xref: /openbmc/linux/arch/powerpc/mm/book3s64/pkeys.c (revision c6fddb28)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * PowerPC Memory Protection Keys management
4  *
5  * Copyright 2017, Ram Pai, IBM Corporation.
6  */
7 
8 #include <asm/mman.h>
9 #include <asm/mmu_context.h>
10 #include <asm/mmu.h>
11 #include <asm/setup.h>
12 #include <linux/pkeys.h>
13 #include <linux/of_device.h>
14 
15 DEFINE_STATIC_KEY_TRUE(pkey_disabled);
16 int  pkeys_total;		/* Total pkeys as per device tree */
17 u32  initial_allocation_mask;   /* Bits set for the initially allocated keys */
18 u32  reserved_allocation_mask;  /* Bits set for reserved keys */
19 static bool pkey_execute_disable_supported;
20 static bool pkeys_devtree_defined;	/* property exported by device tree */
21 static u64 pkey_amr_mask;		/* Bits in AMR not to be touched */
22 static u64 pkey_iamr_mask;		/* Bits in AMR not to be touched */
23 static u64 pkey_uamor_mask;		/* Bits in UMOR not to be touched */
24 static int execute_only_key = 2;
25 
26 #define AMR_BITS_PER_PKEY 2
27 #define AMR_RD_BIT 0x1UL
28 #define AMR_WR_BIT 0x2UL
29 #define IAMR_EX_BIT 0x1UL
30 #define PKEY_REG_BITS (sizeof(u64)*8)
31 #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY))
32 
33 static void scan_pkey_feature(void)
34 {
35 	u32 vals[2];
36 	struct device_node *cpu;
37 
38 	cpu = of_find_node_by_type(NULL, "cpu");
39 	if (!cpu)
40 		return;
41 
42 	if (of_property_read_u32_array(cpu,
43 			"ibm,processor-storage-keys", vals, 2))
44 		return;
45 
46 	/*
47 	 * Since any pkey can be used for data or execute, we will just treat
48 	 * all keys as equal and track them as one entity.
49 	 */
50 	pkeys_total = vals[0];
51 	pkeys_devtree_defined = true;
52 }
53 
54 static inline bool pkey_mmu_enabled(void)
55 {
56 	if (firmware_has_feature(FW_FEATURE_LPAR))
57 		return pkeys_total;
58 	else
59 		return cpu_has_feature(CPU_FTR_PKEY);
60 }
61 
62 static int pkey_initialize(void)
63 {
64 	int os_reserved, i;
65 
66 	/*
67 	 * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral
68 	 * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE.
69 	 * Ensure that the bits a distinct.
70 	 */
71 	BUILD_BUG_ON(PKEY_DISABLE_EXECUTE &
72 		     (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
73 
74 	/*
75 	 * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous
76 	 * in the vmaflag. Make sure that is really the case.
77 	 */
78 	BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) +
79 		     __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)
80 				!= (sizeof(u64) * BITS_PER_BYTE));
81 
82 	/* scan the device tree for pkey feature */
83 	scan_pkey_feature();
84 
85 	/*
86 	 * Let's assume 32 pkeys on P8 bare metal, if its not defined by device
87 	 * tree. We make this exception since skiboot forgot to expose this
88 	 * property on power8.
89 	 */
90 	if (!pkeys_devtree_defined && !firmware_has_feature(FW_FEATURE_LPAR) &&
91 			cpu_has_feature(CPU_FTRS_POWER8))
92 		pkeys_total = 32;
93 
94 	/*
95 	 * Adjust the upper limit, based on the number of bits supported by
96 	 * arch-neutral code.
97 	 */
98 	pkeys_total = min_t(int, pkeys_total,
99 			((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)+1));
100 
101 	if (!pkey_mmu_enabled() || radix_enabled() || !pkeys_total)
102 		static_branch_enable(&pkey_disabled);
103 	else
104 		static_branch_disable(&pkey_disabled);
105 
106 	if (static_branch_likely(&pkey_disabled))
107 		return 0;
108 
109 	/*
110 	 * The device tree cannot be relied to indicate support for
111 	 * execute_disable support. Instead we use a PVR check.
112 	 */
113 	if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p))
114 		pkey_execute_disable_supported = false;
115 	else
116 		pkey_execute_disable_supported = true;
117 
118 #ifdef CONFIG_PPC_4K_PAGES
119 	/*
120 	 * The OS can manage only 8 pkeys due to its inability to represent them
121 	 * in the Linux 4K PTE.
