1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/mm_types.h> 8 #include <linux/memblock.h> 9 #include <linux/memremap.h> 10 #include <linux/pkeys.h> 11 #include <linux/debugfs.h> 12 #include <linux/proc_fs.h> 13 #include <misc/cxl-base.h> 14 15 #include <asm/pgalloc.h> 16 #include <asm/tlb.h> 17 #include <asm/trace.h> 18 #include <asm/powernv.h> 19 #include <asm/firmware.h> 20 #include <asm/ultravisor.h> 21 #include <asm/kexec.h> 22 23 #include <mm/mmu_decl.h> 24 #include <trace/events/thp.h> 25 26 #include "internal.h" 27 28 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; 29 EXPORT_SYMBOL_GPL(mmu_psize_defs); 30 31 #ifdef CONFIG_SPARSEMEM_VMEMMAP 32 int mmu_vmemmap_psize = MMU_PAGE_4K; 33 #endif 34 35 unsigned long __pmd_frag_nr; 36 EXPORT_SYMBOL(__pmd_frag_nr); 37 unsigned long __pmd_frag_size_shift; 38 EXPORT_SYMBOL(__pmd_frag_size_shift); 39 40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 41 /* 42 * This is called when relaxing access to a hugepage. It's also called in the page 43 * fault path when we don't hit any of the major fault cases, ie, a minor 44 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have 45 * handled those two for us, we additionally deal with missing execute 46 * permission here on some processors 47 */ 48 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 49 pmd_t *pmdp, pmd_t entry, int dirty) 50 { 51 int changed; 52 #ifdef CONFIG_DEBUG_VM 53 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); 54 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); 55 #endif 56 changed = !pmd_same(*(pmdp), entry); 57 if (changed) { 58 /* 59 * We can use MMU_PAGE_2M here, because only radix 60 * path look at the psize. 61 */ 62 __ptep_set_access_flags(vma, pmdp_ptep(pmdp), 63 pmd_pte(entry), address, MMU_PAGE_2M); 64 } 65 return changed; 66 } 67 68 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 69 pud_t *pudp, pud_t entry, int dirty) 70 { 71 int changed; 72 #ifdef CONFIG_DEBUG_VM 73 WARN_ON(!pud_devmap(*pudp)); 74 assert_spin_locked(pud_lockptr(vma->vm_mm, pudp)); 75 #endif 76 changed = !pud_same(*(pudp), entry); 77 if (changed) { 78 /* 79 * We can use MMU_PAGE_1G here, because only radix 80 * path look at the psize. 81 */ 82 __ptep_set_access_flags(vma, pudp_ptep(pudp), 83 pud_pte(entry), address, MMU_PAGE_1G); 84 } 85 return changed; 86 } 87 88 89 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 90 unsigned long address, pmd_t *pmdp) 91 { 92 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); 93 } 94 95 int pudp_test_and_clear_young(struct vm_area_struct *vma, 96 unsigned long address, pud_t *pudp) 97 { 98 return __pudp_test_and_clear_young(vma->vm_mm, address, pudp); 99 } 100 101 /* 102 * set a new huge pmd. We should not be called for updating 103 * an existing pmd entry. That should go via pmd_hugepage_update. 104 */ 105 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 106 pmd_t *pmdp, pmd_t pmd) 107 { 108 #ifdef CONFIG_DEBUG_VM 109 /* 110 * Make sure hardware valid bit is not set. We don't do 111 * tlb flush for this update. 112 */ 113 114 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); 115 assert_spin_locked(pmd_lockptr(mm, pmdp)); 116 WARN_ON(!(pmd_large(pmd))); 117 #endif 118 trace_hugepage_set_pmd(addr, pmd_val(pmd)); 119 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); 120 } 121 122 void set_pud_at(struct mm_struct *mm, unsigned long addr, 123 pud_t *pudp, pud_t pud) 124 { 125 #ifdef CONFIG_DEBUG_VM 126 /* 127 * Make sure hardware valid bit is not set. We don't do 128 * tlb flush for this update. 129 */ 130 131 WARN_ON(pte_hw_valid(pud_pte(*pudp))); 132 assert_spin_locked(pud_lockptr(mm, pudp)); 133 WARN_ON(!(pud_large(pud))); 134 #endif 135 trace_hugepage_set_pud(addr, pud_val(pud)); 136 return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud)); 137 } 138 139 static void do_serialize(void *arg) 140 { 141 /* We've taken the IPI, so try to trim the mask while here */ 142 if (radix_enabled()) { 143 struct mm_struct *mm = arg; 144 exit_lazy_flush_tlb(mm, false); 145 } 146 } 147 148 /* 149 * Serialize against __find_linux_pte() which does lock-less 150 * lookup in page tables with local interrupts disabled. For huge pages 151 * it casts pmd_t to pte_t. Since format of pte_t is different from 152 * pmd_t we want to prevent transit from pmd pointing to page table 153 * to pmd pointing to huge page (and back) while interrupts are disabled. 154 * We clear pmd to possibly replace it with page table pointer in 155 * different code paths. So make sure we wait for the parallel 156 * __find_linux_pte() to finish. 157 */ 158 void serialize_against_pte_lookup(struct mm_struct *mm) 159 { 160 smp_mb(); 161 smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1); 162 } 163 164 /* 165 * We use this to invalidate a pmdp entry before switching from a 166 * hugepte to regular pmd entry. 