1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * PowerPC Memory Protection Keys management 4 * 5 * Copyright 2017, Ram Pai, IBM Corporation. 6 */ 7 8 #include <asm/mman.h> 9 #include <asm/mmu_context.h> 10 #include <asm/mmu.h> 11 #include <asm/setup.h> 12 #include <asm/smp.h> 13 #include <asm/firmware.h> 14 15 #include <linux/pkeys.h> 16 #include <linux/of_fdt.h> 17 18 19 int num_pkey; /* Max number of pkeys supported */ 20 /* 21 * Keys marked in the reservation list cannot be allocated by userspace 22 */ 23 u32 reserved_allocation_mask __ro_after_init; 24 25 /* Bits set for the initially allocated keys */ 26 static u32 initial_allocation_mask __ro_after_init; 27 28 /* 29 * Even if we allocate keys with sys_pkey_alloc(), we need to make sure 30 * other thread still find the access denied using the same keys. 31 */ 32 u64 default_amr __ro_after_init = ~0x0UL; 33 u64 default_iamr __ro_after_init = 0x5555555555555555UL; 34 u64 default_uamor __ro_after_init; 35 EXPORT_SYMBOL(default_amr); 36 /* 37 * Key used to implement PROT_EXEC mmap. Denies READ/WRITE 38 * We pick key 2 because 0 is special key and 1 is reserved as per ISA. 39 */ 40 static int execute_only_key = 2; 41 static bool pkey_execute_disable_supported; 42 43 44 #define AMR_BITS_PER_PKEY 2 45 #define AMR_RD_BIT 0x1UL 46 #define AMR_WR_BIT 0x2UL 47 #define IAMR_EX_BIT 0x1UL 48 #define PKEY_REG_BITS (sizeof(u64) * 8) 49 #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY)) 50 51 static int __init dt_scan_storage_keys(unsigned long node, 52 const char *uname, int depth, 53 void *data) 54 { 55 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 56 const __be32 *prop; 57 int *pkeys_total = (int *) data; 58 59 /* We are scanning "cpu" nodes only */ 60 if (type == NULL || strcmp(type, "cpu") != 0) 61 return 0; 62 63 prop = of_get_flat_dt_prop(node, "ibm,processor-storage-keys", NULL); 64 if (!prop) 65 return 0; 66 *pkeys_total = be32_to_cpu(prop[0]); 67 return 1; 68 } 69 70 static int __init scan_pkey_feature(void) 71 { 72 int ret; 73 int pkeys_total = 0; 74 75 /* 76 * Pkey is not supported with Radix translation. 77 */ 78 if (early_radix_enabled()) 79 return 0; 80 81 ret = of_scan_flat_dt(dt_scan_storage_keys, &pkeys_total); 82 if (ret == 0) { 83 /* 84 * Let's assume 32 pkeys on P8/P9 bare metal, if its not defined by device 85 * tree. We make this exception since some version of skiboot forgot to 86 * expose this property on power8/9. 87 */ 88 if (!firmware_has_feature(FW_FEATURE_LPAR)) { 89 unsigned long pvr = mfspr(SPRN_PVR); 90 91 if (PVR_VER(pvr) == PVR_POWER8 || PVR_VER(pvr) == PVR_POWER8E || 92 PVR_VER(pvr) == PVR_POWER8NVL || PVR_VER(pvr) == PVR_POWER9) 93 pkeys_total = 32; 94 } 95 } 96 97 #ifdef CONFIG_PPC_MEM_KEYS 98 /* 99 * Adjust the upper limit, based on the number of bits supported by 100 * arch-neutral code. 101 */ 102 pkeys_total = min_t(int, pkeys_total, 103 ((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) + 1)); 104 #endif 105 return pkeys_total; 106 } 107 108 void __init pkey_early_init_devtree(void) 109 { 110 int pkeys_total, i; 111 112 #ifdef CONFIG_PPC_MEM_KEYS 113 /* 114 * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral 115 * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE. 116 * Ensure that the bits a distinct. 