xref: /openbmc/linux/arch/powerpc/mm/book3s64/pgtable.c (revision 1e1129b65ef3f72dbccf24de56b700a181b45227)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <misc/cxl-base.h>
10 
11 #include <asm/debugfs.h>
12 #include <asm/pgalloc.h>
13 #include <asm/tlb.h>
14 #include <asm/trace.h>
15 #include <asm/powernv.h>
16 #include <asm/firmware.h>
17 #include <asm/ultravisor.h>
18 #include <asm/kexec.h>
19 
20 #include <mm/mmu_decl.h>
21 #include <trace/events/thp.h>
22 
23 unsigned long __pmd_frag_nr;
24 EXPORT_SYMBOL(__pmd_frag_nr);
25 unsigned long __pmd_frag_size_shift;
26 EXPORT_SYMBOL(__pmd_frag_size_shift);
27 
28 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
29 /*
30  * This is called when relaxing access to a hugepage. It's also called in the page
31  * fault path when we don't hit any of the major fault cases, ie, a minor
32  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
33  * handled those two for us, we additionally deal with missing execute
34  * permission here on some processors
35  */
36 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
37 			  pmd_t *pmdp, pmd_t entry, int dirty)
38 {
39 	int changed;
40 #ifdef CONFIG_DEBUG_VM
41 	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
42 	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
43 #endif
44 	changed = !pmd_same(*(pmdp), entry);
45 	if (changed) {
46 		/*
47 		 * We can use MMU_PAGE_2M here, because only radix
48 		 * path look at the psize.
49 		 */
50 		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
51 					pmd_pte(entry), address, MMU_PAGE_2M);
52 	}
53 	return changed;
54 }
55 
56 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
57 			      unsigned long address, pmd_t *pmdp)
58 {
59 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
60 }
61 /*
62  * set a new huge pmd. We should not be called for updating
63  * an existing pmd entry. That should go via pmd_hugepage_update.
64  */
65 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
66 		pmd_t *pmdp, pmd_t pmd)
67 {
68 #ifdef CONFIG_DEBUG_VM
69 	/*
70 	 * Make sure hardware valid bit is not set. We don't do
71 	 * tlb flush for this update.
72 	 */
73 
74 	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
75 	assert_spin_locked(pmd_lockptr(mm, pmdp));
76 	WARN_ON(!(pmd_large(pmd)));
77 #endif
78 	trace_hugepage_set_pmd(addr, pmd_val(pmd));
79 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
80 }
81 
82 static void do_nothing(void *unused)
83 {
84 
85 }
86 /*
87  * Serialize against find_current_mm_pte which does lock-less
88  * lookup in page tables with local interrupts disabled. For huge pages
89  * it casts pmd_t to pte_t. Since format of pte_t is different from
90  * pmd_t we want to prevent transit from pmd pointing to page table
91  * to pmd pointing to huge page (and back) while interrupts are disabled.
92  * We clear pmd to possibly replace it with page table pointer in
93  * different code paths. So make sure we wait for the parallel
94  * find_current_mm_pte to finish.
95  */
96 void serialize_against_pte_lookup(struct mm_struct *mm)
97 {
98 	smp_mb();
99 	smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
100 }
101 
102 /*
103  * We use this to invalidate a pmdp entry before switching from a
104  * hugepte to regular pmd entry.
105  */
106 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
107 		     pmd_t *pmdp)
108 {
109 	unsigned long old_pmd;
110 
111 	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
112 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
113 	return __pmd(old_pmd);
114 }
115 
116 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
117 				   unsigned long addr, pmd_t *pmdp, int full)
118 {
119 	pmd_t pmd;
120 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
121 	VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
122 		   !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
123 	pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
124 	/*
125 	 * if it not a fullmm flush, then we can possibly end up converting
126 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
127 	 * Make sure we flush the tlb in this case.
