1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerPC64 port by Mike Corrigan and Dave Engebretsen 4 * {mikejc|engebret}@us.ibm.com 5 * 6 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com> 7 * 8 * SMP scalability work: 9 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM 10 * 11 * Module name: htab.c 12 * 13 * Description: 14 * PowerPC Hashed Page Table functions 15 */ 16 17 #undef DEBUG 18 #undef DEBUG_LOW 19 20 #define pr_fmt(fmt) "hash-mmu: " fmt 21 #include <linux/spinlock.h> 22 #include <linux/errno.h> 23 #include <linux/sched/mm.h> 24 #include <linux/proc_fs.h> 25 #include <linux/stat.h> 26 #include <linux/sysctl.h> 27 #include <linux/export.h> 28 #include <linux/ctype.h> 29 #include <linux/cache.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/memblock.h> 33 #include <linux/context_tracking.h> 34 #include <linux/libfdt.h> 35 #include <linux/pkeys.h> 36 #include <linux/hugetlb.h> 37 #include <linux/cpu.h> 38 #include <linux/pgtable.h> 39 #include <linux/debugfs.h> 40 #include <linux/random.h> 41 #include <linux/elf-randomize.h> 42 #include <linux/of_fdt.h> 43 44 #include <asm/interrupt.h> 45 #include <asm/processor.h> 46 #include <asm/mmu.h> 47 #include <asm/mmu_context.h> 48 #include <asm/page.h> 49 #include <asm/types.h> 50 #include <linux/uaccess.h> 51 #include <asm/machdep.h> 52 #include <asm/io.h> 53 #include <asm/eeh.h> 54 #include <asm/tlb.h> 55 #include <asm/cacheflush.h> 56 #include <asm/cputable.h> 57 #include <asm/sections.h> 58 #include <asm/copro.h> 59 #include <asm/udbg.h> 60 #include <asm/code-patching.h> 61 #include <asm/fadump.h> 62 #include <asm/firmware.h> 63 #include <asm/tm.h> 64 #include <asm/trace.h> 65 #include <asm/ps3.h> 66 #include <asm/pte-walk.h> 67 #include <asm/asm-prototypes.h> 68 #include <asm/ultravisor.h> 69 70 #include <mm/mmu_decl.h> 71 72 #include "internal.h" 73 74 75 #ifdef DEBUG 76 #define DBG(fmt...) udbg_printf(fmt) 77 #else 78 #define DBG(fmt...) 79 #endif 80 81 #ifdef DEBUG_LOW 82 #define DBG_LOW(fmt...) udbg_printf(fmt) 83 #else 84 #define DBG_LOW(fmt...) 85 #endif 86 87 #define KB (1024) 88 #define MB (1024*KB) 89 #define GB (1024L*MB) 90 91 /* 92 * Note: pte --> Linux PTE 93 * HPTE --> PowerPC Hashed Page Table Entry 94 * 95 * Execution context: 96 * htab_initialize is called with the MMU off (of course), but 97 * the kernel has been copied down to zero so it can directly 98 * reference global data. At this point it is very difficult 99 * to print debug info. 100 * 101 */ 102 103 static unsigned long _SDR1; 104 105 u8 hpte_page_sizes[1 << LP_BITS]; 106 EXPORT_SYMBOL_GPL(hpte_page_sizes); 107 108 struct hash_pte *htab_address; 109 unsigned long htab_size_bytes; 110 unsigned long htab_hash_mask; 111 EXPORT_SYMBOL_GPL(htab_hash_mask); 112 int mmu_linear_psize = MMU_PAGE_4K; 113 EXPORT_SYMBOL_GPL(mmu_linear_psize); 114 int mmu_virtual_psize = MMU_PAGE_4K; 115 int mmu_vmalloc_psize = MMU_PAGE_4K; 116 EXPORT_SYMBOL_GPL(mmu_vmalloc_psize); 117 int mmu_io_psize = MMU_PAGE_4K; 118 int mmu_kernel_ssize = MMU_SEGSIZE_256M; 119 EXPORT_SYMBOL_GPL(mmu_kernel_ssize); 120 int mmu_highuser_ssize = MMU_SEGSIZE_256M; 121 u16 mmu_slb_size = 64; 122 EXPORT_SYMBOL_GPL(mmu_slb_size); 123 #ifdef CONFIG_PPC_64K_PAGES 124 int mmu_ci_restrictions; 125 #endif 126 static u8 *linear_map_hash_slots; 127 static unsigned long linear_map_hash_count; 128 struct mmu_hash_ops mmu_hash_ops; 129 EXPORT_SYMBOL(mmu_hash_ops); 130 131 /* 132 * These are definitions of page sizes arrays to be used when none 133 * is provided by the firmware. 