1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/mm_types.h> 8 #include <linux/memblock.h> 9 #include <linux/memremap.h> 10 #include <linux/debugfs.h> 11 #include <misc/cxl-base.h> 12 13 #include <asm/pgalloc.h> 14 #include <asm/tlb.h> 15 #include <asm/trace.h> 16 #include <asm/powernv.h> 17 #include <asm/firmware.h> 18 #include <asm/ultravisor.h> 19 #include <asm/kexec.h> 20 21 #include <mm/mmu_decl.h> 22 #include <trace/events/thp.h> 23 24 #include "internal.h" 25 26 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; 27 EXPORT_SYMBOL_GPL(mmu_psize_defs); 28 29 #ifdef CONFIG_SPARSEMEM_VMEMMAP 30 int mmu_vmemmap_psize = MMU_PAGE_4K; 31 #endif 32 33 unsigned long __pmd_frag_nr; 34 EXPORT_SYMBOL(__pmd_frag_nr); 35 unsigned long __pmd_frag_size_shift; 36 EXPORT_SYMBOL(__pmd_frag_size_shift); 37 38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 39 /* 40 * This is called when relaxing access to a hugepage. It's also called in the page 41 * fault path when we don't hit any of the major fault cases, ie, a minor 42 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have 43 * handled those two for us, we additionally deal with missing execute 44 * permission here on some processors 45 */ 46 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 47 pmd_t *pmdp, pmd_t entry, int dirty) 48 { 49 int changed; 50 #ifdef CONFIG_DEBUG_VM 51 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); 52 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); 53 #endif 54 changed = !pmd_same(*(pmdp), entry); 55 if (changed) { 56 /* 57 * We can use MMU_PAGE_2M here, because only radix 58 * path look at the psize. 59 */ 60 __ptep_set_access_flags(vma, pmdp_ptep(pmdp), 61 pmd_pte(entry), address, MMU_PAGE_2M); 62 } 63 return changed; 64 } 65 66 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 67 unsigned long address, pmd_t *pmdp) 68 { 69 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); 70 } 71 /* 72 * set a new huge pmd. We should not be called for updating 73 * an existing pmd entry. That should go via pmd_hugepage_update. 74 */ 75 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 76 pmd_t *pmdp, pmd_t pmd) 77 { 78 #ifdef CONFIG_DEBUG_VM 79 /* 80 * Make sure hardware valid bit is not set. We don't do 81 * tlb flush for this update. 82 */ 83 84 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); 85 assert_spin_locked(pmd_lockptr(mm, pmdp)); 86 WARN_ON(!(pmd_large(pmd))); 87 #endif 88 trace_hugepage_set_pmd(addr, pmd_val(pmd)); 89 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); 90 } 91 92 static void do_serialize(void *arg) 93 { 94 /* We've taken the IPI, so try to trim the mask while here */ 95 if (radix_enabled()) { 96 struct mm_struct *mm = arg; 97 exit_lazy_flush_tlb(mm, false); 98 } 99 } 100 101 /* 102 * Serialize against find_current_mm_pte which does lock-less 103 * lookup in page tables with local interrupts disabled. For huge pages 104 * it casts pmd_t to pte_t. Since format of pte_t is different from 105 * pmd_t we want to prevent transit from pmd pointing to page table 106 * to pmd pointing to huge page (and back) while interrupts are disabled. 107 * We clear pmd to possibly replace it with page table pointer in 108 * different code paths. So make sure we wait for the parallel 109 * find_current_mm_pte to finish. 110 */ 111 void serialize_against_pte_lookup(struct mm_struct *mm) 112 { 113 smp_mb(); 114 smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1); 115 } 116 117 /* 118 * We use this to invalidate a pmdp entry before switching from a 119 * hugepte to regular pmd entry. 