1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  MMU context allocation for 64-bit kernels.
4  *
5  *  Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org>
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/mm.h>
14 #include <linux/pkeys.h>
15 #include <linux/spinlock.h>
16 #include <linux/idr.h>
17 #include <linux/export.h>
18 #include <linux/gfp.h>
19 #include <linux/slab.h>
20 #include <linux/cpu.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/pgalloc.h>
24 
25 #include "internal.h"
26 
27 static DEFINE_IDA(mmu_context_ida);
28 
29 static int alloc_context_id(int min_id, int max_id)
30 {
31 	return ida_alloc_range(&mmu_context_ida, min_id, max_id, GFP_KERNEL);
32 }
33 
34 void hash__reserve_context_id(int id)
35 {
36 	int result = ida_alloc_range(&mmu_context_ida, id, id, GFP_KERNEL);
37 
38 	WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result);
39 }
40 
41 int hash__alloc_context_id(void)
42 {
43 	unsigned long max;
44 
45 	if (mmu_has_feature(MMU_FTR_68_BIT_VA))
46 		max = MAX_USER_CONTEXT;
47 	else
48 		max = MAX_USER_CONTEXT_65BIT_VA;
49 
50 	return alloc_context_id(MIN_USER_CONTEXT, max);
51 }
52 EXPORT_SYMBOL_GPL(hash__alloc_context_id);
53 
54 static int realloc_context_ids(mm_context_t *ctx)
55 {
56 	int i, id;
57 
58 	/*
59 	 * id 0 (aka. ctx->id) is special, we always allocate a new one, even if
60 	 * there wasn't one allocated previously (which happens in the exec
61 	 * case where ctx is newly allocated).
62 	 *
63 	 * We have to be a bit careful here. We must keep the existing ids in
64 	 * the array, so that we can test if they're non-zero to decide if we
65 	 * need to allocate a new one. However in case of error we must free the
66 	 * ids we've allocated but *not* any of the existing ones (or risk a
67 	 * UAF). That's why we decrement i at the start of the error handling
68 	 * loop, to skip the id that we just tested but couldn't reallocate.
69 	 */
70 	for (i = 0; i < ARRAY_SIZE(ctx->extended_id); i++) {
71 		if (i == 0 || ctx->extended_id[i]) {
72 			id = hash__alloc_context_id();
73 			if (id < 0)
74 				goto error;
75 
76 			ctx->extended_id[i] = id;
77 		}
78 	}
79 
80 	/* The caller expects us to return id */
81 	return ctx->id;
82 
83 error:
84 	for (i--; i >= 0; i--) {
85 		if (ctx->extended_id[i])
86 			ida_free(&mmu_context_ida, ctx->extended_id[i]);
87 	}
88 
89 	return id;
90 }
91 
92 static int hash__init_new_context(struct mm_struct *mm)
93 {
94 	int index;
95 
96 	mm->context.hash_context = kmalloc(sizeof(struct hash_mm_context),
97 					   GFP_KERNEL);
98 	if (!mm->context.hash_context)
99 		return -ENOMEM;
100 
101 	/*
102 	 * The old code would re-promote on fork, we don't do that when using
103 	 * slices as it could cause problem promoting slices that have been
104 	 * forced down to 4K.
105 	 *
106 	 * For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check
107 	 * explicitly against context.id == 0. This ensures that we properly
108 	 * initialize context slice details for newly allocated mm's (which will
109 	 * have id == 0) and don't alter context slice inherited via fork (which
110 	 * will have id != 0).
111 	 *
112 	 * We should not be calling init_new_context() on init_mm. Hence a
113 	 * check against 0 is OK.
114 	 */
115 	if (mm->context.id == 0) {
116 		memset(mm->context.hash_context, 0, sizeof(struct hash_mm_context));
117 		slice_init_new_context_exec(mm);
118 	} else {
119 		/* This is fork. Copy hash_context details from current->mm */
120 		memcpy(mm->context.hash_context, current->mm->context.hash_context, sizeof(struct hash_mm_context));
121 #ifdef CONFIG_PPC_SUBPAGE_PROT
122 		/* inherit subpage prot detalis if we have one. */
123 		if (current->mm->context.hash_context->spt) {
124 			mm->context.hash_context->spt = kmalloc(sizeof(struct subpage_prot_table),
125 								GFP_KERNEL);
126 			if (!mm->context.hash_context->spt) {
127 				kfree(mm->context.hash_context);
128 				return -ENOMEM;
129 			}
130 		}
131 #endif
132 	}
133 
134 	index = realloc_context_ids(&mm->context);
135 	if (index < 0) {
136 #ifdef CONFIG_PPC_SUBPAGE_PROT
137 		kfree(mm->context.hash_context->spt);
138 #endif
139 		kfree(mm->context.hash_context);
140 		return index;
141 	}
142 
143 	pkey_mm_init(mm);
144 	return index;
145 }
146 
147 void hash__setup_new_exec(void)
148 {
149 	slice_setup_new_exec();
150 
151 	slb_setup_new_exec();
152 }
153 
154 static int radix__init_new_context(struct mm_struct *mm)
155 {
156 	unsigned long rts_field;
157 	int index, max_id;
158 
159 	max_id = (1 << mmu_pid_bits) - 1;
160 	index = alloc_context_id(mmu_base_pid, max_id);
161 	if (index < 0)
162 		return index;
163 
164 	/*
165 	 * set the process table entry,
166 	 */
167 	rts_field = radix__get_tree_size();
168 	process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE);
169 
170 	/*
171 	 * Order the above store with subsequent update of the PID
172 	 * register (at which point HW can start loading/caching
173 	 * the entry) and the corresponding load by the MMU from
174 	 * the L2 cache.