134 */ 135 136 /* 137 * Fallback (4k pages only) 138 */ 139 static struct mmu_psize_def mmu_psize_defaults[] = { 140 [MMU_PAGE_4K] = { 141 .shift = 12, 142 .sllp = 0, 143 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1}, 144 .avpnm = 0, 145 .tlbiel = 0, 146 }, 147 }; 148 149 /* 150 * POWER4, GPUL, POWER5 151 * 152 * Support for 16Mb large pages 153 */ 154 static struct mmu_psize_def mmu_psize_defaults_gp[] = { 155 [MMU_PAGE_4K] = { 156 .shift = 12, 157 .sllp = 0, 158 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1}, 159 .avpnm = 0, 160 .tlbiel = 1, 161 }, 162 [MMU_PAGE_16M] = { 163 .shift = 24, 164 .sllp = SLB_VSID_L, 165 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0, 166 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 }, 167 .avpnm = 0x1UL, 168 .tlbiel = 0, 169 }, 170 }; 171 172 static inline void tlbiel_hash_set_isa206(unsigned int set, unsigned int is) 173 { 174 unsigned long rb; 175 176 rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53)); 177 178 asm volatile("tlbiel %0" : : "r" (rb)); 179 } 180 181 /* 182 * tlbiel instruction for hash, set invalidation 183 * i.e., r=1 and is=01 or is=10 or is=11 184 */ 185 static __always_inline void tlbiel_hash_set_isa300(unsigned int set, unsigned int is, 186 unsigned int pid, 187 unsigned int ric, unsigned int prs) 188 { 189 unsigned long rb; 190 unsigned long rs; 191 unsigned int r = 0; /* hash format */ 192 193 rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53)); 194 rs = ((unsigned long)pid << PPC_BITLSHIFT(31)); 195 196 asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4) 197 : : "r"(rb), "r"(rs), "i"(ric), "i"(prs), "i"(r) 198 : "memory"); 199 } 200 201 202 static void tlbiel_all_isa206(unsigned int num_sets, unsigned int is) 203 { 204 unsigned int set; 205 206 asm volatile("ptesync": : :"memory"); 207 208 for (set = 0; set < num_sets; set++) 209 tlbiel_hash_set_isa206(set, is); 210 211 ppc_after_tlbiel_barrier(); 212 } 213 214 static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is) 215 { 216 unsigned int set; 217 218 asm volatile("ptesync": : :"memory"); 219 220 /* 221 * Flush the partition table cache if this is HV mode. 222 */ 223 if (early_cpu_has_feature(CPU_FTR_HVMODE)) 224 tlbiel_hash_set_isa300(0, is, 0, 2, 0); 225 226 /* 227 * Now invalidate the process table cache. UPRT=0 HPT modes (what 228 * current hardware implements) do not use the process table, but 229 * add the flushes anyway. 230 * 231 * From ISA v3.0B p. 1078: 232 * The following forms are invalid. 233 * * PRS=1, R=0, and RIC!=2 (The only process-scoped 234 * HPT caching is of the Process Table.) 235 */ 236 tlbiel_hash_set_isa300(0, is, 0, 2, 1); 237 238 /* 239 * Then flush the sets of the TLB proper. Hash mode uses 240 * partition scoped TLB translations, which may be flushed 241 * in !HV mode. 242 */ 243 for (set = 0; set < num_sets; set++) 244 tlbiel_hash_set_isa300(set, is, 0, 0, 0); 245 246 ppc_after_tlbiel_barrier(); 247 248 asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory"); 249 } 250 251 void hash__tlbiel_all(unsigned int action) 252 { 253 unsigned int is; 254 255 switch (action) { 256 case TLB_INVAL_SCOPE_GLOBAL: 257 is = 3; 258 break; 259 case TLB_INVAL_SCOPE_LPID: 260 is = 2; 261 break; 262 default: 263 BUG(); 264 } 265 266 if (early_cpu_has_feature(CPU_FTR_ARCH_300)) 267 tlbiel_all_isa300(POWER9_TLB_SETS_HASH, is); 268 else if (early_cpu_has_feature(CPU_FTR_ARCH_207S)) 269 tlbiel_all_isa206(POWER8_TLB_SETS, is); 270 else if (early_cpu_has_feature(CPU_FTR_ARCH_206)) 271 tlbiel_all_isa206(POWER7_TLB_SETS, is); 272 else 273 WARN(1, "%s called on pre-POWER7 CPU\n", __func__); 274 } 275 276 /* 277 * 'R' and 'C' update notes: 278 * - Under pHyp or KVM, the updatepp path will not set C, thus it *will* 279 * create writeable HPTEs without C set, because the hcall H_PROTECT 280 * that we use in that case will not update C 281 * - The above is however not a problem, because we also don't do that 282 * fancy "no flush" variant of eviction and we use H_REMOVE which will 283 * do the right thing and thus we don't have the race I described earlier 284 * 285 * - Under bare metal, we do have the race, so we need R and C set 286 * - We make sure R is always set and never lost 287 * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping 288 */ 289 unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags) 290 { 291 unsigned long rflags = 0; 292 293 /* _PAGE_EXEC -> NOEXEC */ 294 if ((pteflags & _PAGE_EXEC) == 0) 295 rflags |= HPTE_R_N; 296 /* 297 * PPP bits: 298 * Linux uses slb key 0 for kernel and 1 for user. 299 * kernel RW areas are mapped with PPP=0b000 300 * User area is mapped with PPP=0b010 for read/write 301 * or PPP=0b011 for read-only (including writeable but clean pages). 302 */ 303 if (pteflags & _PAGE_PRIVILEGED) { 304 /* 305 * Kernel read only mapped with ppp bits 0b110 306 */ 307 if (!(pteflags & _PAGE_WRITE)) { 308 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 309 rflags |= (HPTE_R_PP0 | 0x2); 310 else 311 rflags |= 0x3; 312 } 313 } else { 314 if (pteflags & _PAGE_RWX) 315 rflags |= 0x2; 316 if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY))) 317 rflags |= 0x1; 318 } 319 /* 320 * We can't allow hardware to update hpte bits. Hence always 321 * set 'R' bit and set 'C' if it is a write fault 322 */ 323 rflags |= HPTE_R_R; 324 325 if (pteflags & _PAGE_DIRTY) 326 rflags |= HPTE_R_C; 327 /* 328 * Add in WIG bits 329 */ 330 331 if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) 332 rflags |= HPTE_R_I; 333 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT) 334 rflags |= (HPTE_R_I | HPTE_R_G); 335 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO) 336 rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M); 337 else 338 /* 339 * Add memory coherence if cache inhibited is not set 340 */ 341 rflags |= HPTE_R_M; 342 343 rflags |= pte_to_hpte_pkey_bits(pteflags, flags); 344 return rflags; 345 } 346 347 int htab_bolt_mapping(unsigned long vstart, unsigned long vend, 348 unsigned long pstart, unsigned long prot, 349 int psize, int ssize) 350 { 351 unsigned long vaddr, paddr; 352 unsigned int step, shift; 353 int ret = 0; 354 355 shift = mmu_psize_defs[psize].shift; 356 step = 1 << shift; 357 358 prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY); 359 360 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n", 361 vstart, vend, pstart, prot, psize, ssize); 362 363 /* Carefully map only the possible range */ 364 vaddr = ALIGN(vstart, step); 365 paddr = ALIGN(pstart, step); 366 vend = ALIGN_DOWN(vend, step); 367 368 for (; vaddr < vend; vaddr += step, paddr += step) { 369 unsigned long hash, hpteg; 370 unsigned long vsid = get_kernel_vsid(vaddr, ssize); 371 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize); 372 unsigned long tprot = prot; 373 bool secondary_hash = false; 374 375 /* 376 * If we hit a bad address return error. 377 */ 378 if (!vsid) 379 return -1; 380 /* Make kernel text executable */ 381 if (overlaps_kernel_text(vaddr, vaddr + step)) 382 tprot &= ~HPTE_R_N; 383 384 /* 385 * If relocatable, check if it overlaps interrupt vectors that 386 * are copied down to real 0. For relocatable kernel 387 * (e.g. kdump case) we copy interrupt vectors down to real 388 * address 0. Mark that region as executable. This is 389 * because on p8 system with relocation on exception feature 390 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence 391 * in order to execute the interrupt handlers in virtual 392 * mode the vector region need to be marked as executable. 