120 */ 121 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 122 pmd_t *pmdp) 123 { 124 unsigned long old_pmd; 125 126 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); 127 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 128 return __pmd(old_pmd); 129 } 130 131 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 132 unsigned long addr, pmd_t *pmdp, int full) 133 { 134 pmd_t pmd; 135 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 136 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) && 137 !pmd_devmap(*pmdp)) || !pmd_present(*pmdp)); 138 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 139 /* 140 * if it not a fullmm flush, then we can possibly end up converting 141 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 142 * Make sure we flush the tlb in this case. 143 */ 144 if (!full) 145 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE); 146 return pmd; 147 } 148 149 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) 150 { 151 return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); 152 } 153 154 /* 155 * At some point we should be able to get rid of 156 * pmd_mkhuge() and mk_huge_pmd() when we update all the 157 * other archs to mark the pmd huge in pfn_pmd() 158 */ 159 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 160 { 161 unsigned long pmdv; 162 163 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 164 165 return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot)); 166 } 167 168 pmd_t mk_pmd(struct page *page, pgprot_t pgprot) 169 { 170 return pfn_pmd(page_to_pfn(page), pgprot); 171 } 172 173 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 174 { 175 unsigned long pmdv; 176 177 pmdv = pmd_val(pmd); 178 pmdv &= _HPAGE_CHG_MASK; 179 return pmd_set_protbits(__pmd(pmdv), newprot); 180 } 181 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 182 183 /* For use by kexec, called with MMU off */ 184 notrace void mmu_cleanup_all(void) 185 { 186 if (radix_enabled()) 187 radix__mmu_cleanup_all(); 188 else if (mmu_hash_ops.hpte_clear_all) 189 mmu_hash_ops.hpte_clear_all(); 190 191 reset_sprs(); 192 } 193 194 #ifdef CONFIG_MEMORY_HOTPLUG 195 int __meminit create_section_mapping(unsigned long start, unsigned long end, 196 int nid, pgprot_t prot) 197 { 198 if (radix_enabled()) 199 return radix__create_section_mapping(start, end, nid, prot); 200 201 return hash__create_section_mapping(start, end, nid, prot); 202 } 203 204 int __meminit remove_section_mapping(unsigned long start, unsigned long end) 205 { 206 if (radix_enabled()) 207 return radix__remove_section_mapping(start, end); 208 209 return hash__remove_section_mapping(start, end); 210 } 211 #endif /* CONFIG_MEMORY_HOTPLUG */ 212 213 void __init mmu_partition_table_init(void) 214 { 215 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; 216 unsigned long ptcr; 217 218 /* Initialize the Partition Table with no entries */ 219 partition_tb = memblock_alloc(patb_size, patb_size); 220 if (!partition_tb) 221 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 222 __func__, patb_size, patb_size); 223 224 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); 225 set_ptcr_when_no_uv(ptcr); 226 powernv_set_nmmu_ptcr(ptcr); 227 } 228 229 static void flush_partition(unsigned int lpid, bool radix) 230 { 231 if (radix) { 232 radix__flush_all_lpid(lpid); 233 radix__flush_all_lpid_guest(lpid); 234 } else { 235 asm volatile("ptesync" : : : "memory"); 236 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : 237 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 238 /* do we need fixup here ?*/ 239 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 240 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); 241 } 242 } 243 244 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, 245 unsigned long dw1, bool flush) 246 { 247 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); 248 249 /* 250 * When ultravisor is enabled, the partition table is stored in secure 251 * memory and can only be accessed doing an ultravisor call. However, we 252 * maintain a copy of the partition table in normal memory to allow Nest 253 * MMU translations to occur (for normal VMs). 