xref: /openbmc/linux/arch/powerpc/mm/book3s64/pkeys.c (revision 630dce2810b9f09d312aed4189300e785254c24b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * PowerPC Memory Protection Keys management
4  *
5  * Copyright 2017, Ram Pai, IBM Corporation.
6  */
7 
8 #include <asm/mman.h>
9 #include <asm/mmu_context.h>
10 #include <asm/mmu.h>
11 #include <asm/setup.h>
12 #include <asm/smp.h>
13 
14 #include <linux/pkeys.h>
15 #include <linux/of_fdt.h>
16 
17 
18 int  num_pkey;		/* Max number of pkeys supported */
19 /*
20  *  Keys marked in the reservation list cannot be allocated by  userspace
21  */
22 u32 reserved_allocation_mask __ro_after_init;
23 
24 /* Bits set for the initially allocated keys */
25 static u32 initial_allocation_mask __ro_after_init;
26 
27 /*
28  * Even if we allocate keys with sys_pkey_alloc(), we need to make sure
29  * other thread still find the access denied using the same keys.
30  */
31 u64 default_amr __ro_after_init  = ~0x0UL;
32 u64 default_iamr __ro_after_init = 0x5555555555555555UL;
33 u64 default_uamor __ro_after_init;
34 /*
35  * Key used to implement PROT_EXEC mmap. Denies READ/WRITE
36  * We pick key 2 because 0 is special key and 1 is reserved as per ISA.
37  */
38 static int execute_only_key = 2;
39 static bool pkey_execute_disable_supported;
40 
41 
42 #define AMR_BITS_PER_PKEY 2
43 #define AMR_RD_BIT 0x1UL
44 #define AMR_WR_BIT 0x2UL
45 #define IAMR_EX_BIT 0x1UL
46 #define PKEY_REG_BITS (sizeof(u64) * 8)
47 #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY))
48 
49 static int __init dt_scan_storage_keys(unsigned long node,
50 				       const char *uname, int depth,
51 				       void *data)
52 {
53 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
54 	const __be32 *prop;
55 	int *pkeys_total = (int *) data;
56 
57 	/* We are scanning "cpu" nodes only */
58 	if (type == NULL || strcmp(type, "cpu") != 0)
59 		return 0;
60 
61 	prop = of_get_flat_dt_prop(node, "ibm,processor-storage-keys", NULL);
62 	if (!prop)
63 		return 0;
64 	*pkeys_total = be32_to_cpu(prop[0]);
65 	return 1;
66 }
67 
68 static int scan_pkey_feature(void)
69 {
70 	int ret;
71 	int pkeys_total = 0;
72 
73 	/*
74 	 * Pkey is not supported with Radix translation.
75 	 */
76 	if (early_radix_enabled())
77 		return 0;
78 
79 	ret = of_scan_flat_dt(dt_scan_storage_keys, &pkeys_total);
80 	if (ret == 0) {
81 		/*
82 		 * Let's assume 32 pkeys on P8/P9 bare metal, if its not defined by device
83 		 * tree. We make this exception since some version of skiboot forgot to
84 		 * expose this property on power8/9.
85 		 */
86 		if (!firmware_has_feature(FW_FEATURE_LPAR)) {
87 			unsigned long pvr = mfspr(SPRN_PVR);
88 
89 			if (PVR_VER(pvr) == PVR_POWER8 || PVR_VER(pvr) == PVR_POWER8E ||
90 			    PVR_VER(pvr) == PVR_POWER8NVL || PVR_VER(pvr) == PVR_POWER9)
91 				pkeys_total = 32;
92 		}
93 	}
94 
95 #ifdef CONFIG_PPC_MEM_KEYS
96 	/*
97 	 * Adjust the upper limit, based on the number of bits supported by
98 	 * arch-neutral code.
99 	 */
100 	pkeys_total = min_t(int, pkeys_total,
101 			    ((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) + 1));
102 #endif
103 	return pkeys_total;
104 }
105 
106 void __init pkey_early_init_devtree(void)
107 {
108 	int pkeys_total, i;
109 
110 #ifdef CONFIG_PPC_MEM_KEYS
111 	/*
112 	 * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral
113 	 * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE.
114 	 * Ensure that the bits a distinct.