167 */ 168 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 169 pmd_t *pmdp) 170 { 171 unsigned long old_pmd; 172 173 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); 174 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 175 return __pmd(old_pmd); 176 } 177 178 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 179 unsigned long addr, pmd_t *pmdp, int full) 180 { 181 pmd_t pmd; 182 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 183 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) && 184 !pmd_devmap(*pmdp)) || !pmd_present(*pmdp)); 185 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 186 /* 187 * if it not a fullmm flush, then we can possibly end up converting 188 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 189 * Make sure we flush the tlb in this case. 190 */ 191 if (!full) 192 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE); 193 return pmd; 194 } 195 196 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 197 unsigned long addr, pud_t *pudp, int full) 198 { 199 pud_t pud; 200 201 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 202 VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) || 203 !pud_present(*pudp)); 204 pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp); 205 /* 206 * if it not a fullmm flush, then we can possibly end up converting 207 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 208 * Make sure we flush the tlb in this case. 209 */ 210 if (!full) 211 flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE); 212 return pud; 213 } 214 215 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) 216 { 217 return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); 218 } 219 220 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot) 221 { 222 return __pud(pud_val(pud) | pgprot_val(pgprot)); 223 } 224 225 /* 226 * At some point we should be able to get rid of 227 * pmd_mkhuge() and mk_huge_pmd() when we update all the 228 * other archs to mark the pmd huge in pfn_pmd() 229 */ 230 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 231 { 232 unsigned long pmdv; 233 234 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 235 236 return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot)); 237 } 238 239 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot) 240 { 241 unsigned long pudv; 242 243 pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 244 245 return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot)); 246 } 247 248 pmd_t mk_pmd(struct page *page, pgprot_t pgprot) 249 { 250 return pfn_pmd(page_to_pfn(page), pgprot); 251 } 252 253 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 254 { 255 unsigned long pmdv; 256 257 pmdv = pmd_val(pmd); 258 pmdv &= _HPAGE_CHG_MASK; 259 return pmd_set_protbits(__pmd(pmdv), newprot); 260 } 261 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 262 263 /* For use by kexec, called with MMU off */ 264 notrace void mmu_cleanup_all(void) 265 { 266 if (radix_enabled()) 267 radix__mmu_cleanup_all(); 268 else if (mmu_hash_ops.hpte_clear_all) 269 mmu_hash_ops.hpte_clear_all(); 270 271 reset_sprs(); 272 } 273 274 #ifdef CONFIG_MEMORY_HOTPLUG 275 int __meminit create_section_mapping(unsigned long start, unsigned long end, 276 int nid, pgprot_t prot) 277 { 278 if (radix_enabled()) 279 return radix__create_section_mapping(start, end, nid, prot); 280 281 return hash__create_section_mapping(start, end, nid, prot); 282 } 283 284 int __meminit remove_section_mapping(unsigned long start, unsigned long end) 285 { 286 if (radix_enabled()) 287 return radix__remove_section_mapping(start, end); 288 289 return hash__remove_section_mapping(start, end); 290 } 291 #endif /* CONFIG_MEMORY_HOTPLUG */ 292 293 void __init mmu_partition_table_init(void) 294 { 295 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; 296 unsigned long ptcr; 297 298 /* Initialize the Partition Table with no entries */ 299 partition_tb = memblock_alloc(patb_size, patb_size); 300 if (!partition_tb) 301 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 302 __func__, patb_size, patb_size); 303 304 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); 305 set_ptcr_when_no_uv(ptcr); 306 powernv_set_nmmu_ptcr(ptcr); 307 } 308 309 static void flush_partition(unsigned int lpid, bool radix) 310 { 311 if (radix) { 312 radix__flush_all_lpid(lpid); 313 radix__flush_all_lpid_guest(lpid); 314 } else { 315 asm volatile("ptesync" : : : "memory"); 316 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : 317 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 318 /* do we need fixup here ?