xref: /openbmc/linux/arch/powerpc/mm/book3s64/pgtable.c (revision 2c64e9cb)
1 /*
2  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/mm_types.h>
12 #include <linux/memblock.h>
13 #include <misc/cxl-base.h>
14 
15 #include <asm/pgalloc.h>
16 #include <asm/tlb.h>
17 #include <asm/trace.h>
18 #include <asm/powernv.h>
19 
20 #include <mm/mmu_decl.h>
21 #include <trace/events/thp.h>
22 
23 unsigned long __pmd_frag_nr;
24 EXPORT_SYMBOL(__pmd_frag_nr);
25 unsigned long __pmd_frag_size_shift;
26 EXPORT_SYMBOL(__pmd_frag_size_shift);
27 
28 int (*register_process_table)(unsigned long base, unsigned long page_size,
29 			      unsigned long tbl_size);
30 
31 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
32 /*
33  * This is called when relaxing access to a hugepage. It's also called in the page
34  * fault path when we don't hit any of the major fault cases, ie, a minor
35  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
36  * handled those two for us, we additionally deal with missing execute
37  * permission here on some processors
38  */
39 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
40 			  pmd_t *pmdp, pmd_t entry, int dirty)
41 {
42 	int changed;
43 #ifdef CONFIG_DEBUG_VM
44 	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
45 	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
46 #endif
47 	changed = !pmd_same(*(pmdp), entry);
48 	if (changed) {
49 		/*
50 		 * We can use MMU_PAGE_2M here, because only radix
51 		 * path look at the psize.
52 		 */
53 		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
54 					pmd_pte(entry), address, MMU_PAGE_2M);
55 	}
56 	return changed;
57 }
58 
59 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
60 			      unsigned long address, pmd_t *pmdp)
61 {
62 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
63 }
64 /*
65  * set a new huge pmd. We should not be called for updating
66  * an existing pmd entry. That should go via pmd_hugepage_update.
67  */
68 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
69 		pmd_t *pmdp, pmd_t pmd)
70 {
71 #ifdef CONFIG_DEBUG_VM
72 	/*
73 	 * Make sure hardware valid bit is not set. We don't do
74 	 * tlb flush for this update.
75 	 */
76 
77 	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
78 	assert_spin_locked(pmd_lockptr(mm, pmdp));
79 	WARN_ON(!(pmd_large(pmd) || pmd_devmap(pmd)));
80 #endif
81 	trace_hugepage_set_pmd(addr, pmd_val(pmd));
82 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
83 }
84 
85 static void do_nothing(void *unused)
86 {
87 
88 }
89 /*
90  * Serialize against find_current_mm_pte which does lock-less
91  * lookup in page tables with local interrupts disabled. For huge pages
92  * it casts pmd_t to pte_t. Since format of pte_t is different from
93  * pmd_t we want to prevent transit from pmd pointing to page table
94  * to pmd pointing to huge page (and back) while interrupts are disabled.
95  * We clear pmd to possibly replace it with page table pointer in
96  * different code paths. So make sure we wait for the parallel
97  * find_current_mm_pte to finish.
98  */
99 void serialize_against_pte_lookup(struct mm_struct *mm)
100 {
101 	smp_mb();
102 	smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
103 }
104 
105 /*
106  * We use this to invalidate a pmdp entry before switching from a
107  * hugepte to regular pmd entry.
108  */
109 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
110 		     pmd_t *pmdp)
111 {
112 	unsigned long old_pmd;
113 
114 	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
115 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
116 	/*
117 	 * This ensures that generic code that rely on IRQ disabling
118 	 * to prevent a parallel THP split work as expected.
119 	 */
120 	serialize_against_pte_lookup(vma->vm_mm);
121 	return __pmd(old_pmd);
122 }
123 
124 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
125 {
126 	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
127 }
128 
129 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
130 {
131 	unsigned long pmdv;
132 
133 	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
134 	return pmd_set_protbits(__pmd(pmdv), pgprot);
135 }
136 
137 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
138 {
139 	return pfn_pmd(page_to_pfn(page), pgprot);
140 }
141 
142 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
143 {
144 	unsigned long pmdv;
145 
146 	pmdv = pmd_val(pmd);
147 	pmdv &= _HPAGE_CHG_MASK;
148 	return pmd_set_protbits(__pmd(pmdv), newprot);
149 }
150 
151 /*
152  * This is called at the end of handling a user page fault, when the
153  * fault has been handled by updating a HUGE PMD entry in the linux page tables.
