1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/mm_types.h> 8 #include <linux/memblock.h> 9 #include <misc/cxl-base.h> 10 11 #include <asm/debugfs.h> 12 #include <asm/pgalloc.h> 13 #include <asm/tlb.h> 14 #include <asm/trace.h> 15 #include <asm/powernv.h> 16 #include <asm/firmware.h> 17 #include <asm/ultravisor.h> 18 19 #include <mm/mmu_decl.h> 20 #include <trace/events/thp.h> 21 22 unsigned long __pmd_frag_nr; 23 EXPORT_SYMBOL(__pmd_frag_nr); 24 unsigned long __pmd_frag_size_shift; 25 EXPORT_SYMBOL(__pmd_frag_size_shift); 26 27 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 28 /* 29 * This is called when relaxing access to a hugepage. It's also called in the page 30 * fault path when we don't hit any of the major fault cases, ie, a minor 31 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have 32 * handled those two for us, we additionally deal with missing execute 33 * permission here on some processors 34 */ 35 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 36 pmd_t *pmdp, pmd_t entry, int dirty) 37 { 38 int changed; 39 #ifdef CONFIG_DEBUG_VM 40 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); 41 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); 42 #endif 43 changed = !pmd_same(*(pmdp), entry); 44 if (changed) { 45 /* 46 * We can use MMU_PAGE_2M here, because only radix 47 * path look at the psize. 48 */ 49 __ptep_set_access_flags(vma, pmdp_ptep(pmdp), 50 pmd_pte(entry), address, MMU_PAGE_2M); 51 } 52 return changed; 53 } 54 55 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 56 unsigned long address, pmd_t *pmdp) 57 { 58 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); 59 } 60 /* 61 * set a new huge pmd. We should not be called for updating 62 * an existing pmd entry. That should go via pmd_hugepage_update. 63 */ 64 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 65 pmd_t *pmdp, pmd_t pmd) 66 { 67 #ifdef CONFIG_DEBUG_VM 68 /* 69 * Make sure hardware valid bit is not set. We don't do 70 * tlb flush for this update. 71 */ 72 73 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); 74 assert_spin_locked(pmd_lockptr(mm, pmdp)); 75 WARN_ON(!(pmd_large(pmd))); 76 #endif 77 trace_hugepage_set_pmd(addr, pmd_val(pmd)); 78 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); 79 } 80 81 static void do_nothing(void *unused) 82 { 83 84 } 85 /* 86 * Serialize against find_current_mm_pte which does lock-less 87 * lookup in page tables with local interrupts disabled. For huge pages 88 * it casts pmd_t to pte_t. Since format of pte_t is different from 89 * pmd_t we want to prevent transit from pmd pointing to page table 90 * to pmd pointing to huge page (and back) while interrupts are disabled. 91 * We clear pmd to possibly replace it with page table pointer in 92 * different code paths. So make sure we wait for the parallel 93 * find_current_mm_pte to finish. 94 */ 95 void serialize_against_pte_lookup(struct mm_struct *mm) 96 { 97 smp_mb(); 98 smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1); 99 } 100 101 /* 102 * We use this to invalidate a pmdp entry before switching from a 103 * hugepte to regular pmd entry. 104 */ 105 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 106 pmd_t *pmdp) 107 { 108 unsigned long old_pmd; 109 110 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); 111 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 112 return __pmd(old_pmd); 113 } 114 115 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 116 unsigned long addr, pmd_t *pmdp, int full) 117 { 118 pmd_t pmd; 119 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 120 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) && 121 !pmd_devmap(*pmdp)) || !pmd_present(*pmdp)); 122 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 123 /* 124 * if it not a fullmm flush, then we can possibly end up converting 125 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 126 * Make sure we flush the tlb in this case. 127 */ 128 if (!full) 129 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE); 130 return pmd; 131 } 132 133 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) 134 { 135 return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); 136 } 137 138 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 139 { 140 unsigned long pmdv; 141 142 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 143 return pmd_set_protbits(__pmd(pmdv), pgprot); 144 } 145 146 pmd_t mk_pmd(struct page *page, pgprot_t pgprot) 147 { 148 return pfn_pmd(page_to_pfn(page), pgprot); 149 } 150 151 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 152 { 153 unsigned long pmdv; 154 155 pmdv = pmd_val(pmd); 156 pmdv &= _HPAGE_CHG_MASK; 157 return pmd_set_protbits(__pmd(pmdv), newprot); 158 } 159 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 160 161 /* For use by kexec */ 162 void mmu_cleanup_all(void) 163 { 164 if (radix_enabled()) 165 radix__mmu_cleanup_all(); 166 else if (mmu_hash_ops.hpte_clear_all) 167 mmu_hash_ops.hpte_clear_all(); 168 } 169 170 #ifdef CONFIG_MEMORY_HOTPLUG 