xref: /openbmc/linux/arch/powerpc/mm/book3s64/pgtable.c (revision b348b5fe)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <linux/memremap.h>
10 #include <linux/pkeys.h>
11 #include <linux/debugfs.h>
12 #include <misc/cxl-base.h>
13 
14 #include <asm/pgalloc.h>
15 #include <asm/tlb.h>
16 #include <asm/trace.h>
17 #include <asm/powernv.h>
18 #include <asm/firmware.h>
19 #include <asm/ultravisor.h>
20 #include <asm/kexec.h>
21 
22 #include <mm/mmu_decl.h>
23 #include <trace/events/thp.h>
24 
25 #include "internal.h"
26 
27 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
28 EXPORT_SYMBOL_GPL(mmu_psize_defs);
29 
30 #ifdef CONFIG_SPARSEMEM_VMEMMAP
31 int mmu_vmemmap_psize = MMU_PAGE_4K;
32 #endif
33 
34 unsigned long __pmd_frag_nr;
35 EXPORT_SYMBOL(__pmd_frag_nr);
36 unsigned long __pmd_frag_size_shift;
37 EXPORT_SYMBOL(__pmd_frag_size_shift);
38 
39 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
40 /*
41  * This is called when relaxing access to a hugepage. It's also called in the page
42  * fault path when we don't hit any of the major fault cases, ie, a minor
43  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
44  * handled those two for us, we additionally deal with missing execute
45  * permission here on some processors
46  */
47 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
48 			  pmd_t *pmdp, pmd_t entry, int dirty)
49 {
50 	int changed;
51 #ifdef CONFIG_DEBUG_VM
52 	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
53 	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
54 #endif
55 	changed = !pmd_same(*(pmdp), entry);
56 	if (changed) {
57 		/*
58 		 * We can use MMU_PAGE_2M here, because only radix
59 		 * path look at the psize.
60 		 */
61 		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
62 					pmd_pte(entry), address, MMU_PAGE_2M);
63 	}
64 	return changed;
65 }
66 
67 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
68 			  pud_t *pudp, pud_t entry, int dirty)
69 {
70 	int changed;
71 #ifdef CONFIG_DEBUG_VM
72 	WARN_ON(!pud_devmap(*pudp));
73 	assert_spin_locked(pud_lockptr(vma->vm_mm, pudp));
74 #endif
75 	changed = !pud_same(*(pudp), entry);
76 	if (changed) {
77 		/*
78 		 * We can use MMU_PAGE_1G here, because only radix
79 		 * path look at the psize.
80 		 */
81 		__ptep_set_access_flags(vma, pudp_ptep(pudp),
82 					pud_pte(entry), address, MMU_PAGE_1G);
83 	}
84 	return changed;
85 }
86 
87 
88 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
89 			      unsigned long address, pmd_t *pmdp)
90 {
91 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
92 }
93 
94 int pudp_test_and_clear_young(struct vm_area_struct *vma,
95 			      unsigned long address, pud_t *pudp)
96 {
97 	return __pudp_test_and_clear_young(vma->vm_mm, address, pudp);
98 }
99 
100 /*
101  * set a new huge pmd. We should not be called for updating
102  * an existing pmd entry. That should go via pmd_hugepage_update.
103  */
104 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
105 		pmd_t *pmdp, pmd_t pmd)
106 {
107 #ifdef CONFIG_DEBUG_VM
108 	/*
109 	 * Make sure hardware valid bit is not set. We don't do
110 	 * tlb flush for this update.
111 	 */
112 
113 	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
114 	assert_spin_locked(pmd_lockptr(mm, pmdp));
115 	WARN_ON(!(pmd_large(pmd)));
116 #endif
117 	trace_hugepage_set_pmd(addr, pmd_val(pmd));
118 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
119 }
120 
121 void set_pud_at(struct mm_struct *mm, unsigned long addr,
122 		pud_t *pudp, pud_t pud)
123 {
124 #ifdef CONFIG_DEBUG_VM
125 	/*
126 	 * Make sure hardware valid bit is not set. We don't do
127 	 * tlb flush for this update.
128 	 */
129 
130 	WARN_ON(pte_hw_valid(pud_pte(*pudp)));
131 	assert_spin_locked(pud_lockptr(mm, pudp));
132 	WARN_ON(!(pud_large(pud)));
133 #endif
134 	trace_hugepage_set_pud(addr, pud_val(pud));
135 	return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud));
136 }
137 
138 static void do_serialize(void *arg)
139 {
140 	/* We've taken the IPI, so try to trim the mask while here */
141 	if (radix_enabled()) {
142 		struct mm_struct *mm = arg;
143 		exit_lazy_flush_tlb(mm, false);
144 	}
145 }
146 
147 /*
148  * Serialize against __find_linux_pte() which does lock-less
149  * lookup in page tables with local interrupts disabled. For huge pages
150  * it casts pmd_t to pte_t. Since format of pte_t is different from
151  * pmd_t we want to prevent transit from pmd pointing to page table
152  * to pmd pointing to huge page (and back) while interrupts are disabled.