128 	 */
129 	if (!full)
130 		flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
131 	return pmd;
132 }
133 
134 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
135 {
136 	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
137 }
138 
139 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
140 {
141 	unsigned long pmdv;
142 
143 	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
144 	return pmd_set_protbits(__pmd(pmdv), pgprot);
145 }
146 
147 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
148 {
149 	return pfn_pmd(page_to_pfn(page), pgprot);
150 }
151 
152 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
153 {
154 	unsigned long pmdv;
155 
156 	pmdv = pmd_val(pmd);
157 	pmdv &= _HPAGE_CHG_MASK;
158 	return pmd_set_protbits(__pmd(pmdv), newprot);
159 }
160 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
161 
162 /* For use by kexec */
163 void mmu_cleanup_all(void)
164 {
165 	if (radix_enabled())
166 		radix__mmu_cleanup_all();
167 	else if (mmu_hash_ops.hpte_clear_all)
168 		mmu_hash_ops.hpte_clear_all();
169 
170 	reset_sprs();
171 }
172 
173 #ifdef CONFIG_MEMORY_HOTPLUG
174 int __meminit create_section_mapping(unsigned long start, unsigned long end,
175 				     int nid, pgprot_t prot)
176 {
177 	if (radix_enabled())
178 		return radix__create_section_mapping(start, end, nid, prot);
179 
180 	return hash__create_section_mapping(start, end, nid, prot);
181 }
182 
183 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
184 {
185 	if (radix_enabled())
186 		return radix__remove_section_mapping(start, end);
187 
188 	return hash__remove_section_mapping(start, end);
189 }
190 #endif /* CONFIG_MEMORY_HOTPLUG */
191 
192 void __init mmu_partition_table_init(void)
193 {
194 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
195 	unsigned long ptcr;
196 
197 	BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
198 	/* Initialize the Partition Table with no entries */
199 	partition_tb = memblock_alloc(patb_size, patb_size);
200 	if (!partition_tb)
201 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
202 		      __func__, patb_size, patb_size);
203 
204 	/*
205 	 * update partition table control register,
206 	 * 64 K size.
207 	 */
208 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
209 	set_ptcr_when_no_uv(ptcr);
210 	powernv_set_nmmu_ptcr(ptcr);
211 }
212 
213 static void flush_partition(unsigned int lpid, bool radix)
214 {
215 	if (radix) {
216 		radix__flush_all_lpid(lpid);
217 		radix__flush_all_lpid_guest(lpid);
218 	} else {
219 		asm volatile("ptesync" : : : "memory");
220 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
221 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
222 		/* do we need fixup here ?*/
223 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
224 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
225 	}
226 }
227 
228 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
229 				  unsigned long dw1, bool flush)
230 {
231 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
232 
233 	/*
234 	 * When ultravisor is enabled, the partition table is stored in secure
235 	 * memory and can only be accessed doing an ultravisor call. However, we
236 	 * maintain a copy of the partition table in normal memory to allow Nest
237 	 * MMU translations to occur (for normal VMs).
238 	 *
239 	 * Therefore, here we always update partition_tb, regardless of whether
240 	 * we are running under an ultravisor or not.
241 	 */
242 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
243 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
244 
245 	/*
246 	 * If ultravisor is enabled, we do an ultravisor call to register the
247 	 * partition table entry (PATE), which also do a global flush of TLBs
248 	 * and partition table caches for the lpid. Otherwise, just do the
249 	 * flush. The type of flush (hash or radix) depends on what the previous
250 	 * use of the partition ID was, not the new use.
251 	 */
252 	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
253 		uv_register_pate(lpid, dw0, dw1);
254 		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
255 			dw0, dw1);
256 	} else if (flush) {
257 		/*
258 		 * Boot does not need to flush, because MMU is off and each
259 		 * CPU does a tlbiel_all() before switching them on, which
260 		 * flushes everything.
261 		 */
262 		flush_partition(lpid, (old & PATB_HR));
263 	}
264 }
265 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
266 
267 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
268 {
269 	void *pmd_frag, *ret;
270 
271 	if (PMD_FRAG_NR == 1)
272 		return NULL;
273 
274 	spin_lock(&mm->page_table_lock);
275 	ret = mm->context.pmd_frag;
276 	if (ret) {
277 		pmd_frag = ret + PMD_FRAG_SIZE;
278 		/*
279 		 * If we have taken up all the fragments mark PTE page NULL
280 		 */
281 		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
282 			pmd_frag = NULL;
283 		mm->context.pmd_frag = pmd_frag;
284 	}
285 	spin_unlock(&mm->page_table_lock);
286 	return (pmd_t *)ret;
287 }
288 
289 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
290 {
291 	void *ret = NULL;
292 	struct page *page;
293 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
294 
295 	if (mm == &init_mm)
296 		gfp &= ~__GFP_ACCOUNT;
297 	page = alloc_page(gfp);
298 	if (!page)
299 		return NULL;
300 	if (!pgtable_pmd_page_ctor(page)) {
301 		__free_pages(page, 0);
302 		return NULL;
303 	}
304 
305 	atomic_set(&page->pt_frag_refcount, 1);
306 
307 	ret = page_address(page);
308 	/*
309 	 * if we support only one fragment just return the
310 	 * allocated page.
311 	 */
312 	if (PMD_FRAG_NR == 1)
313 		return ret;
314 
315 	spin_lock(&mm->page_table_lock);
316 	/*
317 	 * If we find pgtable_page set, we return
318 	 * the allocated page with single fragement
319 	 * count.
