xref: /openbmc/linux/arch/powerpc/mm/book3s64/pgtable.c (revision 1d27a0be)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <misc/cxl-base.h>
10 
11 #include <asm/debugfs.h>
12 #include <asm/pgalloc.h>
13 #include <asm/tlb.h>
14 #include <asm/trace.h>
15 #include <asm/powernv.h>
16 #include <asm/firmware.h>
17 #include <asm/ultravisor.h>
18 
19 #include <mm/mmu_decl.h>
20 #include <trace/events/thp.h>
21 
22 unsigned long __pmd_frag_nr;
23 EXPORT_SYMBOL(__pmd_frag_nr);
24 unsigned long __pmd_frag_size_shift;
25 EXPORT_SYMBOL(__pmd_frag_size_shift);
26 
27 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
28 /*
29  * This is called when relaxing access to a hugepage. It's also called in the page
30  * fault path when we don't hit any of the major fault cases, ie, a minor
31  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
32  * handled those two for us, we additionally deal with missing execute
33  * permission here on some processors
34  */
35 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
36 			  pmd_t *pmdp, pmd_t entry, int dirty)
37 {
38 	int changed;
39 #ifdef CONFIG_DEBUG_VM
40 	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
41 	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
42 #endif
43 	changed = !pmd_same(*(pmdp), entry);
44 	if (changed) {
45 		/*
46 		 * We can use MMU_PAGE_2M here, because only radix
47 		 * path look at the psize.
48 		 */
49 		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
50 					pmd_pte(entry), address, MMU_PAGE_2M);
51 	}
52 	return changed;
53 }
54 
55 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
56 			      unsigned long address, pmd_t *pmdp)
57 {
58 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
59 }
60 /*
61  * set a new huge pmd. We should not be called for updating
62  * an existing pmd entry. That should go via pmd_hugepage_update.
63  */
64 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
65 		pmd_t *pmdp, pmd_t pmd)
66 {
67 #ifdef CONFIG_DEBUG_VM
68 	/*
69 	 * Make sure hardware valid bit is not set. We don't do
70 	 * tlb flush for this update.
71 	 */
72 
73 	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
74 	assert_spin_locked(pmd_lockptr(mm, pmdp));
75 	WARN_ON(!(pmd_large(pmd)));
76 #endif
77 	trace_hugepage_set_pmd(addr, pmd_val(pmd));
78 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
79 }
80 
81 static void do_nothing(void *unused)
82 {
83 
84 }
85 /*
86  * Serialize against find_current_mm_pte which does lock-less
87  * lookup in page tables with local interrupts disabled. For huge pages
88  * it casts pmd_t to pte_t. Since format of pte_t is different from
89  * pmd_t we want to prevent transit from pmd pointing to page table
90  * to pmd pointing to huge page (and back) while interrupts are disabled.
91  * We clear pmd to possibly replace it with page table pointer in
92  * different code paths. So make sure we wait for the parallel
93  * find_current_mm_pte to finish.
94  */
95 void serialize_against_pte_lookup(struct mm_struct *mm)
96 {
97 	smp_mb();
98 	smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
99 }
100 
101 /*
102  * We use this to invalidate a pmdp entry before switching from a
103  * hugepte to regular pmd entry.
104  */
105 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
106 		     pmd_t *pmdp)
107 {
108 	unsigned long old_pmd;
109 
110 	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
111 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
112 	return __pmd(old_pmd);
113 }
114 
115 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
116 				   unsigned long addr, pmd_t *pmdp, int full)
117 {
118 	pmd_t pmd;
119 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
120 	VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
121 		   !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
122 	pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
123 	/*
124 	 * if it not a fullmm flush, then we can possibly end up converting
125 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
126 	 * Make sure we flush the tlb in this case.
127 	 */
128 	if (!full)
129 		flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
130 	return pmd;
131 }
132 
133 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
134 {
135 	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
136 }
137 
138 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
139 {
140 	unsigned long pmdv;
141 
142 	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
143 	return pmd_set_protbits(__pmd(pmdv), pgprot);
144 }
145 
146 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
147 {
148 	return pfn_pmd(page_to_pfn(page), pgprot);
149 }
150 
151 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
152 {
153 	unsigned long pmdv;
154 
155 	pmdv = pmd_val(pmd);
156 	pmdv &= _HPAGE_CHG_MASK;
157 	return pmd_set_protbits(__pmd(pmdv), newprot);
158 }
159 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
160 
161 /* For use by kexec */
162 void mmu_cleanup_all(void)
163 {
164 	if (radix_enabled())
165 		radix__mmu_cleanup_all();
166 	else if (mmu_hash_ops.hpte_clear_all)
167 		mmu_hash_ops.hpte_clear_all();
168 }
169 
170 #ifdef CONFIG_MEMORY_HOTPLUG
171 int __meminit create_section_mapping(unsigned long start, unsigned long end,
172 				     int nid, pgprot_t prot)
173 {
174 	if (radix_enabled())
175 		return radix__create_section_mapping(start, end, nid, prot);
176 
177 	return hash__create_section_mapping(start, end, nid, prot);
178 }
179 
180 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
181 {
182 	if (radix_enabled())
183 		return radix__remove_section_mapping(start, end);
184 
185 	return hash__remove_section_mapping(start, end);
186 }
187 #endif /* CONFIG_MEMORY_HOTPLUG */
188 
189 void __init mmu_partition_table_init(void)
190 {
191 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
192 	unsigned long ptcr;
193 
194 	BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
195 	/* Initialize the Partition Table with no entries */
196 	partition_tb = memblock_alloc(patb_size, patb_size);
197 	if (!partition_tb)
198 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
199 		      __func__, patb_size, patb_size);
200 
201 	/*
202 	 * update partition table control register,
203 	 * 64 K size.
