1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/mm_types.h> 8 #include <linux/memblock.h> 9 #include <misc/cxl-base.h> 10 11 #include <asm/debugfs.h> 12 #include <asm/pgalloc.h> 13 #include <asm/tlb.h> 14 #include <asm/trace.h> 15 #include <asm/powernv.h> 16 #include <asm/firmware.h> 17 #include <asm/ultravisor.h> 18 19 #include <mm/mmu_decl.h> 20 #include <trace/events/thp.h> 21 22 unsigned long __pmd_frag_nr; 23 EXPORT_SYMBOL(__pmd_frag_nr); 24 unsigned long __pmd_frag_size_shift; 25 EXPORT_SYMBOL(__pmd_frag_size_shift); 26 27 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 28 /* 29 * This is called when relaxing access to a hugepage. It's also called in the page 30 * fault path when we don't hit any of the major fault cases, ie, a minor 31 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have 32 * handled those two for us, we additionally deal with missing execute 33 * permission here on some processors 34 */ 35 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 36 pmd_t *pmdp, pmd_t entry, int dirty) 37 { 38 int changed; 39 #ifdef CONFIG_DEBUG_VM 40 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); 41 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); 42 #endif 43 changed = !pmd_same(*(pmdp), entry); 44 if (changed) { 45 /* 46 * We can use MMU_PAGE_2M here, because only radix 47 * path look at the psize. 48 */ 49 __ptep_set_access_flags(vma, pmdp_ptep(pmdp), 50 pmd_pte(entry), address, MMU_PAGE_2M); 51 } 52 return changed; 53 } 54 55 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 56 unsigned long address, pmd_t *pmdp) 57 { 58 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); 59 } 60 /* 61 * set a new huge pmd. We should not be called for updating 62 * an existing pmd entry. That should go via pmd_hugepage_update. 63 */ 64 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 65 pmd_t *pmdp, pmd_t pmd) 66 { 67 #ifdef CONFIG_DEBUG_VM 68 /* 69 * Make sure hardware valid bit is not set. We don't do 70 * tlb flush for this update. 71 */ 72 73 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); 74 assert_spin_locked(pmd_lockptr(mm, pmdp)); 75 WARN_ON(!(pmd_large(pmd))); 76 #endif 77 trace_hugepage_set_pmd(addr, pmd_val(pmd)); 78 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); 79 } 80 81 static void do_nothing(void *unused) 82 { 83 84 } 85 /* 86 * Serialize against find_current_mm_pte which does lock-less 87 * lookup in page tables with local interrupts disabled. For huge pages 88 * it casts pmd_t to pte_t. Since format of pte_t is different from 89 * pmd_t we want to prevent transit from pmd pointing to page table 90 * to pmd pointing to huge page (and back) while interrupts are disabled. 91 * We clear pmd to possibly replace it with page table pointer in 92 * different code paths. So make sure we wait for the parallel 93 * find_current_mm_pte to finish. 94 */ 95 void serialize_against_pte_lookup(struct mm_struct *mm) 96 { 97 smp_mb(); 98 smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1); 99 } 100 101 /* 102 * We use this to invalidate a pmdp entry before switching from a 103 * hugepte to regular pmd entry. 104 */ 105 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 106 pmd_t *pmdp) 107 { 108 unsigned long old_pmd; 109 110 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); 111 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 112 /* 113 * This ensures that generic code that rely on IRQ disabling 114 * to prevent a parallel THP split work as expected. 115 * 116 * Marking the entry with _PAGE_INVALID && ~_PAGE_PRESENT requires 117 * a special case check in pmd_access_permitted. 118 */ 119 serialize_against_pte_lookup(vma->vm_mm); 120 return __pmd(old_pmd); 121 } 122 123 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) 124 { 125 return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); 126 } 127 128 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 129 { 130 unsigned long pmdv; 131 132 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 133 return pmd_set_protbits(__pmd(pmdv), pgprot); 134 } 135 136 pmd_t mk_pmd(struct page *page, pgprot_t pgprot) 137 { 138 return pfn_pmd(page_to_pfn(page), pgprot); 139 } 140 141 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 142 { 143 unsigned long pmdv; 144 145 pmdv = pmd_val(pmd); 146 pmdv &= _HPAGE_CHG_MASK; 147 return pmd_set_protbits(__pmd(pmdv), newprot); 148 } 149 150 /* 151 * This is called at the end of handling a user page fault, when the 152 * fault has been handled by updating a HUGE PMD entry in the linux page tables. 153 * We use it to preload an HPTE into the hash table corresponding to 154 * the updated linux HUGE PMD entry. 