1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/mm_types.h> 8 #include <linux/memblock.h> 9 #include <misc/cxl-base.h> 10 11 #include <asm/pgalloc.h> 12 #include <asm/tlb.h> 13 #include <asm/trace.h> 14 #include <asm/powernv.h> 15 16 #include <mm/mmu_decl.h> 17 #include <trace/events/thp.h> 18 19 unsigned long __pmd_frag_nr; 20 EXPORT_SYMBOL(__pmd_frag_nr); 21 unsigned long __pmd_frag_size_shift; 22 EXPORT_SYMBOL(__pmd_frag_size_shift); 23 24 int (*register_process_table)(unsigned long base, unsigned long page_size, 25 unsigned long tbl_size); 26 27 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 28 /* 29 * This is called when relaxing access to a hugepage. It's also called in the page 30 * fault path when we don't hit any of the major fault cases, ie, a minor 31 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have 32 * handled those two for us, we additionally deal with missing execute 33 * permission here on some processors 34 */ 35 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 36 pmd_t *pmdp, pmd_t entry, int dirty) 37 { 38 int changed; 39 #ifdef CONFIG_DEBUG_VM 40 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); 41 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); 42 #endif 43 changed = !pmd_same(*(pmdp), entry); 44 if (changed) { 45 /* 46 * We can use MMU_PAGE_2M here, because only radix 47 * path look at the psize. 48 */ 49 __ptep_set_access_flags(vma, pmdp_ptep(pmdp), 50 pmd_pte(entry), address, MMU_PAGE_2M); 51 } 52 return changed; 53 } 54 55 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 56 unsigned long address, pmd_t *pmdp) 57 { 58 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); 59 } 60 /* 61 * set a new huge pmd. We should not be called for updating 62 * an existing pmd entry. That should go via pmd_hugepage_update. 63 */ 64 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 65 pmd_t *pmdp, pmd_t pmd) 66 { 67 #ifdef CONFIG_DEBUG_VM 68 /* 69 * Make sure hardware valid bit is not set. We don't do 70 * tlb flush for this update. 71 */ 72 73 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); 74 assert_spin_locked(pmd_lockptr(mm, pmdp)); 75 WARN_ON(!(pmd_large(pmd) || pmd_devmap(pmd))); 76 #endif 77 trace_hugepage_set_pmd(addr, pmd_val(pmd)); 78 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); 79 } 80 81 static void do_nothing(void *unused) 82 { 83 84 } 85 /* 86 * Serialize against find_current_mm_pte which does lock-less 87 * lookup in page tables with local interrupts disabled. For huge pages 88 * it casts pmd_t to pte_t. Since format of pte_t is different from 89 * pmd_t we want to prevent transit from pmd pointing to page table 90 * to pmd pointing to huge page (and back) while interrupts are disabled. 91 * We clear pmd to possibly replace it with page table pointer in 92 * different code paths. So make sure we wait for the parallel 93 * find_current_mm_pte to finish. 94 */ 95 void serialize_against_pte_lookup(struct mm_struct *mm) 96 { 97 smp_mb(); 98 smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1); 99 } 100 101 /* 102 * We use this to invalidate a pmdp entry before switching from a 103 * hugepte to regular pmd entry. 104 */ 105 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 106 pmd_t *pmdp) 107 { 108 unsigned long old_pmd; 109 110 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); 111 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 112 /* 113 * This ensures that generic code that rely on IRQ disabling 114 * to prevent a parallel THP split work as expected. 115 */ 116 serialize_against_pte_lookup(vma->vm_mm); 117 return __pmd(old_pmd); 118 } 119 120 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) 121 { 122 return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); 123 } 124 125 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 126 { 127 unsigned long pmdv; 128 129 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 130 return pmd_set_protbits(__pmd(pmdv), pgprot); 131 } 132 133 pmd_t mk_pmd(struct page *page, pgprot_t pgprot) 134 { 135 return pfn_pmd(page_to_pfn(page), pgprot); 136 } 137 138 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 139 { 140 unsigned long pmdv; 141 142 pmdv = pmd_val(pmd); 143 pmdv &= _HPAGE_CHG_MASK; 144 return pmd_set_protbits(__pmd(pmdv), newprot); 145 } 146 147 /* 148 * This is called at the end of handling a user page fault, when the 149 * fault has been handled by updating a HUGE PMD entry in the linux page tables. 