1 /* 2 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/mm_types.h> 12 #include <linux/memblock.h> 13 #include <misc/cxl-base.h> 14 15 #include <asm/pgalloc.h> 16 #include <asm/tlb.h> 17 #include <asm/trace.h> 18 #include <asm/powernv.h> 19 20 #include <mm/mmu_decl.h> 21 #include <trace/events/thp.h> 22 23 unsigned long __pmd_frag_nr; 24 EXPORT_SYMBOL(__pmd_frag_nr); 25 unsigned long __pmd_frag_size_shift; 26 EXPORT_SYMBOL(__pmd_frag_size_shift); 27 28 int (*register_process_table)(unsigned long base, unsigned long page_size, 29 unsigned long tbl_size); 30 31 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 32 /* 33 * This is called when relaxing access to a hugepage. It's also called in the page 34 * fault path when we don't hit any of the major fault cases, ie, a minor 35 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have 36 * handled those two for us, we additionally deal with missing execute 37 * permission here on some processors 38 */ 39 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 40 pmd_t *pmdp, pmd_t entry, int dirty) 41 { 42 int changed; 43 #ifdef CONFIG_DEBUG_VM 44 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); 45 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); 46 #endif 47 changed = !pmd_same(*(pmdp), entry); 48 if (changed) { 49 /* 50 * We can use MMU_PAGE_2M here, because only radix 51 * path look at the psize. 52 */ 53 __ptep_set_access_flags(vma, pmdp_ptep(pmdp), 54 pmd_pte(entry), address, MMU_PAGE_2M); 55 } 56 return changed; 57 } 58 59 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 60 unsigned long address, pmd_t *pmdp) 61 { 62 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); 63 } 64 /* 65 * set a new huge pmd. We should not be called for updating 66 * an existing pmd entry. That should go via pmd_hugepage_update. 67 */ 68 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 69 pmd_t *pmdp, pmd_t pmd) 70 { 71 #ifdef CONFIG_DEBUG_VM 72 /* 73 * Make sure hardware valid bit is not set. We don't do 74 * tlb flush for this update. 75 */ 76 77 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); 78 assert_spin_locked(pmd_lockptr(mm, pmdp)); 79 WARN_ON(!(pmd_large(pmd) || pmd_devmap(pmd))); 80 #endif 81 trace_hugepage_set_pmd(addr, pmd_val(pmd)); 82 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); 83 } 84 85 static void do_nothing(void *unused) 86 { 87 88 } 89 /* 90 * Serialize against find_current_mm_pte which does lock-less 91 * lookup in page tables with local interrupts disabled. For huge pages 92 * it casts pmd_t to pte_t. Since format of pte_t is different from 93 * pmd_t we want to prevent transit from pmd pointing to page table 94 * to pmd pointing to huge page (and back) while interrupts are disabled. 95 * We clear pmd to possibly replace it with page table pointer in 96 * different code paths. So make sure we wait for the parallel 97 * find_current_mm_pte to finish. 98 */ 99 void serialize_against_pte_lookup(struct mm_struct *mm) 100 { 101 smp_mb(); 102 smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1); 103 } 104 105 /* 106 * We use this to invalidate a pmdp entry before switching from a 107 * hugepte to regular pmd entry. 108 */ 109 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 110 pmd_t *pmdp) 111 { 112 unsigned long old_pmd; 113 114 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); 115 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 116 /* 117 * This ensures that generic code that rely on IRQ disabling 118 * to prevent a parallel THP split work as expected. 119 */ 120 serialize_against_pte_lookup(vma->vm_mm); 121 return __pmd(old_pmd); 122 } 123 124 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) 125 { 126 return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); 127 } 128 129 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 130 { 131 unsigned long pmdv; 132 133 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 134 return pmd_set_protbits(__pmd(pmdv), pgprot); 135 } 136 137 pmd_t mk_pmd(struct page *page, pgprot_t pgprot) 138 { 139 return pfn_pmd(page_to_pfn(page), pgprot); 140 } 141 142 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 143 { 144 unsigned long pmdv; 145 146 pmdv = pmd_val(pmd); 147 pmdv &= _HPAGE_CHG_MASK; 148 return pmd_set_protbits(__pmd(pmdv), newprot); 149 } 150 151 /* 152 * This is called at the end of handling a user page fault, when the 153 * fault has been handled by updating a HUGE PMD entry in the linux page tables. 