117 */ 118 BUILD_BUG_ON(PKEY_DISABLE_EXECUTE & 119 (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE)); 120 121 /* 122 * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous 123 * in the vmaflag. Make sure that is really the case. 124 */ 125 BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) + 126 __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) 127 != (sizeof(u64) * BITS_PER_BYTE)); 128 #endif 129 /* 130 * Only P7 and above supports SPRN_AMR update with MSR[PR] = 1 131 */ 132 if (!early_cpu_has_feature(CPU_FTR_ARCH_206)) 133 return; 134 135 /* scan the device tree for pkey feature */ 136 pkeys_total = scan_pkey_feature(); 137 if (!pkeys_total) 138 goto out; 139 140 /* Allow all keys to be modified by default */ 141 default_uamor = ~0x0UL; 142 143 cur_cpu_spec->mmu_features |= MMU_FTR_PKEY; 144 145 /* 146 * The device tree cannot be relied to indicate support for 147 * execute_disable support. Instead we use a PVR check. 148 */ 149 if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p)) 150 pkey_execute_disable_supported = false; 151 else 152 pkey_execute_disable_supported = true; 153 154 #ifdef CONFIG_PPC_4K_PAGES 155 /* 156 * The OS can manage only 8 pkeys due to its inability to represent them 157 * in the Linux 4K PTE. Mark all other keys reserved. 158 */ 159 num_pkey = min(8, pkeys_total); 160 #else 161 num_pkey = pkeys_total; 162 #endif 163 164 if (unlikely(num_pkey <= execute_only_key) || !pkey_execute_disable_supported) { 165 /* 166 * Insufficient number of keys to support 167 * execute only key. Mark it unavailable. 168 */ 169 execute_only_key = -1; 170 } else { 171 /* 172 * Mark the execute_only_pkey as not available for 173 * user allocation via pkey_alloc. 174 */ 175 reserved_allocation_mask |= (0x1 << execute_only_key); 176 177 /* 178 * Deny READ/WRITE for execute_only_key. 179 * Allow execute in IAMR. 180 */ 181 default_amr |= (0x3ul << pkeyshift(execute_only_key)); 182 default_iamr &= ~(0x1ul << pkeyshift(execute_only_key)); 183 184 /* 185 * Clear the uamor bits for this key. 186 */ 187 default_uamor &= ~(0x3ul << pkeyshift(execute_only_key)); 188 } 189 190 if (unlikely(num_pkey <= 3)) { 191 /* 192 * Insufficient number of keys to support 193 * KUAP/KUEP feature. 194 */ 195 disable_kuep = true; 196 disable_kuap = true; 197 WARN(1, "Disabling kernel user protection due to low (%d) max supported keys\n", num_pkey); 198 } else { 199 /* handle key which is used by kernel for KAUP */ 200 reserved_allocation_mask |= (0x1 << 3); 201 /* 202 * Mark access for kup_key in default amr so that 203 * we continue to operate with that AMR in 204 * copy_to/from_user(). 205 */ 206 default_amr &= ~(0x3ul << pkeyshift(3)); 207 default_iamr &= ~(0x1ul << pkeyshift(3)); 208 default_uamor &= ~(0x3ul << pkeyshift(3)); 209 } 210 211 /* 212 * Allow access for only key 0. And prevent any other modification. 213 */ 214 default_amr &= ~(0x3ul << pkeyshift(0)); 215 default_iamr &= ~(0x1ul << pkeyshift(0)); 216 default_uamor &= ~(0x3ul << pkeyshift(0)); 217 /* 218 * key 0 is special in that we want to consider it an allocated 219 * key which is preallocated. We don't allow changing AMR bits 220 * w.r.t key 0. But one can pkey_free(key0) 221 */ 222 initial_allocation_mask |= (0x1 << 0); 223 224 /* 225 * key 1 is recommended not to be used. PowerISA(3.0) page 1015, 226 * programming note. 227 */ 228 reserved_allocation_mask |= (0x1 << 1); 229 default_uamor &= ~(0x3ul << pkeyshift(1)); 230 231 /* 232 * Prevent the usage of OS reserved keys. Update UAMOR 233 * for those keys. Also mark the rest of the bits in the 234 * 32 bit mask as reserved. 