320 	 */
321 	if (likely(!mm->context.pmd_frag)) {
322 		atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
323 		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
324 	}
325 	spin_unlock(&mm->page_table_lock);
326 
327 	return (pmd_t *)ret;
328 }
329 
330 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
331 {
332 	pmd_t *pmd;
333 
334 	pmd = get_pmd_from_cache(mm);
335 	if (pmd)
336 		return pmd;
337 
338 	return __alloc_for_pmdcache(mm);
339 }
340 
341 void pmd_fragment_free(unsigned long *pmd)
342 {
343 	struct page *page = virt_to_page(pmd);
344 
345 	if (PageReserved(page))
346 		return free_reserved_page(page);
347 
348 	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
349 	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
350 		pgtable_pmd_page_dtor(page);
351 		__free_page(page);
352 	}
353 }
354 
355 static inline void pgtable_free(void *table, int index)
356 {
357 	switch (index) {
358 	case PTE_INDEX:
359 		pte_fragment_free(table, 0);
360 		break;
361 	case PMD_INDEX:
362 		pmd_fragment_free(table);
363 		break;
364 	case PUD_INDEX:
365 		__pud_free(table);
366 		break;
367 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
368 		/* 16M hugepd directory at pud level */
369 	case HTLB_16M_INDEX:
370 		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
371 		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
372 		break;
373 		/* 16G hugepd directory at the pgd level */
374 	case HTLB_16G_INDEX:
375 		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
376 		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
377 		break;
378 #endif
379 		/* We don't free pgd table via RCU callback */
380 	default:
381 		BUG();
382 	}
383 }
384 
385 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
386 {
387 	unsigned long pgf = (unsigned long)table;
388 
389 	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
390 	pgf |= index;
391 	tlb_remove_table(tlb, (void *)pgf);
392 }
393 
394 void __tlb_remove_table(void *_table)
395 {
396 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
397 	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
398 
399 	return pgtable_free(table, index);
400 }
401 
402 #ifdef CONFIG_PROC_FS
403 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
404 
405 void arch_report_meminfo(struct seq_file *m)
406 {
407 	/*
408 	 * Hash maps the memory with one size mmu_linear_psize.
409 	 * So don't bother to print these on hash
410 	 */
411 	if (!radix_enabled())
412 		return;
413 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
414 		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
415 	seq_printf(m, "DirectMap64k:    %8lu kB\n",
416 		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
417 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
418 		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
419 	seq_printf(m, "DirectMap1G:    %8lu kB\n",
420 		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
421 }
422 #endif /* CONFIG_PROC_FS */
423 
424 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
425 			     pte_t *ptep)
426 {
427 	unsigned long pte_val;
428 
429 	/*
430 	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
431 	 * possible. Also keep the pte_present true so that we don't take
432 	 * wrong fault.
433 	 */
434 	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
435 
436 	return __pte(pte_val);
437 
438 }
439 
440 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
441 			     pte_t *ptep, pte_t old_pte, pte_t pte)
442 {
443 	if (radix_enabled())
444 		return radix__ptep_modify_prot_commit(vma, addr,
445 						      ptep, old_pte, pte);
446 	set_pte_at(vma->vm_mm, addr, ptep, pte);
447 }
448 
449 /*
450  * For hash translation mode, we use the deposited table to store hash slot
451  * information and they are stored at PTRS_PER_PMD offset from related pmd
452  * location. Hence a pmd move requires deposit and withdraw.
453  *
454  * For radix translation with split pmd ptl, we store the deposited table in the
455  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
456  * move.
457  *
458  * With hash we use deposited table always irrespective of anon or not.
459  * With radix we use deposited table only for anonymous mapping.
460  */
461 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
462 			   struct spinlock *old_pmd_ptl,
463 			   struct vm_area_struct *vma)
464 {
465 	if (radix_enabled())
466 		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
467 
468 	return true;
469 }
470 
471 /*
472  * Does the CPU support tlbie?
473  */
474 bool tlbie_capable __read_mostly = true;
475 EXPORT_SYMBOL(tlbie_capable);
476 
477 /*
478  * Should tlbie be used for management of CPU TLBs, for kernel and process
479  * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
480  * guest address spaces.
481  */
482 bool tlbie_enabled __read_mostly = true;
483 
484 static int __init setup_disable_tlbie(char *str)
485 {
486 	if (!radix_enabled()) {
487 		pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
488 		return 1;
489 	}
490 
491 	tlbie_capable = false;
492 	tlbie_enabled = false;
493 
494         return 1;
495 }
496 __setup("disable_tlbie", setup_disable_tlbie);
497 
498 static int __init pgtable_debugfs_setup(void)
499 {
500 	if (!tlbie_capable)
501 		return 0;
502 
503 	/*
504 	 * There is no locking vs tlb flushing when changing this value.
505 	 * The tlb flushers will see one value or another, and use either
506 	 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
507 	 * invalidated as expected.
508 	 */
509 	debugfs_create_bool("tlbie_enabled", 0600,
510 			powerpc_debugfs_root,
511 			&tlbie_enabled);
512 
513 	return 0;
514 }
515 arch_initcall(pgtable_debugfs_setup);
516