115 	 */
116 	BUILD_BUG_ON(PKEY_DISABLE_EXECUTE &
117 		     (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
118 
119 	/*
120 	 * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous
121 	 * in the vmaflag. Make sure that is really the case.
122 	 */
123 	BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) +
124 		     __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)
125 				!= (sizeof(u64) * BITS_PER_BYTE));
126 #endif
127 	/*
128 	 * Only P7 and above supports SPRN_AMR update with MSR[PR] = 1
129 	 */
130 	if (!early_cpu_has_feature(CPU_FTR_ARCH_206))
131 		return;
132 
133 	/* scan the device tree for pkey feature */
134 	pkeys_total = scan_pkey_feature();
135 	if (!pkeys_total)
136 		goto out;
137 
138 	/* Allow all keys to be modified by default */
139 	default_uamor = ~0x0UL;
140 
141 	cur_cpu_spec->mmu_features |= MMU_FTR_PKEY;
142 
143 	/*
144 	 * The device tree cannot be relied to indicate support for
145 	 * execute_disable support. Instead we use a PVR check.
146 	 */
147 	if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p))
148 		pkey_execute_disable_supported = false;
149 	else
150 		pkey_execute_disable_supported = true;
151 
152 #ifdef CONFIG_PPC_4K_PAGES
153 	/*
154 	 * The OS can manage only 8 pkeys due to its inability to represent them
155 	 * in the Linux 4K PTE. Mark all other keys reserved.
156 	 */
157 	num_pkey = min(8, pkeys_total);
158 #else
159 	num_pkey = pkeys_total;
160 #endif
161 
162 	if (unlikely(num_pkey <= execute_only_key) || !pkey_execute_disable_supported) {
163 		/*
164 		 * Insufficient number of keys to support
165 		 * execute only key. Mark it unavailable.
166 		 */
167 		execute_only_key = -1;
168 	} else {
169 		/*
170 		 * Mark the execute_only_pkey as not available for
171 		 * user allocation via pkey_alloc.
172 		 */
173 		reserved_allocation_mask |= (0x1 << execute_only_key);
174 
175 		/*
176 		 * Deny READ/WRITE for execute_only_key.
177 		 * Allow execute in IAMR.
178 		 */
179 		default_amr  |= (0x3ul << pkeyshift(execute_only_key));
180 		default_iamr &= ~(0x1ul << pkeyshift(execute_only_key));
181 
182 		/*
183 		 * Clear the uamor bits for this key.
184 		 */
185 		default_uamor &= ~(0x3ul << pkeyshift(execute_only_key));
186 	}
187 
188 	if (unlikely(num_pkey <= 3)) {
189 		/*
190 		 * Insufficient number of keys to support
191 		 * KUAP/KUEP feature.
192 		 */
193 		disable_kuep = true;
194 		disable_kuap = true;
195 		WARN(1, "Disabling kernel user protection due to low (%d) max supported keys\n", num_pkey);
196 	} else {
197 		/*  handle key which is used by kernel for KAUP */
198 		reserved_allocation_mask |= (0x1 << 3);
199 		/*
200 		 * Mark access for kup_key in default amr so that
201 		 * we continue to operate with that AMR in
202 		 * copy_to/from_user().
203 		 */
204 		default_amr   &= ~(0x3ul << pkeyshift(3));
205 		default_iamr  &= ~(0x1ul << pkeyshift(3));
206 		default_uamor &= ~(0x3ul << pkeyshift(3));
207 	}
208 
209 	/*
210 	 * Allow access for only key 0. And prevent any other modification.
211 	 */
212 	default_amr   &= ~(0x3ul << pkeyshift(0));
213 	default_iamr  &= ~(0x1ul << pkeyshift(0));
214 	default_uamor &= ~(0x3ul << pkeyshift(0));
215 	/*
216 	 * key 0 is special in that we want to consider it an allocated
217 	 * key which is preallocated. We don't allow changing AMR bits
218 	 * w.r.t key 0. But one can pkey_free(key0)
219 	 */
220 	initial_allocation_mask |= (0x1 << 0);
221 
222 	/*
223 	 * key 1 is recommended not to be used. PowerISA(3.0) page 1015,
224 	 * programming note.