204 	 */
205 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
206 	set_ptcr_when_no_uv(ptcr);
207 	powernv_set_nmmu_ptcr(ptcr);
208 }
209 
210 static void flush_partition(unsigned int lpid, bool radix)
211 {
212 	if (radix) {
213 		radix__flush_all_lpid(lpid);
214 		radix__flush_all_lpid_guest(lpid);
215 	} else {
216 		asm volatile("ptesync" : : : "memory");
217 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
218 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
219 		/* do we need fixup here ?*/
220 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
221 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
222 	}
223 }
224 
225 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
226 				  unsigned long dw1, bool flush)
227 {
228 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
229 
230 	/*
231 	 * When ultravisor is enabled, the partition table is stored in secure
232 	 * memory and can only be accessed doing an ultravisor call. However, we
233 	 * maintain a copy of the partition table in normal memory to allow Nest
234 	 * MMU translations to occur (for normal VMs).
235 	 *
236 	 * Therefore, here we always update partition_tb, regardless of whether
237 	 * we are running under an ultravisor or not.
238 	 */
239 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
240 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
241 
242 	/*
243 	 * If ultravisor is enabled, we do an ultravisor call to register the
244 	 * partition table entry (PATE), which also do a global flush of TLBs
245 	 * and partition table caches for the lpid. Otherwise, just do the
246 	 * flush. The type of flush (hash or radix) depends on what the previous
247 	 * use of the partition ID was, not the new use.
248 	 */
249 	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
250 		uv_register_pate(lpid, dw0, dw1);
251 		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
252 			dw0, dw1);
253 	} else if (flush) {
254 		/*
255 		 * Boot does not need to flush, because MMU is off and each
256 		 * CPU does a tlbiel_all() before switching them on, which
257 		 * flushes everything.
258 		 */
259 		flush_partition(lpid, (old & PATB_HR));
260 	}
261 }
262 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
263 
264 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
265 {
266 	void *pmd_frag, *ret;
267 
268 	if (PMD_FRAG_NR == 1)
269 		return NULL;
270 
271 	spin_lock(&mm->page_table_lock);
272 	ret = mm->context.pmd_frag;
273 	if (ret) {
274 		pmd_frag = ret + PMD_FRAG_SIZE;
275 		/*
276 		 * If we have taken up all the fragments mark PTE page NULL
277 		 */
278 		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
279 			pmd_frag = NULL;
280 		mm->context.pmd_frag = pmd_frag;
281 	}
282 	spin_unlock(&mm->page_table_lock);
283 	return (pmd_t *)ret;
284 }
285 
286 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
287 {
288 	void *ret = NULL;
289 	struct page *page;
290 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
291 
292 	if (mm == &init_mm)
293 		gfp &= ~__GFP_ACCOUNT;
294 	page = alloc_page(gfp);
295 	if (!page)
296 		return NULL;
297 	if (!pgtable_pmd_page_ctor(page)) {
298 		__free_pages(page, 0);
299 		return NULL;
300 	}
301 
302 	atomic_set(&page->pt_frag_refcount, 1);
303 
304 	ret = page_address(page);
305 	/*
306 	 * if we support only one fragment just return the
307 	 * allocated page.
308 	 */
309 	if (PMD_FRAG_NR == 1)
310 		return ret;
311 
312 	spin_lock(&mm->page_table_lock);
313 	/*
314 	 * If we find pgtable_page set, we return
315 	 * the allocated page with single fragement
316 	 * count.
