1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/mm_types.h> 8 #include <linux/memblock.h> 9 #include <linux/memremap.h> 10 #include <linux/pkeys.h> 11 #include <linux/debugfs.h> 12 #include <linux/proc_fs.h> 13 #include <misc/cxl-base.h> 14 15 #include <asm/pgalloc.h> 16 #include <asm/tlb.h> 17 #include <asm/trace.h> 18 #include <asm/powernv.h> 19 #include <asm/firmware.h> 20 #include <asm/ultravisor.h> 21 #include <asm/kexec.h> 22 23 #include <mm/mmu_decl.h> 24 #include <trace/events/thp.h> 25 26 #include "internal.h" 27 28 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; 29 EXPORT_SYMBOL_GPL(mmu_psize_defs); 30 31 #ifdef CONFIG_SPARSEMEM_VMEMMAP 32 int mmu_vmemmap_psize = MMU_PAGE_4K; 33 #endif 34 35 unsigned long __pmd_frag_nr; 36 EXPORT_SYMBOL(__pmd_frag_nr); 37 unsigned long __pmd_frag_size_shift; 38 EXPORT_SYMBOL(__pmd_frag_size_shift); 39 40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 41 /* 42 * This is called when relaxing access to a hugepage. It's also called in the page 43 * fault path when we don't hit any of the major fault cases, ie, a minor 44 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have 45 * handled those two for us, we additionally deal with missing execute 46 * permission here on some processors 47 */ 48 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 49 pmd_t *pmdp, pmd_t entry, int dirty) 50 { 51 int changed; 52 #ifdef CONFIG_DEBUG_VM 53 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); 54 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); 55 #endif 56 changed = !pmd_same(*(pmdp), entry); 57 if (changed) { 58 /* 59 * We can use MMU_PAGE_2M here, because only radix 60 * path look at the psize. 61 */ 62 __ptep_set_access_flags(vma, pmdp_ptep(pmdp), 63 pmd_pte(entry), address, MMU_PAGE_2M); 64 } 65 return changed; 66 } 67 68 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 69 pud_t *pudp, pud_t entry, int dirty) 70 { 71 int changed; 72 #ifdef CONFIG_DEBUG_VM 73 WARN_ON(!pud_devmap(*pudp)); 74 assert_spin_locked(pud_lockptr(vma->vm_mm, pudp)); 75 #endif 76 changed = !pud_same(*(pudp), entry); 77 if (changed) { 78 /* 79 * We can use MMU_PAGE_1G here, because only radix 80 * path look at the psize. 81 */ 82 __ptep_set_access_flags(vma, pudp_ptep(pudp), 83 pud_pte(entry), address, MMU_PAGE_1G); 84 } 85 return changed; 86 } 87 88 89 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 90 unsigned long address, pmd_t *pmdp) 91 { 92 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); 93 } 94 95 int pudp_test_and_clear_young(struct vm_area_struct *vma, 96 unsigned long address, pud_t *pudp) 97 { 98 return __pudp_test_and_clear_young(vma->vm_mm, address, pudp); 99 } 100 101 /* 102 * set a new huge pmd. We should not be called for updating 103 * an existing pmd entry. That should go via pmd_hugepage_update. 104 */ 105 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 106 pmd_t *pmdp, pmd_t pmd) 107 { 108 #ifdef CONFIG_DEBUG_VM 109 /* 110 * Make sure hardware valid bit is not set. We don't do 111 * tlb flush for this update. 112 */ 113 114 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); 115 assert_spin_locked(pmd_lockptr(mm, pmdp)); 116 WARN_ON(!(pmd_large(pmd))); 117 #endif 118 trace_hugepage_set_pmd(addr, pmd_val(pmd)); 119 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); 120 } 121 122 void set_pud_at(struct mm_struct *mm, unsigned long addr, 123 pud_t *pudp, pud_t pud) 124 { 125 #ifdef CONFIG_DEBUG_VM 126 /* 127 * Make sure hardware valid bit is not set. We don't do 128 * tlb flush for this update. 129 */ 130 131 WARN_ON(pte_hw_valid(pud_pte(*pudp))); 132 assert_spin_locked(pud_lockptr(mm, pudp)); 133 WARN_ON(!