continue;
869 
870 		if (p4d_is_leaf(*p4d)) {
871 			split_kernel_mapping(addr, end, P4D_SIZE, (pte_t *)p4d);
872 			continue;
873 		}
874 
875 		pud_base = (pud_t *)p4d_page_vaddr(*p4d);
876 		remove_pud_table(pud_base, addr, next);
877 	}
878 
879 	spin_unlock(&init_mm.page_table_lock);
880 	radix__flush_tlb_kernel_range(start, end);
881 }
882 
883 int __meminit radix__create_section_mapping(unsigned long start,
884 					    unsigned long end, int nid,
885 					    pgprot_t prot)
886 {
887 	if (end >= RADIX_VMALLOC_START) {
888 		pr_warn("Outside the supported range\n");
889 		return -1;
890 	}
891 
892 	return create_physical_mapping(__pa(start), __pa(end), nid, prot);
893 }
894 
895 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
896 {
897 	remove_pagetable(start, end);
898 	return 0;
899 }
900 #endif /* CONFIG_MEMORY_HOTPLUG */
901 
902 #ifdef CONFIG_SPARSEMEM_VMEMMAP
903 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
904 				 pgprot_t flags, unsigned int map_page_size,
905 				 int nid)
906 {
907 	return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
908 }
909 
910 int __meminit radix__vmemmap_create_mapping(unsigned long start,
911 				      unsigned long page_size,
912 				      unsigned long phys)
913 {
914 	/* Create a PTE encoding */
915 	unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
916 	int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
917 	int ret;
918 
919 	if ((start + page_size) >= RADIX_VMEMMAP_END) {
920 		pr_warn("Outside the supported range\n");
921 		return -1;
922 	}
923 
924 	ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
925 	BUG_ON(ret);
926 
927 	return 0;
928 }
929 
930 #ifdef CONFIG_MEMORY_HOTPLUG
931 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
932 {
933 	remove_pagetable(start, start + page_size);
934 }
935 #endif
936 #endif
937 
938 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
939 
940 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
941 				  pmd_t *pmdp, unsigned long clr,
942 				  unsigned long set)
943 {
944 	unsigned long old;
945 
946 #ifdef CONFIG_DEBUG_VM
947 	WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
948 	assert_spin_locked(pmd_lockptr(mm, pmdp));
949 #endif
950 
951 	old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
952 	trace_hugepage_update(addr, old, clr, set);
953 
954 	return old;
955 }
956 
957 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
958 			pmd_t *pmdp)
959 
960 {
961 	pmd_t pmd;
962 
963 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
964 	VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
965 	VM_BUG_ON(pmd_devmap(*pmdp));
966 	/*
967 	 * khugepaged calls this for normal pmd
968 	 */
969 	pmd = *pmdp;
970 	pmd_clear(pmdp);
971 
972 	/*
973 	 * pmdp collapse_flush need to ensure that there are no parallel gup
974 	 * walk after this call. This is needed so that we can have stable
975 	 * page ref count when collapsing a page. We don't allow a collapse page
976 	 * if we have gup taken on the page. We can ensure that by sending IPI
977 	 * because gup walk happens with IRQ disabled.
978 	 */
979 	serialize_against_pte_lookup(vma->vm_mm);
980 
981 	radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
982 
983 	return pmd;
984 }
985 
986 /*
987  * For us pgtable_t is pte_t *. Inorder to save the deposisted
988  * page table, we consider the allocated page table as a list
989  * head. On withdraw we need to make sure we zero out the used
990  * list_head memory area.
991  */
992 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
993 				 pgtable_t pgtable)
994 {
995 	struct list_head *lh = (struct list_head *) pgtable;
996 
997 	assert_spin_locked(pmd_lockptr(mm, pmdp));
998 
999 	/* FIFO */
1000 	if (!pmd_huge_pte(mm, pmdp))
1001 		INIT_LIST_HEAD(lh);
1002 	else
1003 		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1004 	pmd_huge_pte(mm, pmdp) = pgtable;
1005 }
1006 
1007 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1008 {
1009 	pte_t *ptep;
1010 	pgtable_t pgtable;
1011 	struct list_head *lh;
1012 
1013 	assert_spin_locked(pmd_lockptr(mm, pmdp));
1014 
1015 	/* FIFO */
1016 	pgtable = pmd_huge_pte(mm, pmdp);
1017 	lh = (struct list_head *) pgtable;
1018 	if (list_empty(lh))
1019 		pmd_huge_pte(mm, pmdp) = NULL;
1020 	else {
1021 		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1022 		list_del(lh);
1023 	}
1024 	ptep = (pte_t *) pgtable;
1025 	*ptep = __pte(0);
1026 	ptep++;
1027 	*ptep = __pte(0);
1028 	return pgtable;
1029 }
1030 
1031 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1032 				     unsigned long addr, pmd_t *pmdp)
1033 {
1034 	pmd_t old_pmd;
1035 	unsigned long old;
1036 
1037 	old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1038 	old_pmd = __pmd(old);
1039 	return old_pmd;
1040 }
1041 
1042 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1043 
1044 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1045 				  pte_t entry, unsigned long address, int psize)
1046 {
1047 	struct mm_struct *mm = vma->vm_mm;
1048 	unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
1049 					      _PAGE_RW | _PAGE_EXEC);
1050 
1051 	unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1052 	/*
1053 	 * To avoid NMMU hang while relaxing access, we need mark
1054 	 * the pte invalid in between.
