xref: /openbmc/linux/arch/powerpc/mm/book3s64/pgtable.c (revision 1f327613)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <misc/cxl-base.h>
10 
11 #include <asm/pgalloc.h>
12 #include <asm/tlb.h>
13 #include <asm/trace.h>
14 #include <asm/powernv.h>
15 
16 #include <mm/mmu_decl.h>
17 #include <trace/events/thp.h>
18 
19 unsigned long __pmd_frag_nr;
20 EXPORT_SYMBOL(__pmd_frag_nr);
21 unsigned long __pmd_frag_size_shift;
22 EXPORT_SYMBOL(__pmd_frag_size_shift);
23 
24 int (*register_process_table)(unsigned long base, unsigned long page_size,
25 			      unsigned long tbl_size);
26 
27 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
28 /*
29  * This is called when relaxing access to a hugepage. It's also called in the page
30  * fault path when we don't hit any of the major fault cases, ie, a minor
31  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
32  * handled those two for us, we additionally deal with missing execute
33  * permission here on some processors
34  */
35 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
36 			  pmd_t *pmdp, pmd_t entry, int dirty)
37 {
38 	int changed;
39 #ifdef CONFIG_DEBUG_VM
40 	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
41 	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
42 #endif
43 	changed = !pmd_same(*(pmdp), entry);
44 	if (changed) {
45 		/*
46 		 * We can use MMU_PAGE_2M here, because only radix
47 		 * path look at the psize.
48 		 */
49 		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
50 					pmd_pte(entry), address, MMU_PAGE_2M);
51 	}
52 	return changed;
53 }
54 
55 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
56 			      unsigned long address, pmd_t *pmdp)
57 {
58 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
59 }
60 /*
61  * set a new huge pmd. We should not be called for updating
62  * an existing pmd entry. That should go via pmd_hugepage_update.
63  */
64 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
65 		pmd_t *pmdp, pmd_t pmd)
66 {
67 #ifdef CONFIG_DEBUG_VM
68 	/*
69 	 * Make sure hardware valid bit is not set. We don't do
70 	 * tlb flush for this update.
71 	 */
72 
73 	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
74 	assert_spin_locked(pmd_lockptr(mm, pmdp));
75 	WARN_ON(!(pmd_large(pmd) || pmd_devmap(pmd)));
76 #endif
77 	trace_hugepage_set_pmd(addr, pmd_val(pmd));
78 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
79 }
80 
81 static void do_nothing(void *unused)
82 {
83 
84 }
85 /*
86  * Serialize against find_current_mm_pte which does lock-less
87  * lookup in page tables with local interrupts disabled. For huge pages
88  * it casts pmd_t to pte_t. Since format of pte_t is different from
89  * pmd_t we want to prevent transit from pmd pointing to page table
90  * to pmd pointing to huge page (and back) while interrupts are disabled.
91  * We clear pmd to possibly replace it with page table pointer in
92  * different code paths. So make sure we wait for the parallel
93  * find_current_mm_pte to finish.
94  */
95 void serialize_against_pte_lookup(struct mm_struct *mm)
96 {
97 	smp_mb();
98 	smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
99 }
100 
101 /*
102  * We use this to invalidate a pmdp entry before switching from a
103  * hugepte to regular pmd entry.
104  */
105 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
106 		     pmd_t *pmdp)
107 {
108 	unsigned long old_pmd;
109 
110 	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
111 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
112 	/*
113 	 * This ensures that generic code that rely on IRQ disabling
114 	 * to prevent a parallel THP split work as expected.
115 	 */
116 	serialize_against_pte_lookup(vma->vm_mm);
117 	return __pmd(old_pmd);
118 }
119 
120 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
121 {
122 	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
123 }
124 
125 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
126 {
127 	unsigned long pmdv;
128 
129 	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
130 	return pmd_set_protbits(__pmd(pmdv), pgprot);
131 }
132 
133 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
134 {
135 	return pfn_pmd(page_to_pfn(page), pgprot);
136 }
137 
138 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
139 {
140 	unsigned long pmdv;
141 
142 	pmdv = pmd_val(pmd);
143 	pmdv &= _HPAGE_CHG_MASK;
144 	return pmd_set_protbits(__pmd(pmdv), newprot);
145 }
146 
147 /*
148  * This is called at the end of handling a user page fault, when the
149  * fault has been handled by updating a HUGE PMD entry in the linux page tables.