122 	 */
123 	os_reserved = pkeys_total - 8;
124 #else
125 	os_reserved = 0;
126 #endif
127 	/* Bits are in LE format. */
128 	reserved_allocation_mask = (0x1 << 1) | (0x1 << execute_only_key);
129 
130 	/* register mask is in BE format */
131 	pkey_amr_mask = ~0x0ul;
132 	pkey_amr_mask &= ~(0x3ul << pkeyshift(0));
133 
134 	pkey_iamr_mask = ~0x0ul;
135 	pkey_iamr_mask &= ~(0x3ul << pkeyshift(0));
136 	pkey_iamr_mask &= ~(0x3ul << pkeyshift(execute_only_key));
137 
138 	pkey_uamor_mask = ~0x0ul;
139 	pkey_uamor_mask &= ~(0x3ul << pkeyshift(0));
140 	pkey_uamor_mask &= ~(0x3ul << pkeyshift(execute_only_key));
141 
142 	/* mark the rest of the keys as reserved and hence unavailable */
143 	for (i = (pkeys_total - os_reserved); i < pkeys_total; i++) {
144 		reserved_allocation_mask |= (0x1 << i);
145 		pkey_uamor_mask &= ~(0x3ul << pkeyshift(i));
146 	}
147 	initial_allocation_mask = reserved_allocation_mask | (0x1 << 0);
148 
149 	if (unlikely((pkeys_total - os_reserved) <= execute_only_key)) {
150 		/*
151 		 * Insufficient number of keys to support
152 		 * execute only key. Mark it unavailable.
153 		 * Any AMR, UAMOR, IAMR bit set for
154 		 * this key is irrelevant since this key
155 		 * can never be allocated.
156 		 */
157 		execute_only_key = -1;
158 	}
159 
160 	return 0;
161 }
162 
163 arch_initcall(pkey_initialize);
164 
165 void pkey_mm_init(struct mm_struct *mm)
166 {
167 	if (static_branch_likely(&pkey_disabled))
168 		return;
169 	mm_pkey_allocation_map(mm) = initial_allocation_mask;
170 	mm->context.execute_only_pkey = execute_only_key;
171 }
172 
173 static inline u64 read_amr(void)
174 {
175 	return mfspr(SPRN_AMR);
176 }
177 
178 static inline void write_amr(u64 value)
179 {
180 	mtspr(SPRN_AMR, value);
181 }
182 
183 static inline u64 read_iamr(void)
184 {
185 	if (!likely(pkey_execute_disable_supported))
186 		return 0x0UL;
187 
188 	return mfspr(SPRN_IAMR);
189 }
190 
191 static inline void write_iamr(u64 value)
192 {
193 	if (!likely(pkey_execute_disable_supported))
194 		return;
195 
196 	mtspr(SPRN_IAMR, value);
197 }
198 
199 static inline u64 read_uamor(void)
200 {
201 	return mfspr(SPRN_UAMOR);
202 }
203 
204 static inline void write_uamor(u64 value)
205 {
206 	mtspr(SPRN_UAMOR, value);
207 }
208 
209 static bool is_pkey_enabled(int pkey)
210 {
211 	u64 uamor = read_uamor();
212 	u64 pkey_bits = 0x3ul << pkeyshift(pkey);
213 	u64 uamor_pkey_bits = (uamor & pkey_bits);
214 
215 	/*
216 	 * Both the bits in UAMOR corresponding to the key should be set or
217 	 * reset.
218 	 */
219 	WARN_ON(uamor_pkey_bits && (uamor_pkey_bits != pkey_bits));
220 	return !!(uamor_pkey_bits);
221 }
222 
223 static inline void init_amr(int pkey, u8 init_bits)
224 {
225 	u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey));
226 	u64 old_amr = read_amr() & ~((u64)(0x3ul) << pkeyshift(pkey));
227 
228 	write_amr(old_amr | new_amr_bits);
229 }
230 
231 static inline void init_iamr(int pkey, u8 init_bits)
232 {
233 	u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey));
234 	u64 old_iamr = read_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey));
235 
236 	write_iamr(old_iamr | new_iamr_bits);
237 }
238 
239 /*
240  * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that
241  * specified in @init_val.
242  */
243 int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
244 				unsigned long init_val)
245 {
246 	u64 new_amr_bits = 0x0ul;
247 	u64 new_iamr_bits = 0x0ul;
248 
249 	if (!is_pkey_enabled(pkey))
250 		return -EINVAL;
251 
252 	if (init_val & PKEY_DISABLE_EXECUTE) {
253 		if (!pkey_execute_disable_supported)
254 			return -EINVAL;
255 		new_iamr_bits |= IAMR_EX_BIT;
256 	}
257 	init_iamr(pkey, new_iamr_bits);
258 
259 	/* Set the bits we need in AMR: */
260 	if (init_val & PKEY_DISABLE_ACCESS)
261 		new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT;
262 	else if (init_val & PKEY_DISABLE_WRITE)
263 		new_amr_bits |= AMR_WR_BIT;
264 
265 	init_amr(pkey, new_amr_bits);
266 	return 0;
267 }
268 
269 void thread_pkey_regs_save(struct thread_struct *thread)
270 {
271 	if (static_branch_likely(&pkey_disabled))
272 		return;
273 
274 	/*
275 	 * TODO: Skip saving registers if @thread hasn't used any keys yet.