153  * We clear pmd to possibly replace it with page table pointer in
154  * different code paths. So make sure we wait for the parallel
155  * __find_linux_pte() to finish.
156  */
157 void serialize_against_pte_lookup(struct mm_struct *mm)
158 {
159 	smp_mb();
160 	smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
161 }
162 
163 /*
164  * We use this to invalidate a pmdp entry before switching from a
165  * hugepte to regular pmd entry.
166  */
167 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
168 		     pmd_t *pmdp)
169 {
170 	unsigned long old_pmd;
171 
172 	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
173 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
174 	return __pmd(old_pmd);
175 }
176 
177 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
178 				   unsigned long addr, pmd_t *pmdp, int full)
179 {
180 	pmd_t pmd;
181 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
182 	VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
183 		   !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
184 	pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
185 	/*
186 	 * if it not a fullmm flush, then we can possibly end up converting
187 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
188 	 * Make sure we flush the tlb in this case.
189 	 */
190 	if (!full)
191 		flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
192 	return pmd;
193 }
194 
195 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
196 				   unsigned long addr, pud_t *pudp, int full)
197 {
198 	pud_t pud;
199 
200 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
201 	VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) ||
202 		  !pud_present(*pudp));
203 	pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp);
204 	/*
205 	 * if it not a fullmm flush, then we can possibly end up converting
206 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
207 	 * Make sure we flush the tlb in this case.
208 	 */
209 	if (!full)
210 		flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE);
211 	return pud;
212 }
213 
214 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
215 {
216 	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
217 }
218 
219 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot)
220 {
221 	return __pud(pud_val(pud) | pgprot_val(pgprot));
222 }
223 
224 /*
225  * At some point we should be able to get rid of
226  * pmd_mkhuge() and mk_huge_pmd() when we update all the
227  * other archs to mark the pmd huge in pfn_pmd()
228  */
229 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
230 {
231 	unsigned long pmdv;
232 
233 	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
234 
235 	return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
236 }
237 
238 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot)
239 {
240 	unsigned long pudv;
241 
242 	pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
243 
244 	return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot));
245 }
246 
247 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
248 {
249 	return pfn_pmd(page_to_pfn(page), pgprot);
250 }
251 
252 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
253 {
254 	unsigned long pmdv;
255 
256 	pmdv = pmd_val(pmd);
257 	pmdv &= _HPAGE_CHG_MASK;
258 	return pmd_set_protbits(__pmd(pmdv), newprot);
259 }
260 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
261 
262 /* For use by kexec, called with MMU off */
263 notrace void mmu_cleanup_all(void)
264 {
265 	if (radix_enabled())
266 		radix__mmu_cleanup_all();
267 	else if (mmu_hash_ops.hpte_clear_all)
268 		mmu_hash_ops.hpte_clear_all();
269 
270 	reset_sprs();
271 }
272 
273 #ifdef CONFIG_MEMORY_HOTPLUG
274 int __meminit create_section_mapping(unsigned long start, unsigned long end,
275 				     int nid, pgprot_t prot)
276 {
277 	if (radix_enabled())
278 		return radix__create_section_mapping(start, end, nid, prot);
279 
280 	return hash__create_section_mapping(start, end, nid, prot);
281 }
282 
283 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
284 {
285 	if (radix_enabled())
286 		return radix__remove_section_mapping(start, end);
287 
288 	return hash__remove_section_mapping(start, end);
289 }
290 #endif /* CONFIG_MEMORY_HOTPLUG */
291 
292 void __init mmu_partition_table_init(void)
293 {
294 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
295 	unsigned long ptcr;
296 
297 	/* Initialize the Partition Table with no entries */
298 	partition_tb = memblock_alloc(patb_size, patb_size);
299 	if (!partition_tb)
300 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
301 		      __func__, patb_size, patb_size);
302 
303 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
304 	set_ptcr_when_no_uv(ptcr);
305 	powernv_set_nmmu_ptcr(ptcr);
306 }
307 
308 static void flush_partition(unsigned int lpid, bool radix)
309 {
310 	if (radix) {
311 		radix__flush_all_lpid(lpid);
312 		radix__flush_all_lpid_guest(lpid);
313 	} else {
314 		asm volatile("ptesync" : : : "memory");
315 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
316 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
317 		/* do we need fixup here ?*/
318 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
319 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
320 	}
321 }
322 
323 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
324 				  unsigned long dw1, bool flush)
325 {
326 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
327 
328 	/*
329 	 * When ultravisor is enabled, the partition table is stored in secure
330 	 * memory and can only be accessed doing an ultravisor call. However, we
331 	 * maintain a copy of the partition table in normal memory to allow Nest
332 	 * MMU translations to occur (for normal VMs).