175 	 */
176 	asm volatile("ptesync;isync" : : : "memory");
177 
178 	mm->context.hash_context = NULL;
179 
180 	return index;
181 }
182 
183 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
184 {
185 	int index;
186 
187 	if (radix_enabled())
188 		index = radix__init_new_context(mm);
189 	else
190 		index = hash__init_new_context(mm);
191 
192 	if (index < 0)
193 		return index;
194 
195 	mm->context.id = index;
196 
197 	mm->context.pte_frag = NULL;
198 	mm->context.pmd_frag = NULL;
199 #ifdef CONFIG_SPAPR_TCE_IOMMU
200 	mm_iommu_init(mm);
201 #endif
202 	atomic_set(&mm->context.active_cpus, 0);
203 	atomic_set(&mm->context.copros, 0);
204 
205 	return 0;
206 }
207 
208 void __destroy_context(int context_id)
209 {
210 	ida_free(&mmu_context_ida, context_id);
211 }
212 EXPORT_SYMBOL_GPL(__destroy_context);
213 
214 static void destroy_contexts(mm_context_t *ctx)
215 {
216 	int index, context_id;
217 
218 	for (index = 0; index < ARRAY_SIZE(ctx->extended_id); index++) {
219 		context_id = ctx->extended_id[index];
220 		if (context_id)
221 			ida_free(&mmu_context_ida, context_id);
222 	}
223 	kfree(ctx->hash_context);
224 }
225 
226 static void pmd_frag_destroy(void *pmd_frag)
227 {
228 	int count;
229 	struct page *page;
230 
231 	page = virt_to_page(pmd_frag);
232 	/* drop all the pending references */
233 	count = ((unsigned long)pmd_frag & ~PAGE_MASK) >> PMD_FRAG_SIZE_SHIFT;
234 	/* We allow PTE_FRAG_NR fragments from a PTE page */
235 	if (atomic_sub_and_test(PMD_FRAG_NR - count, &page->pt_frag_refcount)) {
236 		pgtable_pmd_page_dtor(page);
237 		__free_page(page);
238 	}
239 }
240 
241 static void destroy_pagetable_cache(struct mm_struct *mm)
242 {
243 	void *frag;
244 
245 	frag = mm->context.pte_frag;
246 	if (frag)
247 		pte_frag_destroy(frag);
248 
249 	frag = mm->context.pmd_frag;
250 	if (frag)
251 		pmd_frag_destroy(frag);
252 	return;
253 }
254 
255 void destroy_context(struct mm_struct *mm)
256 {
257 #ifdef CONFIG_SPAPR_TCE_IOMMU
258 	WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list));
259 #endif
260 	/*
261 	 * For tasks which were successfully initialized we end up calling
262 	 * arch_exit_mmap() which clears the process table entry. And
263 	 * arch_exit_mmap() is called before the required fullmm TLB flush
264 	 * which does a RIC=2 flush. Hence for an initialized task, we do clear
265 	 * any cached process table entries.
266 	 *
267 	 * The condition below handles the error case during task init. We have
268 	 * set the process table entry early and if we fail a task
269 	 * initialization, we need to ensure the process table entry is zeroed.
270 	 * We need not worry about process table entry caches because the task
271 	 * never ran with the PID value.
272 	 */
273 	if (radix_enabled())
274 		process_tb[mm->context.id].prtb0 = 0;
275 	else
276 		subpage_prot_free(mm);
277 	destroy_contexts(&mm->context);
278 	mm->context.id = MMU_NO_CONTEXT;
279 }
280 
281 void arch_exit_mmap(struct mm_struct *mm)
282 {
283 	destroy_pagetable_cache(mm);
284 
285 	if (radix_enabled()) {
286 		/*
287 		 * Radix doesn't have a valid bit in the process table
288 		 * entries. However we know that at least P9 implementation
289 		 * will avoid caching an entry with an invalid RTS field,
290 		 * and 0 is invalid. So this will do.
291 		 *
292 		 * This runs before the "fullmm" tlb flush in exit_mmap,
293 		 * which does a RIC=2 tlbie to clear the process table
294 		 * entry. See the "fullmm" comments in tlb-radix.c.
295 		 *
296 		 * No barrier required here after the store because
297 		 * this process will do the invalidate, which starts with
298 		 * ptesync.
299 		 */
300 		process_tb[mm->context.id].prtb0 = 0;
301 	}
302 }
303 
304 #ifdef CONFIG_PPC_RADIX_MMU
305 void radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next)
306 {
307 	mtspr(SPRN_PID, next->context.id);
308 	isync();
309 }
310 #endif
311 
312 /**
313  * cleanup_cpu_mmu_context - Clean up MMU details for this CPU (newly offlined)
314  *
315  * This clears the CPU from mm_cpumask for all processes, and then flushes the
316  * local TLB to ensure TLB coherency in case the CPU is onlined again.
317  *
318  * KVM guest translations are not necessarily flushed here. If KVM started
319  * using mm_cpumask or the Linux APIs which do, this would have to be resolved.
320  */
321 #ifdef CONFIG_HOTPLUG_CPU
322 void cleanup_cpu_mmu_context(void)
323 {
324 	int cpu = smp_processor_id();
325 
326 	clear_tasks_mm_cpumask(cpu);
327 	tlbiel_all();
328 }
329 #endif
330