1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/mm_types.h> 8 #include <linux/memblock.h> 9 #include <linux/debugfs.h> 10 #include <misc/cxl-base.h> 11 12 #include <asm/pgalloc.h> 13 #include <asm/tlb.h> 14 #include <asm/trace.h> 15 #include <asm/powernv.h> 16 #include <asm/firmware.h> 17 #include <asm/ultravisor.h> 18 #include <asm/kexec.h> 19 20 #include <mm/mmu_decl.h> 21 #include <trace/events/thp.h> 22 23 #include "internal.h" 24 25 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; 26 EXPORT_SYMBOL_GPL(mmu_psize_defs); 27 28 #ifdef CONFIG_SPARSEMEM_VMEMMAP 29 int mmu_vmemmap_psize = MMU_PAGE_4K; 30 #endif 31 32 unsigned long __pmd_frag_nr; 33 EXPORT_SYMBOL(__pmd_frag_nr); 34 unsigned long __pmd_frag_size_shift; 35 EXPORT_SYMBOL(__pmd_frag_size_shift); 36 37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 38 /* 39 * This is called when relaxing access to a hugepage. It's also called in the page 40 * fault path when we don't hit any of the major fault cases, ie, a minor 41 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have 42 * handled those two for us, we additionally deal with missing execute 43 * permission here on some processors 44 */ 45 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 46 pmd_t *pmdp, pmd_t entry, int dirty) 47 { 48 int changed; 49 #ifdef CONFIG_DEBUG_VM 50 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); 51 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); 52 #endif 53 changed = !pmd_same(*(pmdp), entry); 54 if (changed) { 55 /* 56 * We can use MMU_PAGE_2M here, because only radix 57 * path look at the psize. 58 */ 59 __ptep_set_access_flags(vma, pmdp_ptep(pmdp), 60 pmd_pte(entry), address, MMU_PAGE_2M); 61 } 62 return changed; 63 } 64 65 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 66 unsigned long address, pmd_t *pmdp) 67 { 68 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); 69 } 70 /* 71 * set a new huge pmd. We should not be called for updating 72 * an existing pmd entry. That should go via pmd_hugepage_update. 73 */ 74 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 75 pmd_t *pmdp, pmd_t pmd) 76 { 77 #ifdef CONFIG_DEBUG_VM 78 /* 79 * Make sure hardware valid bit is not set. We don't do 80 * tlb flush for this update. 81 */ 82 83 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); 84 assert_spin_locked(pmd_lockptr(mm, pmdp)); 85 WARN_ON(!(pmd_large(pmd))); 86 #endif 87 trace_hugepage_set_pmd(addr, pmd_val(pmd)); 88 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); 89 } 90 91 static void do_serialize(void *arg) 92 { 93 /* We've taken the IPI, so try to trim the mask while here */ 94 if (radix_enabled()) { 95 struct mm_struct *mm = arg; 96 exit_lazy_flush_tlb(mm, false); 97 } 98 } 99 100 /* 101 * Serialize against find_current_mm_pte which does lock-less 102 * lookup in page tables with local interrupts disabled. For huge pages 103 * it casts pmd_t to pte_t. Since format of pte_t is different from 104 * pmd_t we want to prevent transit from pmd pointing to page table 105 * to pmd pointing to huge page (and back) while interrupts are disabled. 106 * We clear pmd to possibly replace it with page table pointer in 107 * different code paths. So make sure we wait for the parallel 108 * find_current_mm_pte to finish. 109 */ 110 void serialize_against_pte_lookup(struct mm_struct *mm) 111 { 112 smp_mb(); 113 smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1); 114 } 115 116 /* 117 * We use this to invalidate a pmdp entry before switching from a 118 * hugepte to regular pmd entry. 