(pud_leaf(pud))); 134 #endif 135 trace_hugepage_set_pud(addr, pud_val(pud)); 136 return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud)); 137 } 138 139 static void do_serialize(void *arg) 140 { 141 /* We've taken the IPI, so try to trim the mask while here */ 142 if (radix_enabled()) { 143 struct mm_struct *mm = arg; 144 exit_lazy_flush_tlb(mm, false); 145 } 146 } 147 148 /* 149 * Serialize against __find_linux_pte() which does lock-less 150 * lookup in page tables with local interrupts disabled. For huge pages 151 * it casts pmd_t to pte_t. Since format of pte_t is different from 152 * pmd_t we want to prevent transit from pmd pointing to page table 153 * to pmd pointing to huge page (and back) while interrupts are disabled. 154 * We clear pmd to possibly replace it with page table pointer in 155 * different code paths. So make sure we wait for the parallel 156 * __find_linux_pte() to finish. 157 */ 158 void serialize_against_pte_lookup(struct mm_struct *mm) 159 { 160 smp_mb(); 161 smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1); 162 } 163 164 /* 165 * We use this to invalidate a pmdp entry before switching from a 166 * hugepte to regular pmd entry. 167 */ 168 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 169 pmd_t *pmdp) 170 { 171 unsigned long old_pmd; 172 173 VM_WARN_ON_ONCE(!pmd_present(*pmdp)); 174 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); 175 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 176 return __pmd(old_pmd); 177 } 178 179 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 180 unsigned long addr, pmd_t *pmdp, int full) 181 { 182 pmd_t pmd; 183 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 184 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) && 185 !pmd_devmap(*pmdp)) || !pmd_present(*pmdp)); 186 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 187 /* 188 * if it not a fullmm flush, then we can possibly end up converting 189 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 190 * Make sure we flush the tlb in this case. 191 */ 192 if (!full) 193 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE); 194 return pmd; 195 } 196 197 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 198 unsigned long addr, pud_t *pudp, int full) 199 { 200 pud_t pud; 201 202 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 203 VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) || 204 !pud_present(*pudp)); 205 pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp); 206 /* 207 * if it not a fullmm flush, then we can possibly end up converting 208 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 209 * Make sure we flush the tlb in this case. 210 */ 211 if (!full) 212 flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE); 213 return pud; 214 } 215 216 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) 217 { 218 return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); 219 } 220 221 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot) 222 { 223 return __pud(pud_val(pud) | pgprot_val(pgprot)); 224 } 225 226 /* 227 * At some point we should be able to get rid of 228 * pmd_mkhuge() and mk_huge_pmd() when we update all the 229 * other archs to mark the pmd huge in pfn_pmd() 230 */ 231 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 232 { 233 unsigned long pmdv; 234 235 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 236 237 return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot)); 238 } 239 240 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot) 241 { 242 unsigned long pudv; 243 244 pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 245 246 return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot)); 247 } 248 249 pmd_t mk_pmd(struct page *page, pgprot_t pgprot) 250 { 251 return pfn_pmd(page_to_pfn(page), pgprot); 252 } 253 254 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 255 { 256 unsigned long pmdv; 257 258 pmdv = pmd_val(pmd); 259 pmdv &= _HPAGE_CHG_MASK; 260 return pmd_set_protbits(__pmd(pmdv), newprot); 261 } 262 