393 */ 394 if ((PHYSICAL_START > MEMORY_START) && 395 overlaps_interrupt_vector_text(vaddr, vaddr + step)) 396 tprot &= ~HPTE_R_N; 397 398 hash = hpt_hash(vpn, shift, ssize); 399 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); 400 401 BUG_ON(!mmu_hash_ops.hpte_insert); 402 repeat: 403 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot, 404 HPTE_V_BOLTED, psize, psize, 405 ssize); 406 if (ret == -1) { 407 /* 408 * Try to keep bolted entries in primary. 409 * Remove non bolted entries and try insert again 410 */ 411 ret = mmu_hash_ops.hpte_remove(hpteg); 412 if (ret != -1) 413 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot, 414 HPTE_V_BOLTED, psize, psize, 415 ssize); 416 if (ret == -1 && !secondary_hash) { 417 secondary_hash = true; 418 hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP); 419 goto repeat; 420 } 421 } 422 423 if (ret < 0) 424 break; 425 426 cond_resched(); 427 if (debug_pagealloc_enabled_or_kfence() && 428 (paddr >> PAGE_SHIFT) < linear_map_hash_count) 429 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80; 430 } 431 return ret < 0 ? ret : 0; 432 } 433 434 int htab_remove_mapping(unsigned long vstart, unsigned long vend, 435 int psize, int ssize) 436 { 437 unsigned long vaddr, time_limit; 438 unsigned int step, shift; 439 int rc; 440 int ret = 0; 441 442 shift = mmu_psize_defs[psize].shift; 443 step = 1 << shift; 444 445 if (!mmu_hash_ops.hpte_removebolted) 446 return -ENODEV; 447 448 /* Unmap the full range specificied */ 449 vaddr = ALIGN_DOWN(vstart, step); 450 time_limit = jiffies + HZ; 451 452 for (;vaddr < vend; vaddr += step) { 453 rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize); 454 455 /* 456 * For large number of mappings introduce a cond_resched() 457 * to prevent softlockup warnings. 458 */ 459 if (time_after(jiffies, time_limit)) { 460 cond_resched(); 461 time_limit = jiffies + HZ; 462 } 463 if (rc == -ENOENT) { 464 ret = -ENOENT; 465 continue; 466 } 467 if (rc < 0) 468 return rc; 469 } 470 471 return ret; 472 } 473 474 static bool disable_1tb_segments __ro_after_init; 475 476 static int __init parse_disable_1tb_segments(char *p) 477 { 478 disable_1tb_segments = true; 479 return 0; 480 } 481 early_param("disable_1tb_segments", parse_disable_1tb_segments); 482 483 bool stress_hpt_enabled __initdata; 484 485 static int __init parse_stress_hpt(char *p) 486 { 487 stress_hpt_enabled = true; 488 return 0; 489 } 490 early_param("stress_hpt", parse_stress_hpt); 491 492 __ro_after_init DEFINE_STATIC_KEY_FALSE(stress_hpt_key); 493 494 /* 495 * per-CPU array allocated if we enable stress_hpt. 496 */ 497 #define STRESS_MAX_GROUPS 16 498 struct stress_hpt_struct { 499 unsigned long last_group[STRESS_MAX_GROUPS]; 500 }; 501 502 static inline int stress_nr_groups(void) 503 { 504 /* 505 * LPAR H_REMOVE flushes TLB, so need some number > 1 of entries 506 * to allow practical forward progress. Bare metal returns 1, which 507 * seems to help uncover more bugs. 508 */ 509 if (firmware_has_feature(FW_FEATURE_LPAR)) 510 return STRESS_MAX_GROUPS; 511 else 512 return 1; 513 } 514 515 static struct stress_hpt_struct *stress_hpt_struct; 516 517 static int __init htab_dt_scan_seg_sizes(unsigned long node, 518 const char *uname, int depth, 519 void *data) 520 { 521 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 522 const __be32 *prop; 523 int size = 0; 524 525 /* We are scanning "cpu" nodes only */ 526 if (type == NULL || strcmp(type, "cpu") != 0) 527 return 0; 528 529 prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size); 530 if (prop == NULL) 531 return 0; 532 for (; size >= 4; size -= 4, ++prop) { 533 if (be32_to_cpu(prop[0]) == 40) { 534 DBG("1T segment support detected\n"); 535 536 if (disable_1tb_segments) { 537 DBG("1T segments disabled