317 	 */
318 	if (likely(!mm->context.pmd_frag)) {
319 		atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
320 		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
321 	}
322 	spin_unlock(&mm->page_table_lock);
323 
324 	return (pmd_t *)ret;
325 }
326 
327 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
328 {
329 	pmd_t *pmd;
330 
331 	pmd = get_pmd_from_cache(mm);
332 	if (pmd)
333 		return pmd;
334 
335 	return __alloc_for_pmdcache(mm);
336 }
337 
338 void pmd_fragment_free(unsigned long *pmd)
339 {
340 	struct page *page = virt_to_page(pmd);
341 
342 	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
343 	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
344 		pgtable_pmd_page_dtor(page);
345 		__free_page(page);
346 	}
347 }
348 
349 static inline void pgtable_free(void *table, int index)
350 {
351 	switch (index) {
352 	case PTE_INDEX:
353 		pte_fragment_free(table, 0);
354 		break;
355 	case PMD_INDEX:
356 		pmd_fragment_free(table);
357 		break;
358 	case PUD_INDEX:
359 		kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table);
360 		break;
361 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
362 		/* 16M hugepd directory at pud level */
363 	case HTLB_16M_INDEX:
364 		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
365 		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
366 		break;
367 		/* 16G hugepd directory at the pgd level */
368 	case HTLB_16G_INDEX:
369 		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
370 		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
371 		break;
372 #endif
373 		/* We don't free pgd table via RCU callback */
374 	default:
375 		BUG();
376 	}
377 }
378 
379 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
380 {
381 	unsigned long pgf = (unsigned long)table;
382 
383 	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
384 	pgf |= index;
385 	tlb_remove_table(tlb, (void *)pgf);
386 }
387 
388 void __tlb_remove_table(void *_table)
389 {
390 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
391 	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
392 
393 	return pgtable_free(table, index);
394 }
395 
396 #ifdef CONFIG_PROC_FS
397 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
398 
399 void arch_report_meminfo(struct seq_file *m)
400 {
401 	/*
402 	 * Hash maps the memory with one size mmu_linear_psize.
403 	 * So don't bother to print these on hash
404 	 */
405 	if (!radix_enabled())
406 		return;
407 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
408 		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
409 	seq_printf(m, "DirectMap64k:    %8lu kB\n",
410 		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
411 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
412 		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
413 	seq_printf(m, "DirectMap1G:    %8lu kB\n",
414 		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
415 }
416 #endif /* CONFIG_PROC_FS */
417 
418 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
419 			     pte_t *ptep)
420 {
421 	unsigned long pte_val;
422 
423 	/*
424 	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
425 	 * possible. Also keep the pte_present true so that we don't take
426 	 * wrong fault.
427 	 */
428 	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
429 
430 	return __pte(pte_val);
431 
432 }
433 
434 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
435 			     pte_t *ptep, pte_t old_pte, pte_t pte)
436 {
437 	if (radix_enabled())
438 		return radix__ptep_modify_prot_commit(vma, addr,
439 						      ptep, old_pte, pte);
440 	set_pte_at(vma->vm_mm, addr, ptep, pte);
441 }
442 
443 /*
444  * For hash translation mode, we use the deposited table to store hash slot
445  * information and they are stored at PTRS_PER_PMD offset from related pmd
446  * location. Hence a pmd move requires deposit and withdraw.
447  *
448  * For radix translation with split pmd ptl, we store the deposited table in the
449  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
450  * move.
451  *
452  * With hash we use deposited table always irrespective of anon or not.
453  * With radix we use deposited table only for anonymous mapping.
454  */
455 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
456 			   struct spinlock *old_pmd_ptl,
457 			   struct vm_area_struct *vma)
458 {
459 	if (radix_enabled())
460 		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
461 
462 	return true;
463 }
464 
465 /*
466  * Does the CPU support tlbie?
467  */
468 bool tlbie_capable __read_mostly = true;
469 EXPORT_SYMBOL(tlbie_capable);
470 
471 /*
472  * Should tlbie be used for management of CPU TLBs, for kernel and process
473  * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
474  * guest address spaces.
475  */
476 bool tlbie_enabled __read_mostly = true;
477 
478 static int __init setup_disable_tlbie(char *str)
479 {
480 	if (!radix_enabled()) {
481 		pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
482 		return 1;
483 	}
484 
485 	tlbie_capable = false;
486 	tlbie_enabled = false;
487 
488         return 1;
489 }
490 __setup("disable_tlbie", setup_disable_tlbie);
491 
492 static int __init pgtable_debugfs_setup(void)
493 {
494 	if (!tlbie_capable)
495 		return 0;
496 
497 	/*
498 	 * There is no locking vs tlb flushing when changing this value.
499 	 * The tlb flushers will see one value or another, and use either
500 	 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
501 	 * invalidated as expected.
502 	 */
503 	debugfs_create_bool("tlbie_enabled", 0600,
504 			powerpc_debugfs_root,
505 			&tlbie_enabled);
506 
507 	return 0;
508 }
509 arch_initcall(pgtable_debugfs_setup);
510