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 263 264 /* For use by kexec, called with MMU off */ 265 notrace void mmu_cleanup_all(void) 266 { 267 if (radix_enabled()) 268 radix__mmu_cleanup_all(); 269 else if (mmu_hash_ops.hpte_clear_all) 270 mmu_hash_ops.hpte_clear_all(); 271 272 reset_sprs(); 273 } 274 275 #ifdef CONFIG_MEMORY_HOTPLUG 276 int __meminit create_section_mapping(unsigned long start, unsigned long end, 277 int nid, pgprot_t prot) 278 { 279 if (radix_enabled()) 280 return radix__create_section_mapping(start, end, nid, prot); 281 282 return hash__create_section_mapping(start, end, nid, prot); 283 } 284 285 int __meminit remove_section_mapping(unsigned long start, unsigned long end) 286 { 287 if (radix_enabled()) 288 return radix__remove_section_mapping(start, end); 289 290 return hash__remove_section_mapping(start, end); 291 } 292 #endif /* CONFIG_MEMORY_HOTPLUG */ 293 294 void __init mmu_partition_table_init(void) 295 { 296 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; 297 unsigned long ptcr; 298 299 /* Initialize the Partition Table with no entries */ 300 partition_tb = memblock_alloc(patb_size, patb_size); 301 if (!partition_tb) 302 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 303 __func__, patb_size, patb_size); 304 305 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); 306 set_ptcr_when_no_uv(ptcr); 307 powernv_set_nmmu_ptcr(ptcr); 308 } 309 310 static void flush_partition(unsigned int lpid, bool radix) 311 { 312 if (radix) { 313 radix__flush_all_lpid(lpid); 314 radix__flush_all_lpid_guest(lpid); 315 } else { 316 asm volatile("ptesync" : : : "memory"); 317 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : 318 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 319 /* do we need fixup here ?*/ 320 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 321 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); 322 } 323 } 324 325 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, 326 unsigned long dw1, bool flush) 327 { 328 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); 329 330 /* 331 * When ultravisor is enabled, the partition table is stored in secure 332 * memory and can only be accessed doing an ultravisor call. However, we 333 * maintain a copy of the partition table in normal memory to allow Nest 334 * MMU translations to occur (for normal VMs). 335 * 336 * Therefore, here we always update partition_tb, regardless of whether 337 * we are running under an ultravisor or not. 338 */ 339 partition_tb[lpid].patb0 = cpu_to_be64(dw0); 340 partition_tb[lpid].patb1 = cpu_to_be64(dw1); 341 342 /* 343 * If ultravisor is enabled, we do an ultravisor call to register the 344 * partition table entry (PATE), which also do a global flush of TLBs 345 * and partition table caches for the lpid. Otherwise, just do the 346 * flush. The type of flush (hash or radix) depends on what the previous 347 * use of the partition ID was, not the new use. 348 */ 349 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) { 350 uv_register_pate(lpid, dw0, dw1); 351 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n", 352 dw0, dw1); 353 } else if (flush) { 354 /* 355 * Boot does not need to flush, because MMU is off and each 356 * CPU does a tlbiel_all() before switching them on, which 357 * flushes everything. 