150  * We use it to preload an HPTE into the hash table corresponding to
151  * the updated linux HUGE PMD entry.
152  */
153 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
154 			  pmd_t *pmd)
155 {
156 	if (radix_enabled())
157 		prefetch((void *)addr);
158 }
159 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
160 
161 /* For use by kexec */
162 void mmu_cleanup_all(void)
163 {
164 	if (radix_enabled())
165 		radix__mmu_cleanup_all();
166 	else if (mmu_hash_ops.hpte_clear_all)
167 		mmu_hash_ops.hpte_clear_all();
168 }
169 
170 #ifdef CONFIG_MEMORY_HOTPLUG
171 int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid)
172 {
173 	if (radix_enabled())
174 		return radix__create_section_mapping(start, end, nid);
175 
176 	return hash__create_section_mapping(start, end, nid);
177 }
178 
179 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
180 {
181 	if (radix_enabled())
182 		return radix__remove_section_mapping(start, end);
183 
184 	return hash__remove_section_mapping(start, end);
185 }
186 #endif /* CONFIG_MEMORY_HOTPLUG */
187 
188 void __init mmu_partition_table_init(void)
189 {
190 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
191 	unsigned long ptcr;
192 
193 	BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
194 	/* Initialize the Partition Table with no entries */
195 	partition_tb = memblock_alloc(patb_size, patb_size);
196 	if (!partition_tb)
197 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
198 		      __func__, patb_size, patb_size);
199 
200 	/*
201 	 * update partition table control register,
202 	 * 64 K size.
203 	 */
204 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
205 	mtspr(SPRN_PTCR, ptcr);
206 	powernv_set_nmmu_ptcr(ptcr);
207 }
208 
209 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
210 				   unsigned long dw1)
211 {
212 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
213 
214 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
215 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
216 
217 	/*
218 	 * Global flush of TLBs and partition table caches for this lpid.
219 	 * The type of flush (hash or radix) depends on what the previous
220 	 * use of this partition ID was, not the new use.
221 	 */
222 	asm volatile("ptesync" : : : "memory");
223 	if (old & PATB_HR) {
224 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
225 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
226 		asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
227 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
228 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 1);
229 	} else {
230 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
231 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
232 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
233 	}
234 	/* do we need fixup here ?*/
235 	asm volatile("eieio; tlbsync; ptesync" : : : "memory");
236 }
237 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
238 
239 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
240 {
241 	void *pmd_frag, *ret;
242 
243 	if (PMD_FRAG_NR == 1)
244 		return NULL;
245 
246 	spin_lock(&mm->page_table_lock);
247 	ret = mm->context.pmd_frag;
248 	if (ret) {
249 		pmd_frag = ret + PMD_FRAG_SIZE;
250 		/*
251 		 * If we have taken up all the fragments mark PTE page NULL
252 		 */
253 		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
254 			pmd_frag = NULL;
255 		mm->context.pmd_frag = pmd_frag;
256 	}
257 	spin_unlock(&mm->page_table_lock);
258 	return (pmd_t *)ret;
259 }
260 
261 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
262 {
263 	void *ret = NULL;
264 	struct page *page;
265 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
266 
267 	if (mm == &init_mm)
268 		gfp &= ~__GFP_ACCOUNT;
269 	page = alloc_page(gfp);
270 	if (!page)
271 		return NULL;
272 	if (!pgtable_pmd_page_ctor(page)) {
273 		__free_pages(page, 0);
274 		return NULL;
275 	}
276 
277 	atomic_set(&page->pt_frag_refcount, 1);
278 
279 	ret = page_address(page);
280 	/*
281 	 * if we support only one fragment just return the
282 	 * allocated page.