254 * 255 * Therefore, here we always update partition_tb, regardless of whether 256 * we are running under an ultravisor or not. 257 */ 258 partition_tb[lpid].patb0 = cpu_to_be64(dw0); 259 partition_tb[lpid].patb1 = cpu_to_be64(dw1); 260 261 /* 262 * If ultravisor is enabled, we do an ultravisor call to register the 263 * partition table entry (PATE), which also do a global flush of TLBs 264 * and partition table caches for the lpid. Otherwise, just do the 265 * flush. The type of flush (hash or radix) depends on what the previous 266 * use of the partition ID was, not the new use. 267 */ 268 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) { 269 uv_register_pate(lpid, dw0, dw1); 270 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n", 271 dw0, dw1); 272 } else if (flush) { 273 /* 274 * Boot does not need to flush, because MMU is off and each 275 * CPU does a tlbiel_all() before switching them on, which 276 * flushes everything. 277 */ 278 flush_partition(lpid, (old & PATB_HR)); 279 } 280 } 281 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); 282 283 static pmd_t *get_pmd_from_cache(struct mm_struct *mm) 284 { 285 void *pmd_frag, *ret; 286 287 if (PMD_FRAG_NR == 1) 288 return NULL; 289 290 spin_lock(&mm->page_table_lock); 291 ret = mm->context.pmd_frag; 292 if (ret) { 293 pmd_frag = ret + PMD_FRAG_SIZE; 294 /* 295 * If we have taken up all the fragments mark PTE page NULL 296 */ 297 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) 298 pmd_frag = NULL; 299 mm->context.pmd_frag = pmd_frag; 300 } 301 spin_unlock(&mm->page_table_lock); 302 return (pmd_t *)ret; 303 } 304 305 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) 306 { 307 void *ret = NULL; 308 struct page *page; 309 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; 310 311 if (mm == &init_mm) 312 gfp &= ~__GFP_ACCOUNT; 313 page = alloc_page(gfp); 314 if (!page) 315 return NULL; 316 if (!pgtable_pmd_page_ctor(page)) { 317 __free_pages(page, 0); 318 return NULL; 319 } 320 321 atomic_set(&page->pt_frag_refcount, 1); 322 323 ret = page_address(page); 324 /* 325 * if we support only one fragment just return the 326 * allocated page. 327 */ 328 if (PMD_FRAG_NR == 1) 329 return ret; 330 331 spin_lock(&mm->page_table_lock); 332 /* 333 * If we find pgtable_page set, we return 334 * the allocated page with single fragement 335 * count. 336 */ 337 if (likely(!mm->context.pmd_frag)) { 338 atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR); 339 mm->context.pmd_frag = ret + PMD_FRAG_SIZE; 340 } 341 spin_unlock(&mm->page_table_lock); 342 343 return (pmd_t *)ret; 344 } 345 346 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) 347 { 348 pmd_t *pmd; 349 350 pmd = get_pmd_from_cache(mm); 351 if (pmd) 352 return pmd; 353 354 return __alloc_for_pmdcache(mm); 355 } 356 357 void pmd_fragment_free(unsigned long *pmd) 358 { 359 struct page *page = virt_to_page(pmd); 360 361 if (PageReserved(page)) 362 return free_reserved_page(page); 363 364 BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0); 365 if (atomic_dec_and_test(&page->pt_frag_refcount)) { 366 pgtable_pmd_page_dtor(page); 367 __free_page(page); 368 } 369 } 370 371 static inline void pgtable_free(void *table, int index) 372 { 373 switch (index) { 374 case PTE_INDEX: 375 pte_fragment_free(table, 0); 376 break; 377 case PMD_INDEX: 378 pmd_fragment_free(table); 379 break; 380 case PUD_INDEX: 381 __pud_free(table); 382 break; 383 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE) 384 /* 16M hugepd directory at pud level */ 385 case HTLB_16M_INDEX: 386 BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0); 387 kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table); 388 break; 389 /* 16G hugepd directory at the pgd level */ 390 case HTLB_16G_INDEX: 391 BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0); 392 kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table); 393 break; 394 #endif 395 /* We don't free pgd table via RCU callback */ 396 default: 397 BUG(); 398 } 399 } 400 401 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) 402 { 403 unsigned long pgf = (unsigned long)table; 404 405 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); 406 pgf |= index; 407 tlb_remove_table(tlb, (void *)pgf); 408 } 409 410 void __tlb_remove_table(void *_table) 411 { 412 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 413 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 414 415 return pgtable_free(table, index); 416 } 417 418 #ifdef CONFIG_PROC_FS 419 atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; 420 421 void arch_report_meminfo(struct seq_file *m) 422 { 423 /* 424 * Hash maps the memory with one size mmu_linear_psize. 