358 */ 359 flush_partition(lpid, (old & PATB_HR)); 360 } 361 } 362 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); 363 364 static pmd_t *get_pmd_from_cache(struct mm_struct *mm) 365 { 366 void *pmd_frag, *ret; 367 368 if (PMD_FRAG_NR == 1) 369 return NULL; 370 371 spin_lock(&mm->page_table_lock); 372 ret = mm->context.pmd_frag; 373 if (ret) { 374 pmd_frag = ret + PMD_FRAG_SIZE; 375 /* 376 * If we have taken up all the fragments mark PTE page NULL 377 */ 378 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) 379 pmd_frag = NULL; 380 mm->context.pmd_frag = pmd_frag; 381 } 382 spin_unlock(&mm->page_table_lock); 383 return (pmd_t *)ret; 384 } 385 386 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) 387 { 388 void *ret = NULL; 389 struct ptdesc *ptdesc; 390 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; 391 392 if (mm == &init_mm) 393 gfp &= ~__GFP_ACCOUNT; 394 ptdesc = pagetable_alloc(gfp, 0); 395 if (!ptdesc) 396 return NULL; 397 if (!pagetable_pmd_ctor(ptdesc)) { 398 pagetable_free(ptdesc); 399 return NULL; 400 } 401 402 atomic_set(&ptdesc->pt_frag_refcount, 1); 403 404 ret = ptdesc_address(ptdesc); 405 /* 406 * if we support only one fragment just return the 407 * allocated page. 408 */ 409 if (PMD_FRAG_NR == 1) 410 return ret; 411 412 spin_lock(&mm->page_table_lock); 413 /* 414 * If we find ptdesc_page set, we return 415 * the allocated page with single fragment 416 * count. 417 */ 418 if (likely(!mm->context.pmd_frag)) { 419 atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR); 420 mm->context.pmd_frag = ret + PMD_FRAG_SIZE; 421 } 422 spin_unlock(&mm->page_table_lock); 423 424 return (pmd_t *)ret; 425 } 426 427 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) 428 { 429 pmd_t *pmd; 430 431 pmd = get_pmd_from_cache(mm); 432 if (pmd) 433 return pmd; 434 435 return __alloc_for_pmdcache(mm); 436 } 437 438 void pmd_fragment_free(unsigned long *pmd) 439 { 440 struct ptdesc *ptdesc = virt_to_ptdesc(pmd); 441 442 if (pagetable_is_reserved(ptdesc)) 443 return free_reserved_ptdesc(ptdesc); 444 445 BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0); 446 if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) { 447 pagetable_pmd_dtor(ptdesc); 448 pagetable_free(ptdesc); 449 } 450 } 451 452 static inline void pgtable_free(void *table, int index) 453 { 454 switch (index) { 455 case PTE_INDEX: 456 pte_fragment_free(table, 0); 457 break; 458 case PMD_INDEX: 459 pmd_fragment_free(table); 460 break; 461 case PUD_INDEX: 462 __pud_free(table); 463 break; 464 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE) 465 /* 16M hugepd directory at pud level */ 466 case HTLB_16M_INDEX: 467 BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0); 468 kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table); 469 break; 470 /* 16G hugepd directory at the pgd level */ 471 case HTLB_16G_INDEX: 472 BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0); 473 kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table); 474 break; 475 #endif 476 /* We don't free pgd table via RCU callback */ 477 default: 478 BUG(); 479 } 480 } 481 482 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) 483 { 484 unsigned long pgf = (unsigned long)table; 485 486 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); 487 pgf |= index; 488 tlb_remove_table(tlb, (void *)pgf); 489 } 490 491 void __tlb_remove_table(void *_table) 492 { 493 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 494 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 495 496 return pgtable_free(table, index); 497 } 498 499 #ifdef CONFIG_PROC_FS 500 atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; 501 502 void arch_report_meminfo(struct seq_file *m) 503 { 504 /* 505 * Hash maps the memory with one size mmu_linear_psize. 506 * So don't bother to print these on hash 507 */ 508 if (!radix_enabled()) 509 return; 510 seq_printf(m, "DirectMap4k: %8lu kB\n", 511 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); 512 seq_printf(m, "DirectMap64k: %8lu kB\n", 513 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); 514 seq_printf(m, "DirectMap2M: %8lu kB\n", 515 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); 516 seq_printf(m, "DirectMap1G: %8lu kB\n", 517 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); 518 } 519 #endif /* CONFIG_PROC_FS */ 520 521 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, 522 pte_t *ptep) 523 { 524 unsigned long pte_val; 525 526 /* 527 * Clear the _PAGE_PRESENT so that no hardware parallel update is 528 * possible. Also keep the pte_present true so that we don't take 529 * wrong fault. 