150 * We use it to preload an HPTE into the hash table corresponding to 151 * the updated linux HUGE PMD entry. 152 */ 153 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 154 pmd_t *pmd) 155 { 156 if (radix_enabled()) 157 prefetch((void *)addr); 158 } 159 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 160 161 /* For use by kexec */ 162 void mmu_cleanup_all(void) 163 { 164 if (radix_enabled()) 165 radix__mmu_cleanup_all(); 166 else if (mmu_hash_ops.hpte_clear_all) 167 mmu_hash_ops.hpte_clear_all(); 168 } 169 170 #ifdef CONFIG_MEMORY_HOTPLUG 171 int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid) 172 { 173 if (radix_enabled()) 174 return radix__create_section_mapping(start, end, nid); 175 176 return hash__create_section_mapping(start, end, nid); 177 } 178 179 int __meminit remove_section_mapping(unsigned long start, unsigned long end) 180 { 181 if (radix_enabled()) 182 return radix__remove_section_mapping(start, end); 183 184 return hash__remove_section_mapping(start, end); 185 } 186 #endif /* CONFIG_MEMORY_HOTPLUG */ 187 188 void __init mmu_partition_table_init(void) 189 { 190 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; 191 unsigned long ptcr; 192 193 BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large."); 194 /* Initialize the Partition Table with no entries */ 195 partition_tb = memblock_alloc(patb_size, patb_size); 196 if (!partition_tb) 197 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 198 __func__, patb_size, patb_size); 199 200 /* 201 * update partition table control register, 202 * 64 K size. 203 */ 204 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); 205 mtspr(SPRN_PTCR, ptcr); 206 powernv_set_nmmu_ptcr(ptcr); 207 } 208 209 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, 210 unsigned long dw1) 211 { 212 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); 213 214 partition_tb[lpid].patb0 = cpu_to_be64(dw0); 215 partition_tb[lpid].patb1 = cpu_to_be64(dw1); 216 217 /* 218 * Global flush of TLBs and partition table caches for this lpid. 219 * The type of flush (hash or radix) depends on what the previous 220 * use of this partition ID was, not the new use. 221 */ 222 asm volatile("ptesync" : : : "memory"); 223 if (old & PATB_HR) { 224 asm volatile(PPC_TLBIE_5(%0,%1,2,0,1) : : 225 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 226 asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : : 227 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 228 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 1); 229 } else { 230 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : 231 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 232 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); 233 } 234 /* do we need fixup here ?*/ 235 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 236 } 237 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); 238 239 static pmd_t *get_pmd_from_cache(struct mm_struct *mm) 240 { 241 void *pmd_frag, *ret; 242 243 if (PMD_FRAG_NR == 1) 244 return NULL; 245 246 spin_lock(&mm->page_table_lock); 247 ret = mm->context.pmd_frag; 248 if (ret) { 249 pmd_frag = ret + PMD_FRAG_SIZE; 250 /* 251 * If we have taken up all the fragments mark PTE page NULL 252 */ 253 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) 254 pmd_frag = NULL; 255 mm->context.pmd_frag = pmd_frag; 256 } 257 spin_unlock(&mm->page_table_lock); 258 return (pmd_t *)ret; 259 } 260 261 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) 262 { 263 void *ret = NULL; 264 struct page *page; 265 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; 266 267 if (mm == &init_mm) 268 gfp &= ~__GFP_ACCOUNT; 269 page = alloc_page(gfp); 270 if (!page) 271 return NULL; 272 if (!pgtable_pmd_page_ctor(page)) { 273 __free_pages(page, 0); 274 return NULL; 275 } 276 277 atomic_set(&page->pt_frag_refcount, 1); 278 279 ret = page_address(page); 280 /* 281 * if we support only one fragment just return the 282 * allocated page. 283 */ 284 if (PMD_FRAG_NR == 1) 285 return ret; 286 287 spin_lock(&mm->page_table_lock); 288 /* 289 * If we find pgtable_page set, we return 290 * the allocated page with single fragement 291 * count. 