119 */ 120 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 121 pmd_t *pmdp) 122 { 123 unsigned long old_pmd; 124 125 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); 126 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 127 return __pmd(old_pmd); 128 } 129 130 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 131 unsigned long addr, pmd_t *pmdp, int full) 132 { 133 pmd_t pmd; 134 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 135 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) && 136 !pmd_devmap(*pmdp)) || !pmd_present(*pmdp)); 137 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 138 /* 139 * if it not a fullmm flush, then we can possibly end up converting 140 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 141 * Make sure we flush the tlb in this case. 142 */ 143 if (!full) 144 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE); 145 return pmd; 146 } 147 148 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) 149 { 150 return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); 151 } 152 153 /* 154 * At some point we should be able to get rid of 155 * pmd_mkhuge() and mk_huge_pmd() when we update all the 156 * other archs to mark the pmd huge in pfn_pmd() 157 */ 158 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 159 { 160 unsigned long pmdv; 161 162 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 163 164 return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot)); 165 } 166 167 pmd_t mk_pmd(struct page *page, pgprot_t pgprot) 168 { 169 return pfn_pmd(page_to_pfn(page), pgprot); 170 } 171 172 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 173 { 174 unsigned long pmdv; 175 176 pmdv = pmd_val(pmd); 177 pmdv &= _HPAGE_CHG_MASK; 178 return pmd_set_protbits(__pmd(pmdv), newprot); 179 } 180 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 181 182 /* For use by kexec, called with MMU off */ 183 notrace void mmu_cleanup_all(void) 184 { 185 if (radix_enabled()) 186 radix__mmu_cleanup_all(); 187 else if (mmu_hash_ops.hpte_clear_all) 188 mmu_hash_ops.hpte_clear_all(); 189 190 reset_sprs(); 191 } 192 193 #ifdef CONFIG_MEMORY_HOTPLUG 194 int __meminit create_section_mapping(unsigned long start, unsigned long end, 195 int nid, pgprot_t prot) 196 { 197 if (radix_enabled()) 198 return radix__create_section_mapping(start, end, nid, prot); 199 200 return hash__create_section_mapping(start, end, nid, prot); 201 } 202 203 int __meminit remove_section_mapping(unsigned long start, unsigned long end) 204 { 205 if (radix_enabled()) 206 return radix__remove_section_mapping(start, end); 207 208 return hash__remove_section_mapping(start, end); 209 } 210 #endif /* CONFIG_MEMORY_HOTPLUG */ 211 212 void __init mmu_partition_table_init(void) 213 { 214 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; 215 unsigned long ptcr; 216 217 /* Initialize the Partition Table with no entries */ 218 partition_tb = memblock_alloc(patb_size, patb_size); 219 if (!partition_tb) 220 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 221 __func__, patb_size, patb_size); 222 223 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); 224 set_ptcr_when_no_uv(ptcr); 225 powernv_set_nmmu_ptcr(ptcr); 226 } 227 228 static void flush_partition(unsigned int lpid, bool radix) 229 { 230 if (radix) { 231 radix__flush_all_lpid(lpid); 232 radix__flush_all_lpid_guest(lpid); 233 } else { 234 asm volatile("ptesync" : : : "memory"); 235 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : 236 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 237 /* do we need fixup here ?*/ 238 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 239 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); 240 } 241 } 242 243 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, 244 unsigned long dw1, bool flush) 245 { 246 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); 247 248 /* 249 * When ultravisor is enabled, the partition table is stored in secure 250 * memory and can only be accessed doing an ultravisor call. However, we 251 * maintain a copy of the partition table in normal memory to allow Nest 252 * MMU translations to occur (for normal VMs). 