xref: /openbmc/linux/arch/powerpc/mm/book3s64/pkeys.c (revision c8ed9fc9)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * PowerPC Memory Protection Keys management
4  *
5  * Copyright 2017, Ram Pai, IBM Corporation.
6  */
7 
8 #include <asm/mman.h>
9 #include <asm/mmu_context.h>
10 #include <asm/mmu.h>
11 #include <asm/setup.h>
12 #include <linux/pkeys.h>
13 #include <linux/of_fdt.h>
14 
15 int  num_pkey;		/* Max number of pkeys supported */
16 /*
17  *  Keys marked in the reservation list cannot be allocated by  userspace
18  */
19 u32 reserved_allocation_mask __ro_after_init;
20 
21 /* Bits set for the initially allocated keys */
22 static u32 initial_allocation_mask __ro_after_init;
23 
24 /*
25  * Even if we allocate keys with sys_pkey_alloc(), we need to make sure
26  * other thread still find the access denied using the same keys.
27  */
28 static u64 default_amr = ~0x0UL;
29 static u64 default_iamr = 0x5555555555555555UL;
30 u64 default_uamor __ro_after_init;
31 /*
32  * Key used to implement PROT_EXEC mmap. Denies READ/WRITE
33  * We pick key 2 because 0 is special key and 1 is reserved as per ISA.
34  */
35 static int execute_only_key = 2;
36 static bool pkey_execute_disable_supported;
37 
38 
39 #define AMR_BITS_PER_PKEY 2
40 #define AMR_RD_BIT 0x1UL
41 #define AMR_WR_BIT 0x2UL
42 #define IAMR_EX_BIT 0x1UL
43 #define PKEY_REG_BITS (sizeof(u64) * 8)
44 #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY))
45 
46 static int __init dt_scan_storage_keys(unsigned long node,
47 				       const char *uname, int depth,
48 				       void *data)
49 {
50 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
51 	const __be32 *prop;
52 	int *pkeys_total = (int *) data;
53 
54 	/* We are scanning "cpu" nodes only */
55 	if (type == NULL || strcmp(type, "cpu") != 0)
56 		return 0;
57 
58 	prop = of_get_flat_dt_prop(node, "ibm,processor-storage-keys", NULL);
59 	if (!prop)
60 		return 0;
61 	*pkeys_total = be32_to_cpu(prop[0]);
62 	return 1;
63 }
64 
65 static int scan_pkey_feature(void)
66 {
67 	int ret;
68 	int pkeys_total = 0;
69 
70 	/*
71 	 * Pkey is not supported with Radix translation.
72 	 */
73 	if (early_radix_enabled())
74 		return 0;
75 
76 	ret = of_scan_flat_dt(dt_scan_storage_keys, &pkeys_total);
77 	if (ret == 0) {
78 		/*
79 		 * Let's assume 32 pkeys on P8/P9 bare metal, if its not defined by device
80 		 * tree. We make this exception since some version of skiboot forgot to
81 		 * expose this property on power8/9.
82 		 */
83 		if (!firmware_has_feature(FW_FEATURE_LPAR)) {
84 			unsigned long pvr = mfspr(SPRN_PVR);
85 
86 			if (PVR_VER(pvr) == PVR_POWER8 || PVR_VER(pvr) == PVR_POWER8E ||
87 			    PVR_VER(pvr) == PVR_POWER8NVL || PVR_VER(pvr) == PVR_POWER9)
88 				pkeys_total = 32;
89 		}
90 	}
91 
92 	/*
93 	 * Adjust the upper limit, based on the number of bits supported by
94 	 * arch-neutral code.
95 	 */
96 	pkeys_total = min_t(int, pkeys_total,
97 			    ((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) + 1));
98 	return pkeys_total;
99 }
100 
101 void __init pkey_early_init_devtree(void)
102 {
103 	int pkeys_total, i;
104 
105 	/*
106 	 * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral
107 	 * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE.
108 	 * Ensure that the bits a distinct.
109 	 */
110 	BUILD_BUG_ON(PKEY_DISABLE_EXECUTE &
111 		     (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
112 
113 	/*
114 	 * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous
115 	 * in the vmaflag. Make sure that is really the case.
116 	 */
117 	BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) +
118 		     __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)
119 				!= (sizeof(u64) * BITS_PER_BYTE));
120 
121 	/* scan the device tree for pkey feature */
122 	pkeys_total = scan_pkey_feature();
123 	if (!pkeys_total)
124 		goto out;
125 
126 	/* Allow all keys to be modified by default */
127 	default_uamor = ~0x0UL;
128 
129 	cur_cpu_spec->mmu_features |= MMU_FTR_PKEY;
130 
131 	/*
132 	 * The device tree cannot be relied to indicate support for
133 	 * execute_disable support. Instead we use a PVR check.
134 	 */
135 	if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p))
136 		pkey_execute_disable_supported = false;
137 	else
138 		pkey_execute_disable_supported = true;
139 
140 #ifdef CONFIG_PPC_4K_PAGES
141 	/*
142 	 * The OS can manage only 8 pkeys due to its inability to represent them
143 	 * in the Linux 4K PTE. Mark all other keys reserved.