425 * So don't bother to print these on hash 426 */ 427 if (!radix_enabled()) 428 return; 429 seq_printf(m, "DirectMap4k: %8lu kB\n", 430 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); 431 seq_printf(m, "DirectMap64k: %8lu kB\n", 432 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); 433 seq_printf(m, "DirectMap2M: %8lu kB\n", 434 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); 435 seq_printf(m, "DirectMap1G: %8lu kB\n", 436 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); 437 } 438 #endif /* CONFIG_PROC_FS */ 439 440 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, 441 pte_t *ptep) 442 { 443 unsigned long pte_val; 444 445 /* 446 * Clear the _PAGE_PRESENT so that no hardware parallel update is 447 * possible. Also keep the pte_present true so that we don't take 448 * wrong fault. 449 */ 450 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); 451 452 return __pte(pte_val); 453 454 } 455 456 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 457 pte_t *ptep, pte_t old_pte, pte_t pte) 458 { 459 if (radix_enabled()) 460 return radix__ptep_modify_prot_commit(vma, addr, 461 ptep, old_pte, pte); 462 set_pte_at(vma->vm_mm, addr, ptep, pte); 463 } 464 465 /* 466 * For hash translation mode, we use the deposited table to store hash slot 467 * information and they are stored at PTRS_PER_PMD offset from related pmd 468 * location. Hence a pmd move requires deposit and withdraw. 469 * 470 * For radix translation with split pmd ptl, we store the deposited table in the 471 * pmd page. Hence if we have different pmd page we need to withdraw during pmd 472 * move. 473 * 474 * With hash we use deposited table always irrespective of anon or not. 475 * With radix we use deposited table only for anonymous mapping. 476 */ 477 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 478 struct spinlock *old_pmd_ptl, 479 struct vm_area_struct *vma) 480 { 481 if (radix_enabled()) 482 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 483 484 return true; 485 } 486 487 /* 488 * Does the CPU support tlbie? 489 */ 490 bool tlbie_capable __read_mostly = true; 491 EXPORT_SYMBOL(tlbie_capable); 492 493 /* 494 * Should tlbie be used for management of CPU TLBs, for kernel and process 495 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM 496 * guest address spaces. 497 */ 498 bool tlbie_enabled __read_mostly = true; 499 500 static int __init setup_disable_tlbie(char *str) 501 { 502 if (!radix_enabled()) { 503 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n"); 504 return 1; 505 } 506 507 tlbie_capable = false; 508 tlbie_enabled = false; 509 510 return 1; 511 } 512 __setup("disable_tlbie", setup_disable_tlbie); 513 514 static int __init pgtable_debugfs_setup(void) 515 { 516 if (!tlbie_capable) 517 return 0; 518 519 /* 520 * There is no locking vs tlb flushing when changing this value. 521 * The tlb flushers will see one value or another, and use either 522 * tlbie or tlbiel with IPIs. In both cases the TLBs will be 523 * invalidated as expected. 524 */ 525 debugfs_create_bool("tlbie_enabled", 0600, 526 arch_debugfs_dir, 527 &tlbie_enabled); 528 529 return 0; 530 } 531 arch_initcall(pgtable_debugfs_setup); 532 533 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN) 534 /* 535 * Override the generic version in mm/memremap.c. 536 * 537 * With hash translation, the direct-map range is mapped with just one 538 * page size selected by htab_init_page_sizes(). Consult 539 * mmu_psize_defs[] to determine the minimum page size alignment. 540 */ 541 unsigned long memremap_compat_align(void) 542 { 543 if (!radix_enabled()) { 544 unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift; 545 return max(SUBSECTION_SIZE, 1UL << shift); 546 } 547 548 return SUBSECTION_SIZE; 549 } 550 EXPORT_SYMBOL_GPL(memremap_compat_align); 551 #endif 552