225 	 */
226 	reserved_allocation_mask |= (0x1 << 1);
227 	default_uamor &= ~(0x3ul << pkeyshift(1));
228 
229 	/*
230 	 * Prevent the usage of OS reserved keys. Update UAMOR
231 	 * for those keys. Also mark the rest of the bits in the
232 	 * 32 bit mask as reserved.
233 	 */
234 	for (i = num_pkey; i < 32 ; i++) {
235 		reserved_allocation_mask |= (0x1 << i);
236 		default_uamor &= ~(0x3ul << pkeyshift(i));
237 	}
238 	/*
239 	 * Prevent the allocation of reserved keys too.
240 	 */
241 	initial_allocation_mask |= reserved_allocation_mask;
242 
243 	pr_info("Enabling pkeys with max key count %d\n", num_pkey);
244 out:
245 	/*
246 	 * Setup uamor on boot cpu
247 	 */
248 	mtspr(SPRN_UAMOR, default_uamor);
249 
250 	return;
251 }
252 
253 #ifdef CONFIG_PPC_KUEP
254 void setup_kuep(bool disabled)
255 {
256 	if (disabled)
257 		return;
258 	/*
259 	 * On hash if PKEY feature is not enabled, disable KUAP too.
260 	 */
261 	if (!early_radix_enabled() && !early_mmu_has_feature(MMU_FTR_PKEY))
262 		return;
263 
264 	if (smp_processor_id() == boot_cpuid) {
265 		pr_info("Activating Kernel Userspace Execution Prevention\n");
266 		cur_cpu_spec->mmu_features |= MMU_FTR_BOOK3S_KUEP;
267 	}
268 
269 	/*
270 	 * Radix always uses key0 of the IAMR to determine if an access is
271 	 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
272 	 * fetch.
273 	 */
274 	mtspr(SPRN_IAMR, AMR_KUEP_BLOCKED);
275 	isync();
276 }
277 #endif
278 
279 #ifdef CONFIG_PPC_KUAP
280 void setup_kuap(bool disabled)
281 {
282 	if (disabled)
283 		return;
284 	/*
285 	 * On hash if PKEY feature is not enabled, disable KUAP too.
286 	 */
287 	if (!early_radix_enabled() && !early_mmu_has_feature(MMU_FTR_PKEY))
288 		return;
289 
290 	if (smp_processor_id() == boot_cpuid) {
291 		pr_info("Activating Kernel Userspace Access Prevention\n");
292 		cur_cpu_spec->mmu_features |= MMU_FTR_BOOK3S_KUAP;
293 	}
294 
295 	/*
296 	 * Set the default kernel AMR values on all cpus.
297 	 */
298 	mtspr(SPRN_AMR, AMR_KUAP_BLOCKED);
299 	isync();
300 }
301 #endif
302 
303 static inline void update_current_thread_amr(u64 value)
304 {
305 	current->thread.regs->amr = value;
306 }
307 
308 static inline void update_current_thread_iamr(u64 value)
309 {
310 	if (!likely(pkey_execute_disable_supported))
311 		return;
312 
313 	current->thread.regs->iamr = value;
314 }
315 
316 #ifdef CONFIG_PPC_MEM_KEYS
317 void pkey_mm_init(struct mm_struct *mm)
318 {
319 	if (!mmu_has_feature(MMU_FTR_PKEY))
320 		return;
321 	mm_pkey_allocation_map(mm) = initial_allocation_mask;
322 	mm->context.execute_only_pkey = execute_only_key;
323 }
324 
325 static inline void init_amr(int pkey, u8 init_bits)
326 {
327 	u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey));
328 	u64 old_amr = current_thread_amr() & ~((u64)(0x3ul) << pkeyshift(pkey));
329 
330 	update_current_thread_amr(old_amr | new_amr_bits);
331 }
332 
333 static inline void init_iamr(int pkey, u8 init_bits)
334 {
335 	u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey));
336 	u64 old_iamr = current_thread_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey));
337 
338 	update_current_thread_iamr(old_iamr | new_iamr_bits);
339 }
340 
341 /*
342  * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that
343  * specified in @init_val.