154 * We use it to preload an HPTE into the hash table corresponding to 155 * the updated linux HUGE PMD entry. 156 */ 157 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 158 pmd_t *pmd) 159 { 160 if (radix_enabled()) 161 prefetch((void *)addr); 162 } 163 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 164 165 /* For use by kexec */ 166 void mmu_cleanup_all(void) 167 { 168 if (radix_enabled()) 169 radix__mmu_cleanup_all(); 170 else if (mmu_hash_ops.hpte_clear_all) 171 mmu_hash_ops.hpte_clear_all(); 172 } 173 174 #ifdef CONFIG_MEMORY_HOTPLUG 175 int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid) 176 { 177 if (radix_enabled()) 178 return radix__create_section_mapping(start, end, nid); 179 180 return hash__create_section_mapping(start, end, nid); 181 } 182 183 int __meminit remove_section_mapping(unsigned long start, unsigned long end) 184 { 185 if (radix_enabled()) 186 return radix__remove_section_mapping(start, end); 187 188 return hash__remove_section_mapping(start, end); 189 } 190 #endif /* CONFIG_MEMORY_HOTPLUG */ 191 192 void __init mmu_partition_table_init(void) 193 { 194 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; 195 unsigned long ptcr; 196 197 BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large."); 198 /* Initialize the Partition Table with no entries */ 199 partition_tb = memblock_alloc(patb_size, patb_size); 200 if (!partition_tb) 201 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 202 __func__, patb_size, patb_size); 203 204 /* 205 * update partition table control register, 206 * 64 K size. 207 */ 208 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); 209 mtspr(SPRN_PTCR, ptcr); 210 powernv_set_nmmu_ptcr(ptcr); 211 } 212 213 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, 214 unsigned long dw1) 215 { 216 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); 217 218 partition_tb[lpid].patb0 = cpu_to_be64(dw0); 219 partition_tb[lpid].patb1 = cpu_to_be64(dw1); 220 221 /* 222 * Global flush of TLBs and partition table caches for this lpid. 223 * The type of flush (hash or radix) depends on what the previous 224 * use of this partition ID was, not the new use. 225 */ 226 asm volatile("ptesync" : : : "memory"); 227 if (old & PATB_HR) { 228 asm volatile(PPC_TLBIE_5(%0,%1,2,0,1) : : 229 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 230 asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : : 231 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 232 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 1); 233 } else { 234 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : 235 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 236 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); 237 } 238 /* do we need fixup here ?*/ 239 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 240 } 241 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); 242 243 static pmd_t *get_pmd_from_cache(struct mm_struct *mm) 244 { 245 void *pmd_frag, *ret; 246 247 if (PMD_FRAG_NR == 1) 248 return NULL; 249 250 spin_lock(&mm->page_table_lock); 251 ret = mm->context.pmd_frag; 252 if (ret) { 253 pmd_frag = ret + PMD_FRAG_SIZE; 254 /* 255 * If we have taken up all the fragments mark PTE page NULL 256 */ 257 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) 258 pmd_frag = NULL; 259 mm->context.pmd_frag = pmd_frag; 260 } 261 spin_unlock(&mm->page_table_lock); 262 return (pmd_t *)ret; 263 } 264 265 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) 266 { 267 void *ret = NULL; 268 struct page *page; 269 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; 270 271 if (mm == &init_mm) 272 gfp &= ~__GFP_ACCOUNT; 273 page = alloc_page(gfp); 274 if (!page) 275 return NULL; 276 if (!pgtable_pmd_page_ctor(page)) { 277 __free_pages(page, 0); 278 return NULL; 279 } 280 281 atomic_set(&page->pt_frag_refcount, 1); 282 283 ret = page_address(page); 284 /* 285 * if we support only one fragment just return the 286 * allocated page. 287 */ 288 if (PMD_FRAG_NR == 1) 289 return ret; 290 291 spin_lock(&mm->page_table_lock); 292 /* 293 * If we find pgtable_page set, we return 294 * the allocated page with single fragement 295 * count. 