1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/mm_types.h> 8 #include <linux/memblock.h> 9 #include <linux/memremap.h> 10 #include <linux/pkeys.h> 11 #include <linux/debugfs.h> 12 #include <misc/cxl-base.h> 13 14 #include <asm/pgalloc.h> 15 #include <asm/tlb.h> 16 #include <asm/trace.h> 17 #include <asm/powernv.h> 18 #include <asm/firmware.h> 19 #include <asm/ultravisor.h> 20 #include <asm/kexec.h> 21 22 #include <mm/mmu_decl.h> 23 #include <trace/events/thp.h> 24 25 #include "internal.h" 26 27 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; 28 EXPORT_SYMBOL_GPL(mmu_psize_defs); 29 30 #ifdef CONFIG_SPARSEMEM_VMEMMAP 31 int mmu_vmemmap_psize = MMU_PAGE_4K; 32 #endif 33 34 unsigned long __pmd_frag_nr; 35 EXPORT_SYMBOL(__pmd_frag_nr); 36 unsigned long __pmd_frag_size_shift; 37 EXPORT_SYMBOL(__pmd_frag_size_shift); 38 39 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 40 /* 41 * This is called when relaxing access to a hugepage. It's also called in the page 42 * fault path when we don't hit any of the major fault cases, ie, a minor 43 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have 44 * handled those two for us, we additionally deal with missing execute 45 * permission here on some processors 46 */ 47 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 48 pmd_t *pmdp, pmd_t entry, int dirty) 49 { 50 int changed; 51 #ifdef CONFIG_DEBUG_VM 52 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); 53 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); 54 #endif 55 changed = !pmd_same(*(pmdp), entry); 56 if (changed) { 57 /* 58 * We can use MMU_PAGE_2M here, because only radix 59 * path look at the psize. 60 */ 61 __ptep_set_access_flags(vma, pmdp_ptep(pmdp), 62 pmd_pte(entry), address, MMU_PAGE_2M); 63 } 64 return changed; 65 } 66 67 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 68 pud_t *pudp, pud_t entry, int dirty) 69 { 70 int changed; 71 #ifdef CONFIG_DEBUG_VM 72 WARN_ON(!pud_devmap(*pudp)); 73 assert_spin_locked(pud_lockptr(vma->vm_mm, pudp)); 74 #endif 75 changed = !pud_same(*(pudp), entry); 76 if (changed) { 77 /* 78 * We can use MMU_PAGE_1G here, because only radix 79 * path look at the psize. 80 */ 81 __ptep_set_access_flags(vma, pudp_ptep(pudp), 82 pud_pte(entry), address, MMU_PAGE_1G); 83 } 84 return changed; 85 } 86 87 88 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 89 unsigned long address, pmd_t *pmdp) 90 { 91 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); 92 } 93 94 int pudp_test_and_clear_young(struct vm_area_struct *vma, 95 unsigned long address, pud_t *pudp) 96 { 97 return __pudp_test_and_clear_young(vma->vm_mm, address, pudp); 98 } 99 100 /* 101 * set a new huge pmd. We should not be called for updating 102 * an existing pmd entry. That should go via pmd_hugepage_update. 103 */ 104 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 105 pmd_t *pmdp, pmd_t pmd) 106 { 107 #ifdef CONFIG_DEBUG_VM 108 /* 109 * Make sure hardware valid bit is not set. We don't do 110 * tlb flush for this update. 111 */ 112 113 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); 114 assert_spin_locked(pmd_lockptr(mm, pmdp)); 115 WARN_ON(!(pmd_large(pmd))); 116 #endif 117 trace_hugepage_set_pmd(addr, pmd_val(pmd)); 118 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); 119 } 120 121 void set_pud_at(struct mm_struct *mm, unsigned long addr, 122 pud_t *pudp, pud_t pud) 123 { 124 #ifdef CONFIG_DEBUG_VM 125 /* 126 * Make sure hardware valid bit is not set. We don't do 127 * tlb flush for this update. 128 */ 129 130 WARN_ON(pte_hw_valid(pud_pte(*pudp))); 131 assert_spin_locked(pud_lockptr(mm, pudp)); 132 WARN_ON(!(pud_large(pud))); 133 #endif 134 trace_hugepage_set_pud(addr, pud_val(pud)); 135 return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud)); 136 } 137 138 static void do_serialize(void *arg) 139 { 140 /* We've taken the IPI, so try to trim the mask while here */ 141 if (radix_enabled()) { 142 struct mm_struct *mm = arg; 143 exit_lazy_flush_tlb(mm, false); 144 } 145 } 146 147 /* 148 * Serialize against __find_linux_pte() which does lock-less 149 * lookup in page tables with local interrupts disabled. For huge pages 150 * it casts pmd_t to pte_t. Since format of pte_t is different from 151 * pmd_t we want to prevent transit from pmd pointing to page table 152 * to pmd pointing to huge page (and back) while interrupts are disabled. 153 * We clear pmd to possibly replace it with page table pointer in 154 * different code paths. So make sure we wait for the parallel 155 * __find_linux_pte() to finish. 156 */ 157 void serialize_against_pte_lookup(struct mm_struct *mm) 158 { 159 smp_mb(); 160 smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1); 161 } 162 163 /* 164 * We use this to invalidate a pmdp entry before switching from a 165 * hugepte to regular pmd entry. 