530 */ 531 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); 532 533 return __pte(pte_val); 534 535 } 536 537 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 538 pte_t *ptep, pte_t old_pte, pte_t pte) 539 { 540 if (radix_enabled()) 541 return radix__ptep_modify_prot_commit(vma, addr, 542 ptep, old_pte, pte); 543 set_pte_at(vma->vm_mm, addr, ptep, pte); 544 } 545 546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 547 /* 548 * For hash translation mode, we use the deposited table to store hash slot 549 * information and they are stored at PTRS_PER_PMD offset from related pmd 550 * location. Hence a pmd move requires deposit and withdraw. 551 * 552 * For radix translation with split pmd ptl, we store the deposited table in the 553 * pmd page. Hence if we have different pmd page we need to withdraw during pmd 554 * move. 555 * 556 * With hash we use deposited table always irrespective of anon or not. 557 * With radix we use deposited table only for anonymous mapping. 558 */ 559 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 560 struct spinlock *old_pmd_ptl, 561 struct vm_area_struct *vma) 562 { 563 if (radix_enabled()) 564 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 565 566 return true; 567 } 568 #endif 569 570 /* 571 * Does the CPU support tlbie? 572 */ 573 bool tlbie_capable __read_mostly = true; 574 EXPORT_SYMBOL(tlbie_capable); 575 576 /* 577 * Should tlbie be used for management of CPU TLBs, for kernel and process 578 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM 579 * guest address spaces. 580 */ 581 bool tlbie_enabled __read_mostly = true; 582 583 static int __init setup_disable_tlbie(char *str) 584 { 585 if (!radix_enabled()) { 586 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n"); 587 return 1; 588 } 589 590 tlbie_capable = false; 591 tlbie_enabled = false; 592 593 return 1; 594 } 595 __setup("disable_tlbie", setup_disable_tlbie); 596 597 static int __init pgtable_debugfs_setup(void) 598 { 599 if (!tlbie_capable) 600 return 0; 601 602 /* 603 * There is no locking vs tlb flushing when changing this value. 604 * The tlb flushers will see one value or another, and use either 605 * tlbie or tlbiel with IPIs. In both cases the TLBs will be 606 * invalidated as expected. 607 */ 608 debugfs_create_bool("tlbie_enabled", 0600, 609 arch_debugfs_dir, 610 &tlbie_enabled); 611 612 return 0; 613 } 614 arch_initcall(pgtable_debugfs_setup); 615 616 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN) 617 /* 618 * Override the generic version in mm/memremap.c. 619 * 620 * With hash translation, the direct-map range is mapped with just one 621 * page size selected by htab_init_page_sizes(). Consult 622 * mmu_psize_defs[] to determine the minimum page size alignment. 623 */ 624 unsigned long memremap_compat_align(void) 625 { 626 if (!radix_enabled()) { 627 unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift; 628 return max(SUBSECTION_SIZE, 1UL << shift); 629 } 630 631 return SUBSECTION_SIZE; 632 } 633 EXPORT_SYMBOL_GPL(memremap_compat_align); 634 #endif 635 636 pgprot_t vm_get_page_prot(unsigned long vm_flags) 637 { 638 unsigned long prot; 639 640 /* Radix supports execute-only, but protection_map maps X -> RX */ 641 if (radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)) { 642 prot = pgprot_val(PAGE_EXECONLY); 643 } else { 644 prot = pgprot_val(protection_map[vm_flags & 645 (VM_ACCESS_FLAGS | VM_SHARED)]); 646 } 647 648 if (vm_flags & VM_SAO) 649 prot |= _PAGE_SAO; 650 651 #ifdef CONFIG_PPC_MEM_KEYS 652 prot |= vmflag_to_pte_pkey_bits(vm_flags); 653 #endif 654 655 return __pgprot(prot); 656 } 657 EXPORT_SYMBOL(vm_get_page_prot); 658