154  * We use it to preload an HPTE into the hash table corresponding to
155  * the updated linux HUGE PMD entry.
156  */
157 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
158 			  pmd_t *pmd)
159 {
160 	if (radix_enabled())
161 		prefetch((void *)addr);
162 }
163 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
164 
165 /* For use by kexec */
166 void mmu_cleanup_all(void)
167 {
168 	if (radix_enabled())
169 		radix__mmu_cleanup_all();
170 	else if (mmu_hash_ops.hpte_clear_all)
171 		mmu_hash_ops.hpte_clear_all();
172 }
173 
174 #ifdef CONFIG_MEMORY_HOTPLUG
175 int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid)
176 {
177 	if (radix_enabled())
178 		return radix__create_section_mapping(start, end, nid);
179 
180 	return hash__create_section_mapping(start, end, nid);
181 }
182 
183 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
184 {
185 	if (radix_enabled())
186 		return radix__remove_section_mapping(start, end);
187 
188 	return hash__remove_section_mapping(start, end);
189 }
190 #endif /* CONFIG_MEMORY_HOTPLUG */
191 
192 void __init mmu_partition_table_init(void)
193 {
194 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
195 	unsigned long ptcr;
196 
197 	BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
198 	/* Initialize the Partition Table with no entries */
199 	partition_tb = memblock_alloc(patb_size, patb_size);
200 	if (!partition_tb)
201 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
202 		      __func__, patb_size, patb_size);
203 
204 	/*
205 	 * update partition table control register,
206 	 * 64 K size.
207 	 */
208 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
209 	mtspr(SPRN_PTCR, ptcr);
210 	powernv_set_nmmu_ptcr(ptcr);
211 }
212 
213 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
214 				   unsigned long dw1)
215 {
216 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
217 
218 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
219 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
220 
221 	/*
222 	 * Global flush of TLBs and partition table caches for this lpid.
223 	 * The type of flush (hash or radix) depends on what the previous
224 	 * use of this partition ID was, not the new use.
225 	 */
226 	asm volatile("ptesync" : : : "memory");
227 	if (old & PATB_HR) {
228 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
229 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
230 		asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
231 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
232 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 1);
233 	} else {
234 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
235 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
236 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
237 	}
238 	/* do we need fixup here ?*/
239 	asm volatile("eieio; tlbsync; ptesync" : : : "memory");
240 }
241 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
242 
243 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
244 {
245 	void *pmd_frag, *ret;
246 
247 	if (PMD_FRAG_NR == 1)
248 		return NULL;
249 
250 	spin_lock(&mm->page_table_lock);
251 	ret = mm->context.pmd_frag;
252 	if (ret) {
253 		pmd_frag = ret + PMD_FRAG_SIZE;
254 		/*
255 		 * If we have taken up all the fragments mark PTE page NULL
256 		 */
257 		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
258 			pmd_frag = NULL;
259 		mm->context.pmd_frag = pmd_frag;
260 	}
261 	spin_unlock(&mm->page_table_lock);
262 	return (pmd_t *)ret;
263 }
264 
265 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
266 {
267 	void *ret = NULL;
268 	struct page *page;
269 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
270 
271 	if (mm == &init_mm)
272 		gfp &= ~__GFP_ACCOUNT;
273 	page = alloc_page(gfp);
274 	if (!page)
275 		return NULL;
276 	if (!pgtable_pmd_page_ctor(page)) {
277 		__free_pages(page, 0);
278 		return NULL;
279 	}
280 
281 	atomic_set(&page->pt_frag_refcount, 1);
282 
283 	ret = page_address(page);
284 	/*
285 	 * if we support only one fragment just return the
286 	 * allocated page.