166 */ 167 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 168 pmd_t *pmdp) 169 { 170 unsigned long old_pmd; 171 172 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); 173 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 174 return __pmd(old_pmd); 175 } 176 177 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 178 unsigned long addr, pmd_t *pmdp, int full) 179 { 180 pmd_t pmd; 181 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 182 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) && 183 !pmd_devmap(*pmdp)) || !pmd_present(*pmdp)); 184 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 185 /* 186 * if it not a fullmm flush, then we can possibly end up converting 187 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 188 * Make sure we flush the tlb in this case. 189 */ 190 if (!full) 191 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE); 192 return pmd; 193 } 194 195 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 196 unsigned long addr, pud_t *pudp, int full) 197 { 198 pud_t pud; 199 200 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 201 VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) || 202 !pud_present(*pudp)); 203 pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp); 204 /* 205 * if it not a fullmm flush, then we can possibly end up converting 206 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 207 * Make sure we flush the tlb in this case. 208 */ 209 if (!full) 210 flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE); 211 return pud; 212 } 213 214 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) 215 { 216 return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); 217 } 218 219 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot) 220 { 221 return __pud(pud_val(pud) | pgprot_val(pgprot)); 222 } 223 224 /* 225 * At some point we should be able to get rid of 226 * pmd_mkhuge() and mk_huge_pmd() when we update all the 227 * other archs to mark the pmd huge in pfn_pmd() 228 */ 229 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 230 { 231 unsigned long pmdv; 232 233 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 234 235 return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot)); 236 } 237 238 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot) 239 { 240 unsigned long pudv; 241 242 pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 243 244 return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot)); 245 } 246 247 pmd_t mk_pmd(struct page *page, pgprot_t pgprot) 248 { 249 return pfn_pmd(page_to_pfn(page), pgprot); 250 } 251 252 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 253 { 254 unsigned long pmdv; 255 256 pmdv = pmd_val(pmd); 257 pmdv &= _HPAGE_CHG_MASK; 258 return pmd_set_protbits(__pmd(pmdv), newprot); 259 } 260 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 261 262 /* For use by kexec, called with MMU off */ 263 notrace void mmu_cleanup_all(void) 264 { 265 if (radix_enabled()) 266 radix__mmu_cleanup_all(); 267 else if (mmu_hash_ops.hpte_clear_all) 268 mmu_hash_ops.hpte_clear_all(); 269 270 reset_sprs(); 271 } 272 273 #ifdef CONFIG_MEMORY_HOTPLUG 274 int __meminit create_section_mapping(unsigned long start, unsigned long end, 275 int nid, pgprot_t prot) 276 { 277 if (radix_enabled()) 278 return radix__create_section_mapping(start, end, nid, prot); 279 280 return hash__create_section_mapping(start, end, nid, prot); 281 } 282 283 int __meminit remove_section_mapping(unsigned long start, unsigned long end) 284 { 285 if (radix_enabled()) 286 return radix__remove_section_mapping(start, end); 287 288 return hash__remove_section_mapping(start, end); 289 } 290 #endif /* CONFIG_MEMORY_HOTPLUG */ 291 292 void __init mmu_partition_table_init(void) 293 { 294 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; 295 unsigned long ptcr; 296 297 /* Initialize the Partition Table with no entries */ 298 partition_tb = memblock_alloc(patb_size, patb_size); 299 if (!partition_tb) 300 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 301 __func__, patb_size, patb_size); 302 303 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); 304 set_ptcr_when_no_uv(ptcr); 305 powernv_set_nmmu_ptcr(ptcr); 306 } 307 308 static void flush_partition(unsigned int lpid, bool radix) 309 { 310 if (radix) { 311 radix__flush_all_lpid(lpid); 312 radix__flush_all_lpid_guest(lpid); 313 } else { 314 asm volatile("ptesync" : : : "memory"); 315 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : 316 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 317 /* do we need fixup here ?