*/ 319 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 320 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); 321 } 322 } 323 324 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, 325 unsigned long dw1, bool flush) 326 { 327 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); 328 329 /* 330 * When ultravisor is enabled, the partition table is stored in secure 331 * memory and can only be accessed doing an ultravisor call. However, we 332 * maintain a copy of the partition table in normal memory to allow Nest 333 * MMU translations to occur (for normal VMs). 334 * 335 * Therefore, here we always update partition_tb, regardless of whether 336 * we are running under an ultravisor or not. 337 */ 338 partition_tb[lpid].patb0 = cpu_to_be64(dw0); 339 partition_tb[lpid].patb1 = cpu_to_be64(dw1); 340 341 /* 342 * If ultravisor is enabled, we do an ultravisor call to register the 343 * partition table entry (PATE), which also do a global flush of TLBs 344 * and partition table caches for the lpid. Otherwise, just do the 345 * flush. The type of flush (hash or radix) depends on what the previous 346 * use of the partition ID was, not the new use. 347 */ 348 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) { 349 uv_register_pate(lpid, dw0, dw1); 350 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n", 351 dw0, dw1); 352 } else if (flush) { 353 /* 354 * Boot does not need to flush, because MMU is off and each 355 * CPU does a tlbiel_all() before switching them on, which 356 * flushes everything. 357 */ 358 flush_partition(lpid, (old & PATB_HR)); 359 } 360 } 361 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); 362 363 static pmd_t *get_pmd_from_cache(struct mm_struct *mm) 364 { 365 void *pmd_frag, *ret; 366 367 if (PMD_FRAG_NR == 1) 368 return NULL; 369 370 spin_lock(&mm->page_table_lock); 371 ret = mm->context.pmd_frag; 372 if (ret) { 373 pmd_frag = ret + PMD_FRAG_SIZE; 374 /* 375 * If we have taken up all the fragments mark PTE page NULL 376 */ 377 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) 378 pmd_frag = NULL; 379 mm->context.pmd_frag = pmd_frag; 380 } 381 spin_unlock(&mm->page_table_lock); 382 return (pmd_t *)ret; 383 } 384 385 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) 386 { 387 void *ret = NULL; 388 struct ptdesc *ptdesc; 389 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; 390 391 if (mm == &init_mm) 392 gfp &= ~__GFP_ACCOUNT; 393 ptdesc = pagetable_alloc(gfp, 0); 394 if (!ptdesc) 395 return NULL; 396 if (!pagetable_pmd_ctor(ptdesc)) { 397 pagetable_free(ptdesc); 398 return NULL; 399 } 400 401 atomic_set(&ptdesc->pt_frag_refcount, 1); 402 403 ret = ptdesc_address(ptdesc); 404 /* 405 * if we support only one fragment just return the 406 * allocated page. 407 */ 408 if (PMD_FRAG_NR == 1) 409 return ret; 410 411 spin_lock(&mm->page_table_lock); 412 /* 413 * If we find ptdesc_page set, we return 414 * the allocated page with single fragment 415 * count. 416 */ 417 if (likely(!mm->context.pmd_frag)) { 418 atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR); 419 mm->context.pmd_frag = ret + PMD_FRAG_SIZE; 420 } 421 spin_unlock(&mm->page_table_lock); 422 423 return (pmd_t *)ret; 424 } 425 426 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) 427 { 428 pmd_t *pmd; 429 430 pmd = get_pmd_from_cache(mm); 431 if (pmd) 432 return pmd; 433 434 return __alloc_for_pmdcache(mm); 435 } 436 437 void pmd_fragment_free(unsigned long *pmd) 438 { 439 struct ptdesc *ptdesc = virt_to_ptdesc(pmd); 440 441 if (pagetable_is_reserved(ptdesc)) 442 return free_reserved_ptdesc(ptdesc); 443 444 BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0); 445 if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) { 446 pagetable_pmd_dtor(ptdesc); 447 pagetable_free(ptdesc); 448 } 449 } 450 451 static inline void pgtable_free(void *table, int index) 452 { 453 switch (index) { 454 case PTE_INDEX: 455 pte_fragment_free(table, 0); 456 break; 457 case PMD_INDEX: 458 pmd_fragment_free(table); 459 break; 460 case PUD_INDEX: 461 __pud_free(table); 462 break; 463 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE) 464 /* 16M hugepd directory at pud level */ 465 case HTLB_16M_INDEX: 466 BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0); 467 kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table); 468 break; 469 /* 16G hugepd directory at the pgd level */ 470 case HTLB_16G_INDEX: 471 BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0); 472 kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table); 473 break; 474 #endif 475 /* We don't free pgd table via RCU callback */ 476 default: 477 BUG(); 478 } 479 } 480 481 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) 482 { 483 unsigned long pgf = (unsigned long)table; 484 485 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); 486 pgf |= index; 487 tlb_remove_table(tlb, (void *)pgf); 488 } 489 490 void __tlb_remove_table(void *_table) 491 { 492 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 493 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 494 495 return pgtable_free(table, index); 496 } 497 498 #ifdef CONFIG_PROC_FS 499 atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; 500 501 void arch_report_meminfo(struct seq_file *m) 502 { 503 /* 504 * Hash maps the memory with one size mmu_linear_psize. 