287 	 */
288 	if (PMD_FRAG_NR == 1)
289 		return ret;
290 
291 	spin_lock(&mm->page_table_lock);
292 	/*
293 	 * If we find pgtable_page set, we return
294 	 * the allocated page with single fragement
295 	 * count.
296 	 */
297 	if (likely(!mm->context.pmd_frag)) {
298 		atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
299 		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
300 	}
301 	spin_unlock(&mm->page_table_lock);
302 
303 	return (pmd_t *)ret;
304 }
305 
306 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
307 {
308 	pmd_t *pmd;
309 
310 	pmd = get_pmd_from_cache(mm);
311 	if (pmd)
312 		return pmd;
313 
314 	return __alloc_for_pmdcache(mm);
315 }
316 
317 void pmd_fragment_free(unsigned long *pmd)
318 {
319 	struct page *page = virt_to_page(pmd);
320 
321 	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
322 	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
323 		pgtable_pmd_page_dtor(page);
324 		__free_page(page);
325 	}
326 }
327 
328 static inline void pgtable_free(void *table, int index)
329 {
330 	switch (index) {
331 	case PTE_INDEX:
332 		pte_fragment_free(table, 0);
333 		break;
334 	case PMD_INDEX:
335 		pmd_fragment_free(table);
336 		break;
337 	case PUD_INDEX:
338 		kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table);
339 		break;
340 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
341 		/* 16M hugepd directory at pud level */
342 	case HTLB_16M_INDEX:
343 		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
344 		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
345 		break;
346 		/* 16G hugepd directory at the pgd level */
347 	case HTLB_16G_INDEX:
348 		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
349 		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
350 		break;
351 #endif
352 		/* We don't free pgd table via RCU callback */
353 	default:
354 		BUG();
355 	}
356 }
357 
358 #ifdef CONFIG_SMP
359 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
360 {
361 	unsigned long pgf = (unsigned long)table;
362 
363 	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
364 	pgf |= index;
365 	tlb_remove_table(tlb, (void *)pgf);
366 }
367 
368 void __tlb_remove_table(void *_table)
369 {
370 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
371 	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
372 
373 	return pgtable_free(table, index);
374 }
375 #else
376 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
377 {
378 	return pgtable_free(table, index);
379 }
380 #endif
381 
382 #ifdef CONFIG_PROC_FS
383 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
384 
385 void arch_report_meminfo(struct seq_file *m)
386 {
387 	/*
388 	 * Hash maps the memory with one size mmu_linear_psize.
389 	 * So don't bother to print these on hash
390 	 */
391 	if (!radix_enabled())
392 		return;
393 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
394 		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
395 	seq_printf(m, "DirectMap64k:    %8lu kB\n",
396 		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
397 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
398 		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
399 	seq_printf(m, "DirectMap1G:    %8lu kB\n",
400 		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
401 }
402 #endif /* CONFIG_PROC_FS */
403 
404 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
405 			     pte_t *ptep)
406 {
407 	unsigned long pte_val;
408 
409 	/*
410 	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
411 	 * possible. Also keep the pte_present true so that we don't take
412 	 * wrong fault.
413 	 */
414 	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
415 
416 	return __pte(pte_val);
417 
418 }
419 
420 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
421 			     pte_t *ptep, pte_t old_pte, pte_t pte)
422 {
423 	if (radix_enabled())
424 		return radix__ptep_modify_prot_commit(vma, addr,
425 						      ptep, old_pte, pte);
426 	set_pte_at(vma->vm_mm, addr, ptep, pte);
427 }
428 
429 /*
430  * For hash translation mode, we use the deposited table to store hash slot
431  * information and they are stored at PTRS_PER_PMD offset from related pmd
432  * location. Hence a pmd move requires deposit and withdraw.
433  *
434  * For radix translation with split pmd ptl, we store the deposited table in the
435  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
436  * move.
437  *
438  * With hash we use deposited table always irrespective of anon or not.
439  * With radix we use deposited table only for anonymous mapping.
440  */
441 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
442 			   struct spinlock *old_pmd_ptl,
443 			   struct vm_area_struct *vma)
444 {
445 	if (radix_enabled())
446 		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
447 
448 	return true;
449 }
450