144 	 */
145 	num_pkey = min(8, pkeys_total);
146 #else
147 	num_pkey = pkeys_total;
148 #endif
149 
150 	if (unlikely(num_pkey <= execute_only_key) || !pkey_execute_disable_supported) {
151 		/*
152 		 * Insufficient number of keys to support
153 		 * execute only key. Mark it unavailable.
154 		 */
155 		execute_only_key = -1;
156 	} else {
157 		/*
158 		 * Mark the execute_only_pkey as not available for
159 		 * user allocation via pkey_alloc.
160 		 */
161 		reserved_allocation_mask |= (0x1 << execute_only_key);
162 
163 		/*
164 		 * Deny READ/WRITE for execute_only_key.
165 		 * Allow execute in IAMR.
166 		 */
167 		default_amr  |= (0x3ul << pkeyshift(execute_only_key));
168 		default_iamr &= ~(0x1ul << pkeyshift(execute_only_key));
169 
170 		/*
171 		 * Clear the uamor bits for this key.
172 		 */
173 		default_uamor &= ~(0x3ul << pkeyshift(execute_only_key));
174 	}
175 
176 	/*
177 	 * Allow access for only key 0. And prevent any other modification.
178 	 */
179 	default_amr   &= ~(0x3ul << pkeyshift(0));
180 	default_iamr  &= ~(0x1ul << pkeyshift(0));
181 	default_uamor &= ~(0x3ul << pkeyshift(0));
182 	/*
183 	 * key 0 is special in that we want to consider it an allocated
184 	 * key which is preallocated. We don't allow changing AMR bits
185 	 * w.r.t key 0. But one can pkey_free(key0)
186 	 */
187 	initial_allocation_mask |= (0x1 << 0);
188 
189 	/*
190 	 * key 1 is recommended not to be used. PowerISA(3.0) page 1015,
191 	 * programming note.
192 	 */
193 	reserved_allocation_mask |= (0x1 << 1);
194 	default_uamor &= ~(0x3ul << pkeyshift(1));
195 
196 	/*
197 	 * Prevent the usage of OS reserved keys. Update UAMOR
198 	 * for those keys. Also mark the rest of the bits in the
199 	 * 32 bit mask as reserved.
200 	 */
201 	for (i = num_pkey; i < 32 ; i++) {
202 		reserved_allocation_mask |= (0x1 << i);
203 		default_uamor &= ~(0x3ul << pkeyshift(i));
204 	}
205 	/*
206 	 * Prevent the allocation of reserved keys too.
207 	 */
208 	initial_allocation_mask |= reserved_allocation_mask;
209 
210 	pr_info("Enabling pkeys with max key count %d\n", num_pkey);
211 out:
212 	/*
213 	 * Setup uamor on boot cpu
214 	 */
215 	mtspr(SPRN_UAMOR, default_uamor);
216 
217 	return;
218 }
219 
220 void pkey_mm_init(struct mm_struct *mm)
221 {
222 	if (!mmu_has_feature(MMU_FTR_PKEY))
223 		return;
224 	mm_pkey_allocation_map(mm) = initial_allocation_mask;
225 	mm->context.execute_only_pkey = execute_only_key;
226 }
227 
228 static inline u64 read_amr(void)
229 {
230 	return mfspr(SPRN_AMR);
231 }
232 
233 static inline void write_amr(u64 value)
234 {
235 	mtspr(SPRN_AMR, value);
236 }
237 
238 static inline u64 read_iamr(void)
239 {
240 	if (!likely(pkey_execute_disable_supported))
241 		return 0x0UL;
242 
243 	return mfspr(SPRN_IAMR);
244 }
245 
246 static inline void write_iamr(u64 value)
247 {
248 	if (!likely(pkey_execute_disable_supported))
249 		return;
250 
251 	mtspr(SPRN_IAMR, value);
252 }
253 
254 static inline void init_amr(int pkey, u8 init_bits)
255 {
256 	u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey));
257 	u64 old_amr = read_amr() & ~((u64)(0x3ul) << pkeyshift(pkey));
258 
259 	write_amr(old_amr | new_amr_bits);
260 }
261 
262 static inline void init_iamr(int pkey, u8 init_bits)
263 {
264 	u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey));
265 	u64 old_iamr = read_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey));
266 
267 	write_iamr(old_iamr | new_iamr_bits);
268 }
269 
270 /*
271  * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that
272  * specified in @init_val.
273  */
274 int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
275 				unsigned long init_val)
276 {
277 	u64 new_amr_bits = 0x0ul;
278 	u64 new_iamr_bits = 0x0ul;
279 	u64 pkey_bits, uamor_pkey_bits;
280 
281 	/*
282 	 * Check whether the key is disabled by UAMOR.