283 	 */
284 	if (PMD_FRAG_NR == 1)
285 		return ret;
286 
287 	spin_lock(&mm->page_table_lock);
288 	/*
289 	 * If we find pgtable_page set, we return
290 	 * the allocated page with single fragement
291 	 * count.
292 	 */
293 	if (likely(!mm->context.pmd_frag)) {
294 		atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
295 		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
296 	}
297 	spin_unlock(&mm->page_table_lock);
298 
299 	return (pmd_t *)ret;
300 }
301 
302 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
303 {
304 	pmd_t *pmd;
305 
306 	pmd = get_pmd_from_cache(mm);
307 	if (pmd)
308 		return pmd;
309 
310 	return __alloc_for_pmdcache(mm);
311 }
312 
313 void pmd_fragment_free(unsigned long *pmd)
314 {
315 	struct page *page = virt_to_page(pmd);
316 
317 	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
318 	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
319 		pgtable_pmd_page_dtor(page);
320 		__free_page(page);
321 	}
322 }
323 
324 static inline void pgtable_free(void *table, int index)
325 {
326 	switch (index) {
327 	case PTE_INDEX:
328 		pte_fragment_free(table, 0);
329 		break;
330 	case PMD_INDEX:
331 		pmd_fragment_free(table);
332 		break;
333 	case PUD_INDEX:
334 		kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table);
335 		break;
336 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
337 		/* 16M hugepd directory at pud level */
338 	case HTLB_16M_INDEX:
339 		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
340 		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
341 		break;
342 		/* 16G hugepd directory at the pgd level */
343 	case HTLB_16G_INDEX:
344 		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
345 		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
346 		break;
347 #endif
348 		/* We don't free pgd table via RCU callback */
349 	default:
350 		BUG();
351 	}
352 }
353 
354 #ifdef CONFIG_SMP
355 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
356 {
357 	unsigned long pgf = (unsigned long)table;
358 
359 	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
360 	pgf |= index;
361 	tlb_remove_table(tlb, (void *)pgf);
362 }
363 
364 void __tlb_remove_table(void *_table)
365 {
366 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
367 	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
368 
369 	return pgtable_free(table, index);
370 }
371 #else
372 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
373 {
374 	return pgtable_free(table, index);
375 }
376 #endif
377 
378 #ifdef CONFIG_PROC_FS
379 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
380 
381 void arch_report_meminfo(struct seq_file *m)
382 {
383 	/*
384 	 * Hash maps the memory with one size mmu_linear_psize.
385 	 * So don't bother to print these on hash
386 	 */
387 	if (!radix_enabled())
388 		return;
389 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
390 		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
391 	seq_printf(m, "DirectMap64k:    %8lu kB\n",
392 		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
393 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
394 		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
395 	seq_printf(m, "DirectMap1G:    %8lu kB\n",
396 		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
397 }
398 #endif /* CONFIG_PROC_FS */
399 
400 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
401 			     pte_t *ptep)
402 {
403 	unsigned long pte_val;
404 
405 	/*
406 	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
407 	 * possible. Also keep the pte_present true so that we don't take
408 	 * wrong fault.
409 	 */
410 	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
411 
412 	return __pte(pte_val);
413 
414 }
415 
416 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
417 			     pte_t *ptep, pte_t old_pte, pte_t pte)
418 {
419 	if (radix_enabled())
420 		return radix__ptep_modify_prot_commit(vma, addr,
421 						      ptep, old_pte, pte);
422 	set_pte_at(vma->vm_mm, addr, ptep, pte);
423 }
424 
425 /*
426  * For hash translation mode, we use the deposited table to store hash slot
427  * information and they are stored at PTRS_PER_PMD offset from related pmd
428  * location. Hence a pmd move requires deposit and withdraw.
429  *
430  * For radix translation with split pmd ptl, we store the deposited table in the
431  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
432  * move.
433  *
434  * With hash we use deposited table always irrespective of anon or not.
435  * With radix we use deposited table only for anonymous mapping.
436  */
437 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
438 			   struct spinlock *old_pmd_ptl,
439 			   struct vm_area_struct *vma)
440 {
441 	if (radix_enabled())
442 		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
443 
444 	return true;
445 }
446