333 	 *
334 	 * Therefore, here we always update partition_tb, regardless of whether
335 	 * we are running under an ultravisor or not.
336 	 */
337 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
338 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
339 
340 	/*
341 	 * If ultravisor is enabled, we do an ultravisor call to register the
342 	 * partition table entry (PATE), which also do a global flush of TLBs
343 	 * and partition table caches for the lpid. Otherwise, just do the
344 	 * flush. The type of flush (hash or radix) depends on what the previous
345 	 * use of the partition ID was, not the new use.
346 	 */
347 	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
348 		uv_register_pate(lpid, dw0, dw1);
349 		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
350 			dw0, dw1);
351 	} else if (flush) {
352 		/*
353 		 * Boot does not need to flush, because MMU is off and each
354 		 * CPU does a tlbiel_all() before switching them on, which
355 		 * flushes everything.
356 		 */
357 		flush_partition(lpid, (old & PATB_HR));
358 	}
359 }
360 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
361 
362 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
363 {
364 	void *pmd_frag, *ret;
365 
366 	if (PMD_FRAG_NR == 1)
367 		return NULL;
368 
369 	spin_lock(&mm->page_table_lock);
370 	ret = mm->context.pmd_frag;
371 	if (ret) {
372 		pmd_frag = ret + PMD_FRAG_SIZE;
373 		/*
374 		 * If we have taken up all the fragments mark PTE page NULL
375 		 */
376 		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
377 			pmd_frag = NULL;
378 		mm->context.pmd_frag = pmd_frag;
379 	}
380 	spin_unlock(&mm->page_table_lock);
381 	return (pmd_t *)ret;
382 }
383 
384 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
385 {
386 	void *ret = NULL;
387 	struct ptdesc *ptdesc;
388 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
389 
390 	if (mm == &init_mm)
391 		gfp &= ~__GFP_ACCOUNT;
392 	ptdesc = pagetable_alloc(gfp, 0);
393 	if (!ptdesc)
394 		return NULL;
395 	if (!pagetable_pmd_ctor(ptdesc)) {
396 		pagetable_free(ptdesc);
397 		return NULL;
398 	}
399 
400 	atomic_set(&ptdesc->pt_frag_refcount, 1);
401 
402 	ret = ptdesc_address(ptdesc);
403 	/*
404 	 * if we support only one fragment just return the
405 	 * allocated page.
406 	 */
407 	if (PMD_FRAG_NR == 1)
408 		return ret;
409 
410 	spin_lock(&mm->page_table_lock);
411 	/*
412 	 * If we find ptdesc_page set, we return
413 	 * the allocated page with single fragment
414 	 * count.
415 	 */
416 	if (likely(!mm->context.pmd_frag)) {
417 		atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR);
418 		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
419 	}
420 	spin_unlock(&mm->page_table_lock);
421 
422 	return (pmd_t *)ret;
423 }
424 
425 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
426 {
427 	pmd_t *pmd;
428 
429 	pmd = get_pmd_from_cache(mm);
430 	if (pmd)
431 		return pmd;
432 
433 	return __alloc_for_pmdcache(mm);
434 }
435 
436 void pmd_fragment_free(unsigned long *pmd)
437 {
438 	struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
439 
440 	if (pagetable_is_reserved(ptdesc))
441 		return free_reserved_ptdesc(ptdesc);
442 
443 	BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0);
444 	if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) {
445 		pagetable_pmd_dtor(ptdesc);
446 		pagetable_free(ptdesc);
447 	}
448 }
449 
450 static inline void pgtable_free(void *table, int index)
451 {
452 	switch (index) {
453 	case PTE_INDEX:
454 		pte_fragment_free(table, 0);
455 		break;
456 	case PMD_INDEX:
457 		pmd_fragment_free(table);
458 		break;
459 	case PUD_INDEX:
460 		__pud_free(table);
461 		break;
462 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
463 		/* 16M hugepd directory at pud level */
464 	case HTLB_16M_INDEX:
465 		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
466 		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
467 		break;
468 		/* 16G hugepd directory at the pgd level */
469 	case HTLB_16G_INDEX:
470 		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
471 		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
472 		break;
473 #endif
474 		/* We don't free pgd table via RCU callback */
475 	default:
476 		BUG();
477 	}
478 }
479 
480 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
481 {
482 	unsigned long pgf = (unsigned long)table;
483 
484 	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
485 	pgf |= index;
486 	tlb_remove_table(tlb, (void *)pgf);
487 }
488 
489 void __tlb_remove_table(void *_table)
490 {
491 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
492 	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
493 
494 	return pgtable_free(table, index);
495 }
496 
497 #ifdef CONFIG_PROC_FS
498 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
499 
500 void arch_report_meminfo(struct seq_file *m)
501 {
502 	/*
503 	 * Hash maps the memory with one size mmu_linear_psize.