1055 	 */
1056 	if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
1057 		unsigned long old_pte, new_pte;
1058 
1059 		old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1060 		/*
1061 		 * new value of pte
1062 		 */
1063 		new_pte = old_pte | set;
1064 		radix__flush_tlb_page_psize(mm, address, psize);
1065 		__radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1066 	} else {
1067 		__radix_pte_update(ptep, 0, set);
1068 		/*
1069 		 * Book3S does not require a TLB flush when relaxing access
1070 		 * restrictions when the address space is not attached to a
1071 		 * NMMU, because the core MMU will reload the pte after taking
1072 		 * an access fault, which is defined by the architectue.
1073 		 */
1074 	}
1075 	/* See ptesync comment in radix__set_pte_at */
1076 }
1077 
1078 void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
1079 				    unsigned long addr, pte_t *ptep,
1080 				    pte_t old_pte, pte_t pte)
1081 {
1082 	struct mm_struct *mm = vma->vm_mm;
1083 
1084 	/*
1085 	 * To avoid NMMU hang while relaxing access we need to flush the tlb before
1086 	 * we set the new value. We need to do this only for radix, because hash
1087 	 * translation does flush when updating the linux pte.
1088 	 */
1089 	if (is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
1090 	    (atomic_read(&mm->context.copros) > 0))
1091 		radix__flush_tlb_page(vma, addr);
1092 
1093 	set_pte_at(mm, addr, ptep, pte);
1094 }
1095 
1096 int __init arch_ioremap_pud_supported(void)
1097 {
1098 	/* HPT does not cope with large pages in the vmalloc area */
1099 	return radix_enabled();
1100 }
1101 
1102 int __init arch_ioremap_pmd_supported(void)
1103 {
1104 	return radix_enabled();
1105 }
1106 
1107 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1108 {
1109 	return 0;
1110 }
1111 
1112 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1113 {
1114 	pte_t *ptep = (pte_t *)pud;
1115 	pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
1116 
1117 	if (!radix_enabled())
1118 		return 0;
1119 
1120 	set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
1121 
1122 	return 1;
1123 }
1124 
1125 int pud_clear_huge(pud_t *pud)
1126 {
1127 	if (pud_huge(*pud)) {
1128 		pud_clear(pud);
1129 		return 1;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1136 {
1137 	pmd_t *pmd;
1138 	int i;
1139 
1140 	pmd = (pmd_t *)pud_page_vaddr(*pud);
1141 	pud_clear(pud);
1142 
1143 	flush_tlb_kernel_range(addr, addr + PUD_SIZE);
1144 
1145 	for (i = 0; i < PTRS_PER_PMD; i++) {
1146 		if (!pmd_none(pmd[i])) {
1147 			pte_t *pte;
1148 			pte = (pte_t *)pmd_page_vaddr(pmd[i]);
1149 
1150 			pte_free_kernel(&init_mm, pte);
1151 		}
1152 	}
1153 
1154 	pmd_free(&init_mm, pmd);
1155 
1156 	return 1;
1157 }
1158 
1159 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1160 {
1161 	pte_t *ptep = (pte_t *)pmd;
1162 	pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
1163 
1164 	if (!radix_enabled())
1165 		return 0;
1166 
1167 	set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
1168 
1169 	return 1;
1170 }
1171 
1172 int pmd_clear_huge(pmd_t *pmd)
1173 {
1174 	if (pmd_huge(*pmd)) {
1175 		pmd_clear(pmd);
1176 		return 1;
1177 	}
1178 
1179 	return 0;
1180 }
1181 
1182 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1183 {
1184 	pte_t *pte;
1185 
1186 	pte = (pte_t *)pmd_page_vaddr(*pmd);
1187 	pmd_clear(pmd);
1188 
1189 	flush_tlb_kernel_range(addr, addr + PMD_SIZE);
1190 
1191 	pte_free_kernel(&init_mm, pte);
1192 
1193 	return 1;
1194 }
1195 
1196 int __init arch_ioremap_p4d_supported(void)
1197 {
1198 	return 0;
1199 }
1200