253 * 254 * Therefore, here we always update partition_tb, regardless of whether 255 * we are running under an ultravisor or not. 256 */ 257 partition_tb[lpid].patb0 = cpu_to_be64(dw0); 258 partition_tb[lpid].patb1 = cpu_to_be64(dw1); 259 260 /* 261 * If ultravisor is enabled, we do an ultravisor call to register the 262 * partition table entry (PATE), which also do a global flush of TLBs 263 * and partition table caches for the lpid. Otherwise, just do the 264 * flush. The type of flush (hash or radix) depends on what the previous 265 * use of the partition ID was, not the new use. 266 */ 267 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) { 268 uv_register_pate(lpid, dw0, dw1); 269 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n", 270 dw0, dw1); 271 } else if (flush) { 272 /* 273 * Boot does not need to flush, because MMU is off and each 274 * CPU does a tlbiel_all() before switching them on, which 275 * flushes everything. 276 */ 277 flush_partition(lpid, (old & PATB_HR)); 278 } 279 } 280 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); 281 282 static pmd_t *get_pmd_from_cache(struct mm_struct *mm) 283 { 284 void *pmd_frag, *ret; 285 286 if (PMD_FRAG_NR == 1) 287 return NULL; 288 289 spin_lock(&mm->page_table_lock); 290 ret = mm->context.pmd_frag; 291 if (ret) { 292 pmd_frag = ret + PMD_FRAG_SIZE; 293 /* 294 * If we have taken up all the fragments mark PTE page NULL 295 */ 296 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) 297 pmd_frag = NULL; 298 mm->context.pmd_frag = pmd_frag; 299 } 300 spin_unlock(&mm->page_table_lock); 301 return (pmd_t *)ret; 302 } 303 304 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) 305 { 306 void *ret = NULL; 307 struct page *page; 308 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; 309 310 if (mm == &init_mm) 311 gfp &= ~__GFP_ACCOUNT; 312 page = alloc_page(gfp); 313 if (!page) 314 return NULL; 315 if (!pgtable_pmd_page_ctor(page)) { 316 __free_pages(page, 0); 317 return NULL; 318 } 319 320 atomic_set(&page->pt_frag_refcount, 1); 321 322 ret = page_address(page); 323 /* 324 * if we support only one fragment just return the 325 * allocated page. 326 */ 327 if (PMD_FRAG_NR == 1) 328 return ret; 329 330 spin_lock(&mm->page_table_lock); 331 /* 332 * If we find pgtable_page set, we return 333 * the allocated page with single fragement 334 * count. 335 */ 336 if (likely(!mm->context.pmd_frag)) { 337 atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR); 338 mm->context.pmd_frag = ret + PMD_FRAG_SIZE; 339 } 340 spin_unlock(&mm->page_table_lock); 341 342 return (pmd_t *)ret; 343 } 344 345 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) 346 { 347 pmd_t *pmd; 348 349 pmd = get_pmd_from_cache(mm); 350 if (pmd) 351 return pmd; 352 353 return __alloc_for_pmdcache(mm); 354 } 355 356 void pmd_fragment_free(unsigned long *pmd) 357 { 358 struct page *page = virt_to_page(pmd); 359 360 if (PageReserved(page)) 361 return free_reserved_page(page); 362 363 BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0); 364 if (atomic_dec_and_test(&page->pt_frag_refcount)) { 365 pgtable_pmd_page_dtor(page); 366 __free_page(page); 367 } 368 } 369 370 static inline void pgtable_free(void *table, int index) 371 { 372 switch (index) { 373 case PTE_INDEX: 374 pte_fragment_free(table, 0); 375 break; 376 case PMD_INDEX: 377 pmd_fragment_free(table); 378 break; 379 case PUD_INDEX: 380 __pud_free(table); 381 break; 382 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE) 383 /* 16M hugepd directory at pud level */ 384 case HTLB_16M_INDEX: 385 BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0); 386 kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table); 387 break; 388 /* 16G hugepd directory at the pgd level */ 389 case HTLB_16G_INDEX: 390 BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0); 391 kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table); 392 break; 393 #endif 394 /* We don't free pgd table via RCU callback */ 395 default: 396 BUG(); 397 } 398 } 399 400 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) 401 { 402 unsigned long pgf = (unsigned long)table; 403 404 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); 405 pgf |= index; 406 tlb_remove_table(tlb, (void *)pgf); 407 } 408 409 void __tlb_remove_table(void *_table) 410 { 411 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 412 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 413 414 return pgtable_free(table, index); 415 } 416 417 #ifdef CONFIG_PROC_FS 418 atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; 419 420 void arch_report_meminfo(struct seq_file *m) 421 { 422 /* 423 * Hash maps the memory with one size mmu_linear_psize. 