171 int __meminit create_section_mapping(unsigned long start, unsigned long end, 172 int nid, pgprot_t prot) 173 { 174 if (radix_enabled()) 175 return radix__create_section_mapping(start, end, nid, prot); 176 177 return hash__create_section_mapping(start, end, nid, prot); 178 } 179 180 int __meminit remove_section_mapping(unsigned long start, unsigned long end) 181 { 182 if (radix_enabled()) 183 return radix__remove_section_mapping(start, end); 184 185 return hash__remove_section_mapping(start, end); 186 } 187 #endif /* CONFIG_MEMORY_HOTPLUG */ 188 189 void __init mmu_partition_table_init(void) 190 { 191 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; 192 unsigned long ptcr; 193 194 BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large."); 195 /* Initialize the Partition Table with no entries */ 196 partition_tb = memblock_alloc(patb_size, patb_size); 197 if (!partition_tb) 198 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 199 __func__, patb_size, patb_size); 200 201 /* 202 * update partition table control register, 203 * 64 K size. 204 */ 205 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); 206 set_ptcr_when_no_uv(ptcr); 207 powernv_set_nmmu_ptcr(ptcr); 208 } 209 210 static void flush_partition(unsigned int lpid, bool radix) 211 { 212 if (radix) { 213 radix__flush_all_lpid(lpid); 214 radix__flush_all_lpid_guest(lpid); 215 } else { 216 asm volatile("ptesync" : : : "memory"); 217 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : 218 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 219 /* do we need fixup here ?*/ 220 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 221 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); 222 } 223 } 224 225 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, 226 unsigned long dw1, bool flush) 227 { 228 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); 229 230 /* 231 * When ultravisor is enabled, the partition table is stored in secure 232 * memory and can only be accessed doing an ultravisor call. However, we 233 * maintain a copy of the partition table in normal memory to allow Nest 234 * MMU translations to occur (for normal VMs). 235 * 236 * Therefore, here we always update partition_tb, regardless of whether 237 * we are running under an ultravisor or not. 238 */ 239 partition_tb[lpid].patb0 = cpu_to_be64(dw0); 240 partition_tb[lpid].patb1 = cpu_to_be64(dw1); 241 242 /* 243 * If ultravisor is enabled, we do an ultravisor call to register the 244 * partition table entry (PATE), which also do a global flush of TLBs 245 * and partition table caches for the lpid. Otherwise, just do the 246 * flush. The type of flush (hash or radix) depends on what the previous 247 * use of the partition ID was, not the new use. 248 */ 249 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) { 250 uv_register_pate(lpid, dw0, dw1); 251 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n", 252 dw0, dw1); 253 } else if (flush) { 254 /* 255 * Boot does not need to flush, because MMU is off and each 256 * CPU does a tlbiel_all() before switching them on, which 257 * flushes everything. 258 */ 259 flush_partition(lpid, (old & PATB_HR)); 260 } 261 } 262 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); 263 264 static pmd_t *get_pmd_from_cache(struct mm_struct *mm) 265 { 266 void *pmd_frag, *ret; 267 268 if (PMD_FRAG_NR == 1) 269 return NULL; 270 271 spin_lock(&mm->page_table_lock); 272 ret = mm->context.pmd_frag; 273 if (ret) { 274 pmd_frag = ret + PMD_FRAG_SIZE; 275 /* 276 * If we have taken up all the fragments mark PTE page NULL 277 */ 278 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) 279 pmd_frag = NULL; 280 mm->context.pmd_frag = pmd_frag; 281 } 282 spin_unlock(&mm->page_table_lock); 283 return (pmd_t *)ret; 284 } 285 286 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) 287 { 288 void *ret = NULL; 289 struct page *page; 290 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; 291 292 if (mm == &init_mm) 293 gfp &= ~__GFP_ACCOUNT; 294 page = alloc_page(gfp); 295 if (!page) 296 return NULL; 297 if (!pgtable_pmd_page_ctor(page)) { 298 __free_pages(page, 0); 299 return NULL; 300 } 301 302 atomic_set(&page->pt_frag_refcount, 1); 303 304 ret = page_address(page); 305 /* 306 * if we support only one fragment just return the 307 * allocated page. 308 */ 309 if (PMD_FRAG_NR == 1) 310 return ret; 311 312 spin_lock(&mm->page_table_lock); 313 /* 314 * If we find pgtable_page set, we return 315 * the allocated page with single fragement 316 * count. 