504 	 * So don't bother to print these on hash
505 	 */
506 	if (!radix_enabled())
507 		return;
508 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
509 		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
510 	seq_printf(m, "DirectMap64k:    %8lu kB\n",
511 		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
512 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
513 		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
514 	seq_printf(m, "DirectMap1G:    %8lu kB\n",
515 		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
516 }
517 #endif /* CONFIG_PROC_FS */
518 
519 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
520 			     pte_t *ptep)
521 {
522 	unsigned long pte_val;
523 
524 	/*
525 	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
526 	 * possible. Also keep the pte_present true so that we don't take
527 	 * wrong fault.
528 	 */
529 	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
530 
531 	return __pte(pte_val);
532 
533 }
534 
535 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
536 			     pte_t *ptep, pte_t old_pte, pte_t pte)
537 {
538 	if (radix_enabled())
539 		return radix__ptep_modify_prot_commit(vma, addr,
540 						      ptep, old_pte, pte);
541 	set_pte_at(vma->vm_mm, addr, ptep, pte);
542 }
543 
544 /*
545  * For hash translation mode, we use the deposited table to store hash slot
546  * information and they are stored at PTRS_PER_PMD offset from related pmd
547  * location. Hence a pmd move requires deposit and withdraw.
548  *
549  * For radix translation with split pmd ptl, we store the deposited table in the
550  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
551  * move.
552  *
553  * With hash we use deposited table always irrespective of anon or not.
554  * With radix we use deposited table only for anonymous mapping.
555  */
556 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
557 			   struct spinlock *old_pmd_ptl,
558 			   struct vm_area_struct *vma)
559 {
560 	if (radix_enabled())
561 		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
562 
563 	return true;
564 }
565 
566 /*
567  * Does the CPU support tlbie?
568  */
569 bool tlbie_capable __read_mostly = true;
570 EXPORT_SYMBOL(tlbie_capable);
571 
572 /*
573  * Should tlbie be used for management of CPU TLBs, for kernel and process
574  * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
575  * guest address spaces.
576  */
577 bool tlbie_enabled __read_mostly = true;
578 
579 static int __init setup_disable_tlbie(char *str)
580 {
581 	if (!radix_enabled()) {
582 		pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
583 		return 1;
584 	}
585 
586 	tlbie_capable = false;
587 	tlbie_enabled = false;
588 
589         return 1;
590 }
591 __setup("disable_tlbie", setup_disable_tlbie);
592 
593 static int __init pgtable_debugfs_setup(void)
594 {
595 	if (!tlbie_capable)
596 		return 0;
597 
598 	/*
599 	 * There is no locking vs tlb flushing when changing this value.
600 	 * The tlb flushers will see one value or another, and use either
601 	 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
602 	 * invalidated as expected.
603 	 */
604 	debugfs_create_bool("tlbie_enabled", 0600,
605 			arch_debugfs_dir,
606 			&tlbie_enabled);
607 
608 	return 0;
609 }
610 arch_initcall(pgtable_debugfs_setup);
611 
612 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN)
613 /*
614  * Override the generic version in mm/memremap.c.
615  *
616  * With hash translation, the direct-map range is mapped with just one
617  * page size selected by htab_init_page_sizes(). Consult
618  * mmu_psize_defs[] to determine the minimum page size alignment.
619 */
620 unsigned long memremap_compat_align(void)
621 {
622 	if (!radix_enabled()) {
623 		unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift;
624 		return max(SUBSECTION_SIZE, 1UL << shift);
625 	}
626 
627 	return SUBSECTION_SIZE;
628 }
629 EXPORT_SYMBOL_GPL(memremap_compat_align);
630 #endif
631 
632 pgprot_t vm_get_page_prot(unsigned long vm_flags)
633 {
634 	unsigned long prot;
635 
636 	/* Radix supports execute-only, but protection_map maps X -> RX */
637 	if (radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)) {
638 		prot = pgprot_val(PAGE_EXECONLY);
639 	} else {
640 		prot = pgprot_val(protection_map[vm_flags &
641 						 (VM_ACCESS_FLAGS | VM_SHARED)]);
642 	}
643 
644 	if (vm_flags & VM_SAO)
645 		prot |= _PAGE_SAO;
646 
647 #ifdef CONFIG_PPC_MEM_KEYS
648 	prot |= vmflag_to_pte_pkey_bits(vm_flags);
649 #endif
650 
651 	return __pgprot(prot);
652 }
653 EXPORT_SYMBOL(vm_get_page_prot);
654