*/ 318 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 319 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); 320 } 321 } 322 323 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, 324 unsigned long dw1, bool flush) 325 { 326 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); 327 328 /* 329 * When ultravisor is enabled, the partition table is stored in secure 330 * memory and can only be accessed doing an ultravisor call. However, we 331 * maintain a copy of the partition table in normal memory to allow Nest 332 * MMU translations to occur (for normal VMs). 333 * 334 * Therefore, here we always update partition_tb, regardless of whether 335 * we are running under an ultravisor or not. 336 */ 337 partition_tb[lpid].patb0 = cpu_to_be64(dw0); 338 partition_tb[lpid].patb1 = cpu_to_be64(dw1); 339 340 /* 341 * If ultravisor is enabled, we do an ultravisor call to register the 342 * partition table entry (PATE), which also do a global flush of TLBs 343 * and partition table caches for the lpid. Otherwise, just do the 344 * flush. The type of flush (hash or radix) depends on what the previous 345 * use of the partition ID was, not the new use. 346 */ 347 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) { 348 uv_register_pate(lpid, dw0, dw1); 349 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n", 350 dw0, dw1); 351 } else if (flush) { 352 /* 353 * Boot does not need to flush, because MMU is off and each 354 * CPU does a tlbiel_all() before switching them on, which 355 * flushes everything. 356 */ 357 flush_partition(lpid, (old & PATB_HR)); 358 } 359 } 360 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); 361 362 static pmd_t *get_pmd_from_cache(struct mm_struct *mm) 363 { 364 void *pmd_frag, *ret; 365 366 if (PMD_FRAG_NR == 1) 367 return NULL; 368 369 spin_lock(&mm->page_table_lock); 370 ret = mm->context.pmd_frag; 371 if (ret) { 372 pmd_frag = ret + PMD_FRAG_SIZE; 373 /* 374 * If we have taken up all the fragments mark PTE page NULL 375 */ 376 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) 377 pmd_frag = NULL; 378 mm->context.pmd_frag = pmd_frag; 379 } 380 spin_unlock(&mm->page_table_lock); 381 return (pmd_t *)ret; 382 } 383 384 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) 385 { 386 void *ret = NULL; 387 struct ptdesc *ptdesc; 388 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; 389 390 if (mm == &init_mm) 391 gfp &= ~__GFP_ACCOUNT; 392 ptdesc = pagetable_alloc(gfp, 0); 393 if (!ptdesc) 394 return NULL; 395 if (!pagetable_pmd_ctor(ptdesc)) { 396 pagetable_free(ptdesc); 397 return NULL; 398 } 399 400 atomic_set(&ptdesc->pt_frag_refcount, 1); 401 402 ret = ptdesc_address(ptdesc); 403 /* 404 * if we support only one fragment just return the 405 * allocated page. 406 */ 407 if (PMD_FRAG_NR == 1) 408 return ret; 409 410 spin_lock(&mm->page_table_lock); 411 /* 412 * If we find ptdesc_page set, we return 413 * the allocated page with single fragment 414 * count. 415 */ 416 if (likely(!mm->context.pmd_frag)) { 417 atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR); 418 mm->context.pmd_frag = ret + PMD_FRAG_SIZE; 419 } 420 spin_unlock(&mm->page_table_lock); 421 422 return (pmd_t *)ret; 423 } 424 425 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) 426 { 427 pmd_t *pmd; 428 429 pmd = get_pmd_from_cache(mm); 430 if (pmd) 431 return pmd; 432 433 return __alloc_for_pmdcache(mm); 434 } 435 436 void pmd_fragment_free(unsigned long *pmd) 437 { 438 struct ptdesc *ptdesc = virt_to_ptdesc(pmd); 439 440 if (pagetable_is_reserved(ptdesc)) 441 return free_reserved_ptdesc(ptdesc); 442 443 BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0); 444 if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) { 445 pagetable_pmd_dtor(ptdesc); 446 pagetable_free(ptdesc); 447 } 448 } 449 450 static inline void pgtable_free(void *table, int index) 451 { 452 switch (index) { 453 case PTE_INDEX: 454 pte_fragment_free(table, 0); 455 break; 456 case PMD_INDEX: 457 pmd_fragment_free(table); 458 break; 459 case PUD_INDEX: 460 __pud_free(table); 461 break; 462 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE) 463 /* 16M hugepd directory at pud level */ 464 case HTLB_16M_INDEX: 465 BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0); 466 kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table); 467 break; 468 /* 16G hugepd directory at the pgd level */ 469 case HTLB_16G_INDEX: 470 BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0); 471 kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table); 472 break; 473 #endif 474 /* We don't free pgd table via RCU callback */ 475 default: 476 BUG(); 477 } 478 } 479 480 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) 481 { 482 unsigned long pgf = (unsigned long)table; 483 484 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); 485 pgf |= index; 486 tlb_remove_table(tlb, (void *)pgf); 487 } 488 489 void __tlb_remove_table(void *_table) 490 { 491 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 492 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 493 494 return pgtable_free(table, index); 495 } 496 497 #ifdef CONFIG_PROC_FS 498 atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; 499 500 void arch_report_meminfo(struct seq_file *m) 501 { 502 /* 503 * Hash maps the memory with one size mmu_linear_psize. 