155 */ 156 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 157 pmd_t *pmd) 158 { 159 if (radix_enabled()) 160 prefetch((void *)addr); 161 } 162 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 163 164 /* For use by kexec */ 165 void mmu_cleanup_all(void) 166 { 167 if (radix_enabled()) 168 radix__mmu_cleanup_all(); 169 else if (mmu_hash_ops.hpte_clear_all) 170 mmu_hash_ops.hpte_clear_all(); 171 } 172 173 #ifdef CONFIG_MEMORY_HOTPLUG 174 int __meminit create_section_mapping(unsigned long start, unsigned long end, 175 int nid, pgprot_t prot) 176 { 177 if (radix_enabled()) 178 return radix__create_section_mapping(start, end, nid, prot); 179 180 return hash__create_section_mapping(start, end, nid, prot); 181 } 182 183 int __meminit remove_section_mapping(unsigned long start, unsigned long end) 184 { 185 if (radix_enabled()) 186 return radix__remove_section_mapping(start, end); 187 188 return hash__remove_section_mapping(start, end); 189 } 190 #endif /* CONFIG_MEMORY_HOTPLUG */ 191 192 void __init mmu_partition_table_init(void) 193 { 194 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; 195 unsigned long ptcr; 196 197 BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large."); 198 /* Initialize the Partition Table with no entries */ 199 partition_tb = memblock_alloc(patb_size, patb_size); 200 if (!partition_tb) 201 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 202 __func__, patb_size, patb_size); 203 204 /* 205 * update partition table control register, 206 * 64 K size. 207 */ 208 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); 209 set_ptcr_when_no_uv(ptcr); 210 powernv_set_nmmu_ptcr(ptcr); 211 } 212 213 static void flush_partition(unsigned int lpid, bool radix) 214 { 215 if (radix) { 216 radix__flush_all_lpid(lpid); 217 radix__flush_all_lpid_guest(lpid); 218 } else { 219 asm volatile("ptesync" : : : "memory"); 220 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : 221 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 222 /* do we need fixup here ?*/ 223 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 224 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); 225 } 226 } 227 228 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, 229 unsigned long dw1, bool flush) 230 { 231 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); 232 233 /* 234 * When ultravisor is enabled, the partition table is stored in secure 235 * memory and can only be accessed doing an ultravisor call. However, we 236 * maintain a copy of the partition table in normal memory to allow Nest 237 * MMU translations to occur (for normal VMs). 238 * 239 * Therefore, here we always update partition_tb, regardless of whether 240 * we are running under an ultravisor or not. 241 */ 242 partition_tb[lpid].patb0 = cpu_to_be64(dw0); 243 partition_tb[lpid].patb1 = cpu_to_be64(dw1); 244 245 /* 246 * If ultravisor is enabled, we do an ultravisor call to register the 247 * partition table entry (PATE), which also do a global flush of TLBs 248 * and partition table caches for the lpid. Otherwise, just do the 249 * flush. The type of flush (hash or radix) depends on what the previous 250 * use of the partition ID was, not the new use. 251 */ 252 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) { 253 uv_register_pate(lpid, dw0, dw1); 254 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n", 255 dw0, dw1); 256 } else if (flush) { 257 /* 258 * Boot does not need to flush, because MMU is off and each 259 * CPU does a tlbiel_all() before switching them on, which 260 * flushes everything. 261 */ 262 flush_partition(lpid, (old & PATB_HR)); 263 } 264 } 265 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); 266 267 static pmd_t *get_pmd_from_cache(struct mm_struct *mm) 268 { 269 void *pmd_frag, *ret; 270 271 if (PMD_FRAG_NR == 1) 272 return NULL; 273 274 spin_lock(&mm->page_table_lock); 275 ret = mm->context.pmd_frag; 276 if (ret) { 277 pmd_frag = ret + PMD_FRAG_SIZE; 278 /* 279 * If we have taken up all the fragments mark PTE page NULL 280 */ 281 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) 282 pmd_frag = NULL; 283 mm->context.pmd_frag = pmd_frag; 284 } 285 spin_unlock(&mm->page_table_lock); 286 return (pmd_t *)ret; 287 } 288 289 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) 290 { 291 void *ret = NULL; 292 struct page *page; 293 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; 294 295 if (mm == &init_mm) 296 gfp &= ~__GFP_ACCOUNT; 297 page = alloc_page(gfp); 298 if (!page) 299 return NULL; 300 if (!pgtable_pmd_page_ctor(page)) { 301 __free_pages(page, 0); 302 return NULL; 303 } 304 305 atomic_set(&page->pt_frag_refcount, 1); 306 307 ret = page_address(page); 308 /* 309 * if we support only one fragment just return the 310 * allocated page. 311 */ 312 if (PMD_FRAG_NR == 1) 313 return ret; 314 315 spin_lock(&mm->page_table_lock); 316 /* 317 * If we find pgtable_page set, we return 318 * the allocated page with single fragement 319 * count. 