296 */ 297 if (likely(!mm->context.pmd_frag)) { 298 atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR); 299 mm->context.pmd_frag = ret + PMD_FRAG_SIZE; 300 } 301 spin_unlock(&mm->page_table_lock); 302 303 return (pmd_t *)ret; 304 } 305 306 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) 307 { 308 pmd_t *pmd; 309 310 pmd = get_pmd_from_cache(mm); 311 if (pmd) 312 return pmd; 313 314 return __alloc_for_pmdcache(mm); 315 } 316 317 void pmd_fragment_free(unsigned long *pmd) 318 { 319 struct page *page = virt_to_page(pmd); 320 321 BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0); 322 if (atomic_dec_and_test(&page->pt_frag_refcount)) { 323 pgtable_pmd_page_dtor(page); 324 __free_page(page); 325 } 326 } 327 328 static inline void pgtable_free(void *table, int index) 329 { 330 switch (index) { 331 case PTE_INDEX: 332 pte_fragment_free(table, 0); 333 break; 334 case PMD_INDEX: 335 pmd_fragment_free(table); 336 break; 337 case PUD_INDEX: 338 kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table); 339 break; 340 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE) 341 /* 16M hugepd directory at pud level */ 342 case HTLB_16M_INDEX: 343 BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0); 344 kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table); 345 break; 346 /* 16G hugepd directory at the pgd level */ 347 case HTLB_16G_INDEX: 348 BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0); 349 kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table); 350 break; 351 #endif 352 /* We don't free pgd table via RCU callback */ 353 default: 354 BUG(); 355 } 356 } 357 358 #ifdef CONFIG_SMP 359 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) 360 { 361 unsigned long pgf = (unsigned long)table; 362 363 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); 364 pgf |= index; 365 tlb_remove_table(tlb, (void *)pgf); 366 } 367 368 void __tlb_remove_table(void *_table) 369 { 370 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 371 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 372 373 return pgtable_free(table, index); 374 } 375 #else 376 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) 377 { 378 return pgtable_free(table, index); 379 } 380 #endif 381 382 #ifdef CONFIG_PROC_FS 383 atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; 384 385 void arch_report_meminfo(struct seq_file *m) 386 { 387 /* 388 * Hash maps the memory with one size mmu_linear_psize. 389 * So don't bother to print these on hash 390 */ 391 if (!radix_enabled()) 392 return; 393 seq_printf(m, "DirectMap4k: %8lu kB\n", 394 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); 395 seq_printf(m, "DirectMap64k: %8lu kB\n", 396 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); 397 seq_printf(m, "DirectMap2M: %8lu kB\n", 398 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); 399 seq_printf(m, "DirectMap1G: %8lu kB\n", 400 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); 401 } 402 #endif /* CONFIG_PROC_FS */ 403 404 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, 405 pte_t *ptep) 406 { 407 unsigned long pte_val; 408 409 /* 410 * Clear the _PAGE_PRESENT so that no hardware parallel update is 411 * possible. Also keep the pte_present true so that we don't take 412 * wrong fault. 413 */ 414 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); 415 416 return __pte(pte_val); 417 418 } 419 420 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 421 pte_t *ptep, pte_t old_pte, pte_t pte) 422 { 423 if (radix_enabled()) 424 return radix__ptep_modify_prot_commit(vma, addr, 425 ptep, old_pte, pte); 426 set_pte_at(vma->vm_mm, addr, ptep, pte); 427 } 428 429 /* 430 * For hash translation mode, we use the deposited table to store hash slot 431 * information and they are stored at PTRS_PER_PMD offset from related pmd 432 * location. Hence a pmd move requires deposit and withdraw. 433 * 434 * For radix translation with split pmd ptl, we store the deposited table in the 435 * pmd page. Hence if we have different pmd page we need to withdraw during pmd 436 * move. 437 * 438 * With hash we use deposited table always irrespective of anon or not. 439 * With radix we use deposited table only for anonymous mapping. 440 */ 441 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 442 struct spinlock *old_pmd_ptl, 443 struct vm_area_struct *vma) 444 { 445 if (radix_enabled()) 446 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 447 448 return true; 449 } 450