235 */ 236 for (i = num_pkey; i < 32 ; i++) { 237 reserved_allocation_mask |= (0x1 << i); 238 default_uamor &= ~(0x3ul << pkeyshift(i)); 239 } 240 /* 241 * Prevent the allocation of reserved keys too. 242 */ 243 initial_allocation_mask |= reserved_allocation_mask; 244 245 pr_info("Enabling pkeys with max key count %d\n", num_pkey); 246 out: 247 /* 248 * Setup uamor on boot cpu 249 */ 250 mtspr(SPRN_UAMOR, default_uamor); 251 252 return; 253 } 254 255 #ifdef CONFIG_PPC_KUEP 256 void setup_kuep(bool disabled) 257 { 258 if (disabled) 259 return; 260 /* 261 * On hash if PKEY feature is not enabled, disable KUAP too. 262 */ 263 if (!early_radix_enabled() && !early_mmu_has_feature(MMU_FTR_PKEY)) 264 return; 265 266 if (smp_processor_id() == boot_cpuid) { 267 pr_info("Activating Kernel Userspace Execution Prevention\n"); 268 cur_cpu_spec->mmu_features |= MMU_FTR_BOOK3S_KUEP; 269 } 270 271 /* 272 * Radix always uses key0 of the IAMR to determine if an access is 273 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction 274 * fetch. 275 */ 276 mtspr(SPRN_IAMR, AMR_KUEP_BLOCKED); 277 isync(); 278 } 279 #endif 280 281 #ifdef CONFIG_PPC_KUAP 282 void setup_kuap(bool disabled) 283 { 284 if (disabled) 285 return; 286 /* 287 * On hash if PKEY feature is not enabled, disable KUAP too. 288 */ 289 if (!early_radix_enabled() && !early_mmu_has_feature(MMU_FTR_PKEY)) 290 return; 291 292 if (smp_processor_id() == boot_cpuid) { 293 pr_info("Activating Kernel Userspace Access Prevention\n"); 294 cur_cpu_spec->mmu_features |= MMU_FTR_KUAP; 295 } 296 297 /* 298 * Set the default kernel AMR values on all cpus. 299 */ 300 mtspr(SPRN_AMR, AMR_KUAP_BLOCKED); 301 isync(); 302 } 303 #endif 304 305 #ifdef CONFIG_PPC_MEM_KEYS 306 void pkey_mm_init(struct mm_struct *mm) 307 { 308 if (!mmu_has_feature(MMU_FTR_PKEY)) 309 return; 310 mm_pkey_allocation_map(mm) = initial_allocation_mask; 311 mm->context.execute_only_pkey = execute_only_key; 312 } 313 314 static inline void init_amr(int pkey, u8 init_bits) 315 { 316 u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey)); 317 u64 old_amr = current_thread_amr() & ~((u64)(0x3ul) << pkeyshift(pkey)); 318 319 current->thread.regs->amr = old_amr | new_amr_bits; 320 } 321 322 static inline void init_iamr(int pkey, u8 init_bits) 323 { 324 u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey)); 325 u64 old_iamr = current_thread_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey)); 326 327 if (!likely(pkey_execute_disable_supported)) 328 return; 329 330 current->thread.regs->iamr = old_iamr | new_iamr_bits; 331 } 332 333 /* 334 * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that 335 * specified in @init_val. 336 */ 337 int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey, 338 unsigned long init_val) 339 { 340 u64 new_amr_bits = 0x0ul; 341 u64 new_iamr_bits = 0x0ul; 342 u64 pkey_bits, uamor_pkey_bits; 343 344 /* 345 * Check whether the key is disabled by UAMOR. 