283 	 */
284 	pkey_bits = 0x3ul << pkeyshift(pkey);
285 	uamor_pkey_bits = (default_uamor & pkey_bits);
286 
287 	/*
288 	 * Both the bits in UAMOR corresponding to the key should be set
289 	 */
290 	if (uamor_pkey_bits != pkey_bits)
291 		return -EINVAL;
292 
293 	if (init_val & PKEY_DISABLE_EXECUTE) {
294 		if (!pkey_execute_disable_supported)
295 			return -EINVAL;
296 		new_iamr_bits |= IAMR_EX_BIT;
297 	}
298 	init_iamr(pkey, new_iamr_bits);
299 
300 	/* Set the bits we need in AMR: */
301 	if (init_val & PKEY_DISABLE_ACCESS)
302 		new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT;
303 	else if (init_val & PKEY_DISABLE_WRITE)
304 		new_amr_bits |= AMR_WR_BIT;
305 
306 	init_amr(pkey, new_amr_bits);
307 	return 0;
308 }
309 
310 void thread_pkey_regs_save(struct thread_struct *thread)
311 {
312 	if (!mmu_has_feature(MMU_FTR_PKEY))
313 		return;
314 
315 	/*
316 	 * TODO: Skip saving registers if @thread hasn't used any keys yet.
317 	 */
318 	thread->amr = read_amr();
319 	thread->iamr = read_iamr();
320 }
321 
322 void thread_pkey_regs_restore(struct thread_struct *new_thread,
323 			      struct thread_struct *old_thread)
324 {
325 	if (!mmu_has_feature(MMU_FTR_PKEY))
326 		return;
327 
328 	if (old_thread->amr != new_thread->amr)
329 		write_amr(new_thread->amr);
330 	if (old_thread->iamr != new_thread->iamr)
331 		write_iamr(new_thread->iamr);
332 }
333 
334 void thread_pkey_regs_init(struct thread_struct *thread)
335 {
336 	if (!mmu_has_feature(MMU_FTR_PKEY))
337 		return;
338 
339 	thread->amr   = default_amr;
340 	thread->iamr  = default_iamr;
341 
342 	write_amr(default_amr);
343 	write_iamr(default_iamr);
344 }
345 
346 int execute_only_pkey(struct mm_struct *mm)
347 {
348 	return mm->context.execute_only_pkey;
349 }
350 
351 static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma)
352 {
353 	/* Do this check first since the vm_flags should be hot */
354 	if ((vma->vm_flags & VM_ACCESS_FLAGS) != VM_EXEC)
355 		return false;
356 
357 	return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey);
358 }
359 
360 /*
361  * This should only be called for *plain* mprotect calls.
362  */
363 int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot,
364 				  int pkey)
365 {
366 	/*
367 	 * If the currently associated pkey is execute-only, but the requested
368 	 * protection is not execute-only, move it back to the default pkey.
369 	 */
370 	if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC))
371 		return 0;
372 
373 	/*
374 	 * The requested protection is execute-only. Hence let's use an
375 	 * execute-only pkey.
376 	 */
377 	if (prot == PROT_EXEC) {
378 		pkey = execute_only_pkey(vma->vm_mm);
379 		if (pkey > 0)
380 			return pkey;
381 	}
382 
383 	/* Nothing to override. */
384 	return vma_pkey(vma);
385 }
386 
387 static bool pkey_access_permitted(int pkey, bool write, bool execute)
388 {
389 	int pkey_shift;
390 	u64 amr;
391 
392 	pkey_shift = pkeyshift(pkey);
393 	if (execute)
394 		return !(read_iamr() & (IAMR_EX_BIT << pkey_shift));
395 
396 	amr = read_amr();
397 	if (write)
398 		return !(amr & (AMR_WR_BIT << pkey_shift));
399 
400 	return !(amr & (AMR_RD_BIT << pkey_shift));
401 }
402 
403 bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
404 {
405 	if (!mmu_has_feature(MMU_FTR_PKEY))
406 		return true;
407 
408 	return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute);
409 }
410 
411 /*
412  * We only want to enforce protection keys on the current thread because we
413  * effectively have no access to AMR/IAMR for other threads or any way to tell
414  * which AMR/IAMR in a threaded process we could use.
415  *
416  * So do not enforce things if the VMA is not from the current mm, or if we are
417  * in a kernel thread.
418  */
419 bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write,
420 			       bool execute, bool foreign)
421 {
422 	if (!mmu_has_feature(MMU_FTR_PKEY))
423 		return true;
424 	/*
425 	 * Do not enforce our key-permissions on a foreign vma.
426 	 */
427 	if (foreign || vma_is_foreign(vma))
428 		return true;
429 
430 	return pkey_access_permitted(vma_pkey(vma), write, execute);
431 }
432 
433 void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm)
434 {
435 	if (!mmu_has_feature(MMU_FTR_PKEY))
436 		return;
437 
438 	/* Duplicate the oldmm pkey state in mm: */
439 	mm_pkey_allocation_map(mm) = mm_pkey_allocation_map(oldmm);
440 	mm->context.execute_only_pkey = oldmm->context.execute_only_pkey;
441 }
442