424 * So don't bother to print these on hash 425 */ 426 if (!radix_enabled()) 427 return; 428 seq_printf(m, "DirectMap4k: %8lu kB\n", 429 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); 430 seq_printf(m, "DirectMap64k: %8lu kB\n", 431 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); 432 seq_printf(m, "DirectMap2M: %8lu kB\n", 433 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); 434 seq_printf(m, "DirectMap1G: %8lu kB\n", 435 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); 436 } 437 #endif /* CONFIG_PROC_FS */ 438 439 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, 440 pte_t *ptep) 441 { 442 unsigned long pte_val; 443 444 /* 445 * Clear the _PAGE_PRESENT so that no hardware parallel update is 446 * possible. Also keep the pte_present true so that we don't take 447 * wrong fault. 448 */ 449 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); 450 451 return __pte(pte_val); 452 453 } 454 455 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 456 pte_t *ptep, pte_t old_pte, pte_t pte) 457 { 458 if (radix_enabled()) 459 return radix__ptep_modify_prot_commit(vma, addr, 460 ptep, old_pte, pte); 461 set_pte_at(vma->vm_mm, addr, ptep, pte); 462 } 463 464 /* 465 * For hash translation mode, we use the deposited table to store hash slot 466 * information and they are stored at PTRS_PER_PMD offset from related pmd 467 * location. Hence a pmd move requires deposit and withdraw. 468 * 469 * For radix translation with split pmd ptl, we store the deposited table in the 470 * pmd page. Hence if we have different pmd page we need to withdraw during pmd 471 * move. 472 * 473 * With hash we use deposited table always irrespective of anon or not. 474 * With radix we use deposited table only for anonymous mapping. 475 */ 476 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 477 struct spinlock *old_pmd_ptl, 478 struct vm_area_struct *vma) 479 { 480 if (radix_enabled()) 481 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 482 483 return true; 484 } 485 486 /* 487 * Does the CPU support tlbie? 488 */ 489 bool tlbie_capable __read_mostly = true; 490 EXPORT_SYMBOL(tlbie_capable); 491 492 /* 493 * Should tlbie be used for management of CPU TLBs, for kernel and process 494 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM 495 * guest address spaces. 496 */ 497 bool tlbie_enabled __read_mostly = true; 498 499 static int __init setup_disable_tlbie(char *str) 500 { 501 if (!radix_enabled()) { 502 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n"); 503 return 1; 504 } 505 506 tlbie_capable = false; 507 tlbie_enabled = false; 508 509 return 1; 510 } 511 __setup("disable_tlbie", setup_disable_tlbie); 512 513 static int __init pgtable_debugfs_setup(void) 514 { 515 if (!tlbie_capable) 516 return 0; 517 518 /* 519 * There is no locking vs tlb flushing when changing this value. 520 * The tlb flushers will see one value or another, and use either 521 * tlbie or tlbiel with IPIs. In both cases the TLBs will be 522 * invalidated as expected. 523 */ 524 debugfs_create_bool("tlbie_enabled", 0600, 525 arch_debugfs_dir, 526 &tlbie_enabled); 527 528 return 0; 529 } 530 arch_initcall(pgtable_debugfs_setup); 531 532 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN) 533 /* 534 * Override the generic version in mm/memremap.c. 535 * 536 * With hash translation, the direct-map range is mapped with just one 537 * page size selected by htab_init_page_sizes(). Consult 538 * mmu_psize_defs[] to determine the minimum page size alignment. 539 */ 540 unsigned long memremap_compat_align(void) 541 { 542 if (!radix_enabled()) { 543 unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift; 544 return max(SUBSECTION_SIZE, 1UL << shift); 545 } 546 547 return SUBSECTION_SIZE; 548 } 549 EXPORT_SYMBOL_GPL(memremap_compat_align); 550 #endif 551