346 */ 347 pkey_bits = 0x3ul << pkeyshift(pkey); 348 uamor_pkey_bits = (default_uamor & pkey_bits); 349 350 /* 351 * Both the bits in UAMOR corresponding to the key should be set 352 */ 353 if (uamor_pkey_bits != pkey_bits) 354 return -EINVAL; 355 356 if (init_val & PKEY_DISABLE_EXECUTE) { 357 if (!pkey_execute_disable_supported) 358 return -EINVAL; 359 new_iamr_bits |= IAMR_EX_BIT; 360 } 361 init_iamr(pkey, new_iamr_bits); 362 363 /* Set the bits we need in AMR: */ 364 if (init_val & PKEY_DISABLE_ACCESS) 365 new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT; 366 else if (init_val & PKEY_DISABLE_WRITE) 367 new_amr_bits |= AMR_WR_BIT; 368 369 init_amr(pkey, new_amr_bits); 370 return 0; 371 } 372 373 int execute_only_pkey(struct mm_struct *mm) 374 { 375 return mm->context.execute_only_pkey; 376 } 377 378 static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma) 379 { 380 /* Do this check first since the vm_flags should be hot */ 381 if ((vma->vm_flags & VM_ACCESS_FLAGS) != VM_EXEC) 382 return false; 383 384 return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey); 385 } 386 387 /* 388 * This should only be called for *plain* mprotect calls. 389 */ 390 int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot, 391 int pkey) 392 { 393 /* 394 * If the currently associated pkey is execute-only, but the requested 395 * protection is not execute-only, move it back to the default pkey. 396 */ 397 if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC)) 398 return 0; 399 400 /* 401 * The requested protection is execute-only. Hence let's use an 402 * execute-only pkey. 403 */ 404 if (prot == PROT_EXEC) { 405 pkey = execute_only_pkey(vma->vm_mm); 406 if (pkey > 0) 407 return pkey; 408 } 409 410 /* Nothing to override. */ 411 return vma_pkey(vma); 412 } 413 414 static bool pkey_access_permitted(int pkey, bool write, bool execute) 415 { 416 int pkey_shift; 417 u64 amr; 418 419 pkey_shift = pkeyshift(pkey); 420 if (execute) 421 return !(current_thread_iamr() & (IAMR_EX_BIT << pkey_shift)); 422 423 amr = current_thread_amr(); 424 if (write) 425 return !(amr & (AMR_WR_BIT << pkey_shift)); 426 427 return !(amr & (AMR_RD_BIT << pkey_shift)); 428 } 429 430 bool arch_pte_access_permitted(u64 pte, bool write, bool execute) 431 { 432 if (!mmu_has_feature(MMU_FTR_PKEY)) 433 return true; 434 435 return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute); 436 } 437 438 /* 439 * We only want to enforce protection keys on the current thread because we 440 * effectively have no access to AMR/IAMR for other threads or any way to tell 441 * which AMR/IAMR in a threaded process we could use. 442 * 443 * So do not enforce things if the VMA is not from the current mm, or if we are 444 * in a kernel thread. 445 */ 446 bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write, 447 bool execute, bool foreign) 448 { 449 if (!mmu_has_feature(MMU_FTR_PKEY)) 450 return true; 451 /* 452 * Do not enforce our key-permissions on a foreign vma. 453 */ 454 if (foreign || vma_is_foreign(vma)) 455 return true; 456 457 return pkey_access_permitted(vma_pkey(vma), write, execute); 458 } 459 460 void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm) 461 { 462 if (!mmu_has_feature(MMU_FTR_PKEY)) 463 return; 464 465 /* Duplicate the oldmm pkey state in mm: */ 466 mm_pkey_allocation_map(mm) = mm_pkey_allocation_map(oldmm); 467 mm->context.execute_only_pkey = oldmm->context.execute_only_pkey; 468 } 469 470 #endif /* CONFIG_PPC_MEM_KEYS */ 471