344  */
345 int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
346 				unsigned long init_val)
347 {
348 	u64 new_amr_bits = 0x0ul;
349 	u64 new_iamr_bits = 0x0ul;
350 	u64 pkey_bits, uamor_pkey_bits;
351 
352 	/*
353 	 * Check whether the key is disabled by UAMOR.
354 	 */
355 	pkey_bits = 0x3ul << pkeyshift(pkey);
356 	uamor_pkey_bits = (default_uamor & pkey_bits);
357 
358 	/*
359 	 * Both the bits in UAMOR corresponding to the key should be set
360 	 */
361 	if (uamor_pkey_bits != pkey_bits)
362 		return -EINVAL;
363 
364 	if (init_val & PKEY_DISABLE_EXECUTE) {
365 		if (!pkey_execute_disable_supported)
366 			return -EINVAL;
367 		new_iamr_bits |= IAMR_EX_BIT;
368 	}
369 	init_iamr(pkey, new_iamr_bits);
370 
371 	/* Set the bits we need in AMR: */
372 	if (init_val & PKEY_DISABLE_ACCESS)
373 		new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT;
374 	else if (init_val & PKEY_DISABLE_WRITE)
375 		new_amr_bits |= AMR_WR_BIT;
376 
377 	init_amr(pkey, new_amr_bits);
378 	return 0;
379 }
380 
381 int execute_only_pkey(struct mm_struct *mm)
382 {
383 	return mm->context.execute_only_pkey;
384 }
385 
386 static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma)
387 {
388 	/* Do this check first since the vm_flags should be hot */
389 	if ((vma->vm_flags & VM_ACCESS_FLAGS) != VM_EXEC)
390 		return false;
391 
392 	return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey);
393 }
394 
395 /*
396  * This should only be called for *plain* mprotect calls.
397  */
398 int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot,
399 				  int pkey)
400 {
401 	/*
402 	 * If the currently associated pkey is execute-only, but the requested
403 	 * protection is not execute-only, move it back to the default pkey.
404 	 */
405 	if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC))
406 		return 0;
407 
408 	/*
409 	 * The requested protection is execute-only. Hence let's use an
410 	 * execute-only pkey.
411 	 */
412 	if (prot == PROT_EXEC) {
413 		pkey = execute_only_pkey(vma->vm_mm);
414 		if (pkey > 0)
415 			return pkey;
416 	}
417 
418 	/* Nothing to override. */
419 	return vma_pkey(vma);
420 }
421 
422 static bool pkey_access_permitted(int pkey, bool write, bool execute)
423 {
424 	int pkey_shift;
425 	u64 amr;
426 
427 	pkey_shift = pkeyshift(pkey);
428 	if (execute)
429 		return !(current_thread_iamr() & (IAMR_EX_BIT << pkey_shift));
430 
431 	amr = current_thread_amr();
432 	if (write)
433 		return !(amr & (AMR_WR_BIT << pkey_shift));
434 
435 	return !(amr & (AMR_RD_BIT << pkey_shift));
436 }
437 
438 bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
439 {
440 	if (!mmu_has_feature(MMU_FTR_PKEY))
441 		return true;
442 
443 	return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute);
444 }
445 
446 /*
447  * We only want to enforce protection keys on the current thread because we
448  * effectively have no access to AMR/IAMR for other threads or any way to tell
449  * which AMR/IAMR in a threaded process we could use.
450  *
451  * So do not enforce things if the VMA is not from the current mm, or if we are
452  * in a kernel thread.
453  */
454 bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write,
455 			       bool execute, bool foreign)
456 {
457 	if (!mmu_has_feature(MMU_FTR_PKEY))
458 		return true;
459 	/*
460 	 * Do not enforce our key-permissions on a foreign vma.
461 	 */
462 	if (foreign || vma_is_foreign(vma))
463 		return true;
464 
465 	return pkey_access_permitted(vma_pkey(vma), write, execute);
466 }
467 
468 void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm)
469 {
470 	if (!mmu_has_feature(MMU_FTR_PKEY))
471 		return;
472 
473 	/* Duplicate the oldmm pkey state in mm: */
474 	mm_pkey_allocation_map(mm) = mm_pkey_allocation_map(oldmm);
475 	mm->context.execute_only_pkey = oldmm->context.execute_only_pkey;
476 }
477 
478 #endif /* CONFIG_PPC_MEM_KEYS */
479