505 * So don't bother to print these on hash 506 */ 507 if (!radix_enabled()) 508 return; 509 seq_printf(m, "DirectMap4k: %8lu kB\n", 510 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); 511 seq_printf(m, "DirectMap64k: %8lu kB\n", 512 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); 513 seq_printf(m, "DirectMap2M: %8lu kB\n", 514 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); 515 seq_printf(m, "DirectMap1G: %8lu kB\n", 516 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); 517 } 518 #endif /* CONFIG_PROC_FS */ 519 520 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, 521 pte_t *ptep) 522 { 523 unsigned long pte_val; 524 525 /* 526 * Clear the _PAGE_PRESENT so that no hardware parallel update is 527 * possible. Also keep the pte_present true so that we don't take 528 * wrong fault. 529 */ 530 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); 531 532 return __pte(pte_val); 533 534 } 535 536 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 537 pte_t *ptep, pte_t old_pte, pte_t pte) 538 { 539 if (radix_enabled()) 540 return radix__ptep_modify_prot_commit(vma, addr, 541 ptep, old_pte, pte); 542 set_pte_at(vma->vm_mm, addr, ptep, pte); 543 } 544 545 /* 546 * For hash translation mode, we use the deposited table to store hash slot 547 * information and they are stored at PTRS_PER_PMD offset from related pmd 548 * location. Hence a pmd move requires deposit and withdraw. 549 * 550 * For radix translation with split pmd ptl, we store the deposited table in the 551 * pmd page. Hence if we have different pmd page we need to withdraw during pmd 552 * move. 553 * 554 * With hash we use deposited table always irrespective of anon or not. 555 * With radix we use deposited table only for anonymous mapping. 556 */ 557 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 558 struct spinlock *old_pmd_ptl, 559 struct vm_area_struct *vma) 560 { 561 if (radix_enabled()) 562 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 563 564 return true; 565 } 566 567 /* 568 * Does the CPU support tlbie? 569 */ 570 bool tlbie_capable __read_mostly = true; 571 EXPORT_SYMBOL(tlbie_capable); 572 573 /* 574 * Should tlbie be used for management of CPU TLBs, for kernel and process 575 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM 576 * guest address spaces. 577 */ 578 bool tlbie_enabled __read_mostly = true; 579 580 static int __init setup_disable_tlbie(char *str) 581 { 582 if (!radix_enabled()) { 583 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n"); 584 return 1; 585 } 586 587 tlbie_capable = false; 588 tlbie_enabled = false; 589 590 return 1; 591 } 592 __setup("disable_tlbie", setup_disable_tlbie); 593 594 static int __init pgtable_debugfs_setup(void) 595 { 596 if (!tlbie_capable) 597 return 0; 598 599 /* 600 * There is no locking vs tlb flushing when changing this value. 601 * The tlb flushers will see one value or another, and use either 602 * tlbie or tlbiel with IPIs. In both cases the TLBs will be 603 * invalidated as expected. 604 */ 605 debugfs_create_bool("tlbie_enabled", 0600, 606 arch_debugfs_dir, 607 &tlbie_enabled); 608 609 return 0; 610 } 611 arch_initcall(pgtable_debugfs_setup); 612 613 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN) 614 /* 615 * Override the generic version in mm/memremap.c. 616 * 617 * With hash translation, the direct-map range is mapped with just one 618 * page size selected by htab_init_page_sizes(). Consult 619 * mmu_psize_defs[] to determine the minimum page size alignment. 620 */ 621 unsigned long memremap_compat_align(void) 622 { 623 if (!radix_enabled()) { 624 unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift; 625 return max(SUBSECTION_SIZE, 1UL << shift); 626 } 627 628 return SUBSECTION_SIZE; 629 } 630 EXPORT_SYMBOL_GPL(memremap_compat_align); 631 #endif 632 633 pgprot_t vm_get_page_prot(unsigned long vm_flags) 634 { 635 unsigned long prot; 636 637 /* Radix supports execute-only, but protection_map maps X -> RX */ 638 if (radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)) { 639 prot = pgprot_val(PAGE_EXECONLY); 640 } else { 641 prot = pgprot_val(protection_map[vm_flags & 642 (VM_ACCESS_FLAGS | VM_SHARED)]); 643 } 644 645 if (vm_flags & VM_SAO) 646 prot |= _PAGE_SAO; 647 648 #ifdef CONFIG_PPC_MEM_KEYS 649 prot |= vmflag_to_pte_pkey_bits(vm_flags); 650 #endif 651 652 return __pgprot(prot); 653 } 654 EXPORT_SYMBOL(vm_get_page_prot); 655