276 	 */
277 	thread->amr = read_amr();
278 	thread->iamr = read_iamr();
279 	thread->uamor = read_uamor();
280 }
281 
282 void thread_pkey_regs_restore(struct thread_struct *new_thread,
283 			      struct thread_struct *old_thread)
284 {
285 	if (static_branch_likely(&pkey_disabled))
286 		return;
287 
288 	if (old_thread->amr != new_thread->amr)
289 		write_amr(new_thread->amr);
290 	if (old_thread->iamr != new_thread->iamr)
291 		write_iamr(new_thread->iamr);
292 	if (old_thread->uamor != new_thread->uamor)
293 		write_uamor(new_thread->uamor);
294 }
295 
296 void thread_pkey_regs_init(struct thread_struct *thread)
297 {
298 	if (static_branch_likely(&pkey_disabled))
299 		return;
300 
301 	thread->amr = pkey_amr_mask;
302 	thread->iamr = pkey_iamr_mask;
303 	thread->uamor = pkey_uamor_mask;
304 
305 	write_uamor(pkey_uamor_mask);
306 	write_amr(pkey_amr_mask);
307 	write_iamr(pkey_iamr_mask);
308 }
309 
310 int __execute_only_pkey(struct mm_struct *mm)
311 {
312 	return mm->context.execute_only_pkey;
313 }
314 
315 static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma)
316 {
317 	/* Do this check first since the vm_flags should be hot */
318 	if ((vma->vm_flags & VM_ACCESS_FLAGS) != VM_EXEC)
319 		return false;
320 
321 	return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey);
322 }
323 
324 /*
325  * This should only be called for *plain* mprotect calls.
326  */
327 int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot,
328 				  int pkey)
329 {
330 	/*
331 	 * If the currently associated pkey is execute-only, but the requested
332 	 * protection is not execute-only, move it back to the default pkey.
333 	 */
334 	if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC))
335 		return 0;
336 
337 	/*
338 	 * The requested protection is execute-only. Hence let's use an
339 	 * execute-only pkey.
340 	 */
341 	if (prot == PROT_EXEC) {
342 		pkey = execute_only_pkey(vma->vm_mm);
343 		if (pkey > 0)
344 			return pkey;
345 	}
346 
347 	/* Nothing to override. */
348 	return vma_pkey(vma);
349 }
350 
351 static bool pkey_access_permitted(int pkey, bool write, bool execute)
352 {
353 	int pkey_shift;
354 	u64 amr;
355 
356 	if (!is_pkey_enabled(pkey))
357 		return true;
358 
359 	pkey_shift = pkeyshift(pkey);
360 	if (execute && !(read_iamr() & (IAMR_EX_BIT << pkey_shift)))
361 		return true;
362 
363 	amr = read_amr(); /* Delay reading amr until absolutely needed */
364 	return ((!write && !(amr & (AMR_RD_BIT << pkey_shift))) ||
365 		(write &&  !(amr & (AMR_WR_BIT << pkey_shift))));
366 }
367 
368 bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
369 {
370 	if (static_branch_likely(&pkey_disabled))
371 		return true;
372 
373 	return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute);
374 }
375 
376 /*
377  * We only want to enforce protection keys on the current thread because we
378  * effectively have no access to AMR/IAMR for other threads or any way to tell
379  * which AMR/IAMR in a threaded process we could use.
380  *
381  * So do not enforce things if the VMA is not from the current mm, or if we are
382  * in a kernel thread.
383  */
384 bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write,
385 			       bool execute, bool foreign)
386 {
387 	if (static_branch_likely(&pkey_disabled))
388 		return true;
389 	/*
390 	 * Do not enforce our key-permissions on a foreign vma.
391 	 */
392 	if (foreign || vma_is_foreign(vma))
393 		return true;
394 
395 	return pkey_access_permitted(vma_pkey(vma), write, execute);
396 }
397 
398 void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm)
399 {
400 	if (static_branch_likely(&pkey_disabled))
401 		return;
402 
403 	/* Duplicate the oldmm pkey state in mm: */
404 	mm_pkey_allocation_map(mm) = mm_pkey_allocation_map(oldmm);
405 	mm->context.execute_only_pkey = oldmm->context.execute_only_pkey;
406 }
407