292 */ 293 if (likely(!mm->context.pmd_frag)) { 294 atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR); 295 mm->context.pmd_frag = ret + PMD_FRAG_SIZE; 296 } 297 spin_unlock(&mm->page_table_lock); 298 299 return (pmd_t *)ret; 300 } 301 302 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) 303 { 304 pmd_t *pmd; 305 306 pmd = get_pmd_from_cache(mm); 307 if (pmd) 308 return pmd; 309 310 return __alloc_for_pmdcache(mm); 311 } 312 313 void pmd_fragment_free(unsigned long *pmd) 314 { 315 struct page *page = virt_to_page(pmd); 316 317 BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0); 318 if (atomic_dec_and_test(&page->pt_frag_refcount)) { 319 pgtable_pmd_page_dtor(page); 320 __free_page(page); 321 } 322 } 323 324 static inline void pgtable_free(void *table, int index) 325 { 326 switch (index) { 327 case PTE_INDEX: 328 pte_fragment_free(table, 0); 329 break; 330 case PMD_INDEX: 331 pmd_fragment_free(table); 332 break; 333 case PUD_INDEX: 334 kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table); 335 break; 336 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE) 337 /* 16M hugepd directory at pud level */ 338 case HTLB_16M_INDEX: 339 BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0); 340 kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table); 341 break; 342 /* 16G hugepd directory at the pgd level */ 343 case HTLB_16G_INDEX: 344 BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0); 345 kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table); 346 break; 347 #endif 348 /* We don't free pgd table via RCU callback */ 349 default: 350 BUG(); 351 } 352 } 353 354 #ifdef CONFIG_SMP 355 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) 356 { 357 unsigned long pgf = (unsigned long)table; 358 359 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); 360 pgf |= index; 361 tlb_remove_table(tlb, (void *)pgf); 362 } 363 364 void __tlb_remove_table(void *_table) 365 { 366 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 367 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 368 369 return pgtable_free(table, index); 370 } 371 #else 372 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) 373 { 374 return pgtable_free(table, index); 375 } 376 #endif 377 378 #ifdef CONFIG_PROC_FS 379 atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; 380 381 void arch_report_meminfo(struct seq_file *m) 382 { 383 /* 384 * Hash maps the memory with one size mmu_linear_psize. 385 * So don't bother to print these on hash 386 */ 387 if (!radix_enabled()) 388 return; 389 seq_printf(m, "DirectMap4k: %8lu kB\n", 390 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); 391 seq_printf(m, "DirectMap64k: %8lu kB\n", 392 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); 393 seq_printf(m, "DirectMap2M: %8lu kB\n", 394 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); 395 seq_printf(m, "DirectMap1G: %8lu kB\n", 396 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); 397 } 398 #endif /* CONFIG_PROC_FS */ 399 400 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, 401 pte_t *ptep) 402 { 403 unsigned long pte_val; 404 405 /* 406 * Clear the _PAGE_PRESENT so that no hardware parallel update is 407 * possible. Also keep the pte_present true so that we don't take 408 * wrong fault. 409 */ 410 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); 411 412 return __pte(pte_val); 413 414 } 415 416 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 417 pte_t *ptep, pte_t old_pte, pte_t pte) 418 { 419 if (radix_enabled()) 420 return radix__ptep_modify_prot_commit(vma, addr, 421 ptep, old_pte, pte); 422 set_pte_at(vma->vm_mm, addr, ptep, pte); 423 } 424 425 /* 426 * For hash translation mode, we use the deposited table to store hash slot 427 * information and they are stored at PTRS_PER_PMD offset from related pmd 428 * location. Hence a pmd move requires deposit and withdraw. 429 * 430 * For radix translation with split pmd ptl, we store the deposited table in the 431 * pmd page. Hence if we have different pmd page we need to withdraw during pmd 432 * move. 433 * 434 * With hash we use deposited table always irrespective of anon or not. 435 * With radix we use deposited table only for anonymous mapping. 436 */ 437 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 438 struct spinlock *old_pmd_ptl, 439 struct vm_area_struct *vma) 440 { 441 if (radix_enabled()) 442 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 443 444 return true; 445 } 446