504 * So don't bother to print these on hash 505 */ 506 if (!radix_enabled()) 507 return; 508 seq_printf(m, "DirectMap4k: %8lu kB\n", 509 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); 510 seq_printf(m, "DirectMap64k: %8lu kB\n", 511 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); 512 seq_printf(m, "DirectMap2M: %8lu kB\n", 513 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); 514 seq_printf(m, "DirectMap1G: %8lu kB\n", 515 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); 516 } 517 #endif /* CONFIG_PROC_FS */ 518 519 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, 520 pte_t *ptep) 521 { 522 unsigned long pte_val; 523 524 /* 525 * Clear the _PAGE_PRESENT so that no hardware parallel update is 526 * possible. Also keep the pte_present true so that we don't take 527 * wrong fault. 528 */ 529 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); 530 531 return __pte(pte_val); 532 533 } 534 535 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 536 pte_t *ptep, pte_t old_pte, pte_t pte) 537 { 538 if (radix_enabled()) 539 return radix__ptep_modify_prot_commit(vma, addr, 540 ptep, old_pte, pte); 541 set_pte_at(vma->vm_mm, addr, ptep, pte); 542 } 543 544 /* 545 * For hash translation mode, we use the deposited table to store hash slot 546 * information and they are stored at PTRS_PER_PMD offset from related pmd 547 * location. Hence a pmd move requires deposit and withdraw. 548 * 549 * For radix translation with split pmd ptl, we store the deposited table in the 550 * pmd page. Hence if we have different pmd page we need to withdraw during pmd 551 * move. 552 * 553 * With hash we use deposited table always irrespective of anon or not. 554 * With radix we use deposited table only for anonymous mapping. 555 */ 556 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 557 struct spinlock *old_pmd_ptl, 558 struct vm_area_struct *vma) 559 { 560 if (radix_enabled()) 561 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 562 563 return true; 564 } 565 566 /* 567 * Does the CPU support tlbie? 568 */ 569 bool tlbie_capable __read_mostly = true; 570 EXPORT_SYMBOL(tlbie_capable); 571 572 /* 573 * Should tlbie be used for management of CPU TLBs, for kernel and process 574 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM 575 * guest address spaces. 576 */ 577 bool tlbie_enabled __read_mostly = true; 578 579 static int __init setup_disable_tlbie(char *str) 580 { 581 if (!radix_enabled()) { 582 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n"); 583 return 1; 584 } 585 586 tlbie_capable = false; 587 tlbie_enabled = false; 588 589 return 1; 590 } 591 __setup("disable_tlbie", setup_disable_tlbie); 592 593 static int __init pgtable_debugfs_setup(void) 594 { 595 if (!tlbie_capable) 596 return 0; 597 598 /* 599 * There is no locking vs tlb flushing when changing this value. 600 * The tlb flushers will see one value or another, and use either 601 * tlbie or tlbiel with IPIs. In both cases the TLBs will be 602 * invalidated as expected. 603 */ 604 debugfs_create_bool("tlbie_enabled", 0600, 605 arch_debugfs_dir, 606 &tlbie_enabled); 607 608 return 0; 609 } 610 arch_initcall(pgtable_debugfs_setup); 611 612 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN) 613 /* 614 * Override the generic version in mm/memremap.c. 615 * 616 * With hash translation, the direct-map range is mapped with just one 617 * page size selected by htab_init_page_sizes(). Consult 618 * mmu_psize_defs[] to determine the minimum page size alignment. 619 */ 620 unsigned long memremap_compat_align(void) 621 { 622 if (!radix_enabled()) { 623 unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift; 624 return max(SUBSECTION_SIZE, 1UL << shift); 625 } 626 627 return SUBSECTION_SIZE; 628 } 629 EXPORT_SYMBOL_GPL(memremap_compat_align); 630 #endif 631 632 pgprot_t vm_get_page_prot(unsigned long vm_flags) 633 { 634 unsigned long prot; 635 636 /* Radix supports execute-only, but protection_map maps X -> RX */ 637 if (radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)) { 638 prot = pgprot_val(PAGE_EXECONLY); 639 } else { 640 prot = pgprot_val(protection_map[vm_flags & 641 (VM_ACCESS_FLAGS | VM_SHARED)]); 642 } 643 644 if (vm_flags & VM_SAO) 645 prot |= _PAGE_SAO; 646 647 #ifdef CONFIG_PPC_MEM_KEYS 648 prot |= vmflag_to_pte_pkey_bits(vm_flags); 649 #endif 650 651 return __pgprot(prot); 652 } 653 EXPORT_SYMBOL(vm_get_page_prot); 654