320 */ 321 if (likely(!mm->context.pmd_frag)) { 322 atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR); 323 mm->context.pmd_frag = ret + PMD_FRAG_SIZE; 324 } 325 spin_unlock(&mm->page_table_lock); 326 327 return (pmd_t *)ret; 328 } 329 330 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) 331 { 332 pmd_t *pmd; 333 334 pmd = get_pmd_from_cache(mm); 335 if (pmd) 336 return pmd; 337 338 return __alloc_for_pmdcache(mm); 339 } 340 341 void pmd_fragment_free(unsigned long *pmd) 342 { 343 struct page *page = virt_to_page(pmd); 344 345 BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0); 346 if (atomic_dec_and_test(&page->pt_frag_refcount)) { 347 pgtable_pmd_page_dtor(page); 348 __free_page(page); 349 } 350 } 351 352 static inline void pgtable_free(void *table, int index) 353 { 354 switch (index) { 355 case PTE_INDEX: 356 pte_fragment_free(table, 0); 357 break; 358 case PMD_INDEX: 359 pmd_fragment_free(table); 360 break; 361 case PUD_INDEX: 362 kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table); 363 break; 364 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE) 365 /* 16M hugepd directory at pud level */ 366 case HTLB_16M_INDEX: 367 BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0); 368 kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table); 369 break; 370 /* 16G hugepd directory at the pgd level */ 371 case HTLB_16G_INDEX: 372 BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0); 373 kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table); 374 break; 375 #endif 376 /* We don't free pgd table via RCU callback */ 377 default: 378 BUG(); 379 } 380 } 381 382 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) 383 { 384 unsigned long pgf = (unsigned long)table; 385 386 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); 387 pgf |= index; 388 tlb_remove_table(tlb, (void *)pgf); 389 } 390 391 void __tlb_remove_table(void *_table) 392 { 393 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 394 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 395 396 return pgtable_free(table, index); 397 } 398 399 #ifdef CONFIG_PROC_FS 400 atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; 401 402 void arch_report_meminfo(struct seq_file *m) 403 { 404 /* 405 * Hash maps the memory with one size mmu_linear_psize. 406 * So don't bother to print these on hash 407 */ 408 if (!radix_enabled()) 409 return; 410 seq_printf(m, "DirectMap4k: %8lu kB\n", 411 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); 412 seq_printf(m, "DirectMap64k: %8lu kB\n", 413 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); 414 seq_printf(m, "DirectMap2M: %8lu kB\n", 415 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); 416 seq_printf(m, "DirectMap1G: %8lu kB\n", 417 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); 418 } 419 #endif /* CONFIG_PROC_FS */ 420 421 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, 422 pte_t *ptep) 423 { 424 unsigned long pte_val; 425 426 /* 427 * Clear the _PAGE_PRESENT so that no hardware parallel update is 428 * possible. Also keep the pte_present true so that we don't take 429 * wrong fault. 430 */ 431 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); 432 433 return __pte(pte_val); 434 435 } 436 437 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 438 pte_t *ptep, pte_t old_pte, pte_t pte) 439 { 440 if (radix_enabled()) 441 return radix__ptep_modify_prot_commit(vma, addr, 442 ptep, old_pte, pte); 443 set_pte_at(vma->vm_mm, addr, ptep, pte); 444 } 445 446 /* 447 * For hash translation mode, we use the deposited table to store hash slot 448 * information and they are stored at PTRS_PER_PMD offset from related pmd 449 * location. Hence a pmd move requires deposit and withdraw. 450 * 451 * For radix translation with split pmd ptl, we store the deposited table in the 452 * pmd page. Hence if we have different pmd page we need to withdraw during pmd 453 * move. 454 * 455 * With hash we use deposited table always irrespective of anon or not. 456 * With radix we use deposited table only for anonymous mapping. 457 */ 458 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 459 struct spinlock *old_pmd_ptl, 460 struct vm_area_struct *vma) 461 { 462 if (radix_enabled()) 463 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 464 465 return true; 466 } 467 468 /* 469 * Does the CPU support tlbie? 470 */ 471 bool tlbie_capable __read_mostly = true; 472 EXPORT_SYMBOL(tlbie_capable); 473 474 /* 475 * Should tlbie be used for management of CPU TLBs, for kernel and process 476 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM 477 * guest address spaces. 478 */ 479 bool tlbie_enabled __read_mostly = true; 480 481 static int __init setup_disable_tlbie(char *str) 482 { 483 if (!radix_enabled()) { 484 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n"); 485 return 1; 486 } 487 488 tlbie_capable = false; 489 tlbie_enabled = false; 490 491 return 1; 492 } 493 __setup("disable_tlbie", setup_disable_tlbie); 494 495 static int __init pgtable_debugfs_setup(void) 496 { 497 if (!tlbie_capable) 498 return 0; 499 500 /* 501 * There is no locking vs tlb flushing when changing this value. 502 * The tlb flushers will see one value or another, and use either 503 * tlbie or tlbiel with IPIs. In both cases the TLBs will be 504 * invalidated as expected. 505 */ 506 debugfs_create_bool("tlbie_enabled", 0600, 507 powerpc_debugfs_root, 508 &tlbie_enabled); 509 510 return 0; 511 } 512 arch_initcall(pgtable_debugfs_setup); 513