317 */ 318 if (likely(!mm->context.pmd_frag)) { 319 atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR); 320 mm->context.pmd_frag = ret + PMD_FRAG_SIZE; 321 } 322 spin_unlock(&mm->page_table_lock); 323 324 return (pmd_t *)ret; 325 } 326 327 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) 328 { 329 pmd_t *pmd; 330 331 pmd = get_pmd_from_cache(mm); 332 if (pmd) 333 return pmd; 334 335 return __alloc_for_pmdcache(mm); 336 } 337 338 void pmd_fragment_free(unsigned long *pmd) 339 { 340 struct page *page = virt_to_page(pmd); 341 342 BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0); 343 if (atomic_dec_and_test(&page->pt_frag_refcount)) { 344 pgtable_pmd_page_dtor(page); 345 __free_page(page); 346 } 347 } 348 349 static inline void pgtable_free(void *table, int index) 350 { 351 switch (index) { 352 case PTE_INDEX: 353 pte_fragment_free(table, 0); 354 break; 355 case PMD_INDEX: 356 pmd_fragment_free(table); 357 break; 358 case PUD_INDEX: 359 kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table); 360 break; 361 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE) 362 /* 16M hugepd directory at pud level */ 363 case HTLB_16M_INDEX: 364 BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0); 365 kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table); 366 break; 367 /* 16G hugepd directory at the pgd level */ 368 case HTLB_16G_INDEX: 369 BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0); 370 kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table); 371 break; 372 #endif 373 /* We don't free pgd table via RCU callback */ 374 default: 375 BUG(); 376 } 377 } 378 379 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) 380 { 381 unsigned long pgf = (unsigned long)table; 382 383 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); 384 pgf |= index; 385 tlb_remove_table(tlb, (void *)pgf); 386 } 387 388 void __tlb_remove_table(void *_table) 389 { 390 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 391 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 392 393 return pgtable_free(table, index); 394 } 395 396 #ifdef CONFIG_PROC_FS 397 atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; 398 399 void arch_report_meminfo(struct seq_file *m) 400 { 401 /* 402 * Hash maps the memory with one size mmu_linear_psize. 403 * So don't bother to print these on hash 404 */ 405 if (!radix_enabled()) 406 return; 407 seq_printf(m, "DirectMap4k: %8lu kB\n", 408 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); 409 seq_printf(m, "DirectMap64k: %8lu kB\n", 410 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); 411 seq_printf(m, "DirectMap2M: %8lu kB\n", 412 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); 413 seq_printf(m, "DirectMap1G: %8lu kB\n", 414 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); 415 } 416 #endif /* CONFIG_PROC_FS */ 417 418 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, 419 pte_t *ptep) 420 { 421 unsigned long pte_val; 422 423 /* 424 * Clear the _PAGE_PRESENT so that no hardware parallel update is 425 * possible. Also keep the pte_present true so that we don't take 426 * wrong fault. 427 */ 428 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); 429 430 return __pte(pte_val); 431 432 } 433 434 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 435 pte_t *ptep, pte_t old_pte, pte_t pte) 436 { 437 if (radix_enabled()) 438 return radix__ptep_modify_prot_commit(vma, addr, 439 ptep, old_pte, pte); 440 set_pte_at(vma->vm_mm, addr, ptep, pte); 441 } 442 443 /* 444 * For hash translation mode, we use the deposited table to store hash slot 445 * information and they are stored at PTRS_PER_PMD offset from related pmd 446 * location. Hence a pmd move requires deposit and withdraw. 447 * 448 * For radix translation with split pmd ptl, we store the deposited table in the 449 * pmd page. Hence if we have different pmd page we need to withdraw during pmd 450 * move. 451 * 452 * With hash we use deposited table always irrespective of anon or not. 453 * With radix we use deposited table only for anonymous mapping. 454 */ 455 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 456 struct spinlock *old_pmd_ptl, 457 struct vm_area_struct *vma) 458 { 459 if (radix_enabled()) 460 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 461 462 return true; 463 } 464 465 /* 466 * Does the CPU support tlbie? 467 */ 468 bool tlbie_capable __read_mostly = true; 469 EXPORT_SYMBOL(tlbie_capable); 470 471 /* 472 * Should tlbie be used for management of CPU TLBs, for kernel and process 473 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM 474 * guest address spaces. 475 */ 476 bool tlbie_enabled __read_mostly = true; 477 478 static int __init setup_disable_tlbie(char *str) 479 { 480 if (!radix_enabled()) { 481 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n"); 482 return 1; 483 } 484 485 tlbie_capable = false; 486 tlbie_enabled = false; 487 488 return 1; 489 } 490 __setup("disable_tlbie", setup_disable_tlbie); 491 492 static int __init pgtable_debugfs_setup(void) 493 { 494 if (!tlbie_capable) 495 return 0; 496 497 /* 498 * There is no locking vs tlb flushing when changing this value. 499 * The tlb flushers will see one value or another, and use either 500 * tlbie or tlbiel with IPIs. In both cases the TLBs will be 501 * invalidated as expected. 502 */ 503 debugfs_create_bool("tlbie_enabled", 0600, 504 powerpc_debugfs_root, 505 &tlbie_enabled); 506 507 return 0; 508 } 509 arch_initcall(pgtable_debugfs_setup); 510