by command line\n"); 538 break; 539 } 540 541 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT; 542 return 1; 543 } 544 } 545 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B; 546 return 0; 547 } 548 549 static int __init get_idx_from_shift(unsigned int shift) 550 { 551 int idx = -1; 552 553 switch (shift) { 554 case 0xc: 555 idx = MMU_PAGE_4K; 556 break; 557 case 0x10: 558 idx = MMU_PAGE_64K; 559 break; 560 case 0x14: 561 idx = MMU_PAGE_1M; 562 break; 563 case 0x18: 564 idx = MMU_PAGE_16M; 565 break; 566 case 0x22: 567 idx = MMU_PAGE_16G; 568 break; 569 } 570 return idx; 571 } 572 573 static int __init htab_dt_scan_page_sizes(unsigned long node, 574 const char *uname, int depth, 575 void *data) 576 { 577 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 578 const __be32 *prop; 579 int size = 0; 580 581 /* We are scanning "cpu" nodes only */ 582 if (type == NULL || strcmp(type, "cpu") != 0) 583 return 0; 584 585 prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size); 586 if (!prop) 587 return 0; 588 589 pr_info("Page sizes from device-tree:\n"); 590 size /= 4; 591 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE); 592 while(size > 0) { 593 unsigned int base_shift = be32_to_cpu(prop[0]); 594 unsigned int slbenc = be32_to_cpu(prop[1]); 595 unsigned int lpnum = be32_to_cpu(prop[2]); 596 struct mmu_psize_def *def; 597 int idx, base_idx; 598 599 size -= 3; prop += 3; 600 base_idx = get_idx_from_shift(base_shift); 601 if (base_idx < 0) { 602 /* skip the pte encoding also */ 603 prop += lpnum * 2; size -= lpnum * 2; 604 continue; 605 } 606 def = &mmu_psize_defs[base_idx]; 607 if (base_idx == MMU_PAGE_16M) 608 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE; 609 610 def->shift = base_shift; 611 if (base_shift <= 23) 612 def->avpnm = 0; 613 else 614 def->avpnm = (1 << (base_shift - 23)) - 1; 615 def->sllp = slbenc; 616 /* 617 * We don't know for sure what's up with tlbiel, so 618 * for now we only set it for 4K and 64K pages 619 */ 620 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K) 621 def->tlbiel = 1; 622 else 623 def->tlbiel = 0; 624 625 while (size > 0 && lpnum) { 626 unsigned int shift = be32_to_cpu(prop[0]); 627 int penc = be32_to_cpu(prop[1]); 628 629 prop += 2; size -= 2; 630 lpnum--; 631 632 idx = get_idx_from_shift(shift); 633 if (idx < 0) 634 continue; 635 636 if (penc == -1) 637 pr_err("Invalid penc for base_shift=%d " 638 "shift=%d\n", base_shift, shift); 639 640 def->penc[idx] = penc; 641 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx," 642 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n", 643 base_shift, shift, def->sllp, 644 def->avpnm, def->tlbiel, def->penc[idx]); 645 } 646 } 647 648 return 1; 649 } 650 651 #ifdef CONFIG_HUGETLB_PAGE 652 /* 653 * Scan for 16G memory blocks that have been set aside for huge pages 654 * and reserve those blocks for 16G huge pages. 655 */ 656 static int __init htab_dt_scan_hugepage_blocks(unsigned long node, 657 const char *uname, int depth, 658 void *data) { 659 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 660 const __be64 *addr_prop; 661 const __be32 *page_count_prop; 662 unsigned int expected_pages; 663 long unsigned int phys_addr; 664 long unsigned int block_size; 665 666 /* We are scanning "memory" nodes only */ 667 if (type == NULL || strcmp(type, "memory") != 0) 668 return 0; 669 670 /* 671 * This property is the log base 2 of the number of virtual pages that 672 * will represent this memory block. 673 */ 674 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL); 675 if (page_count_prop == NULL) 676 return 0; 677 expected_pages = (1 << be32_to_cpu(page_count_prop[0])); 678 addr_prop = of_get_flat_dt_prop(node, "reg", NULL); 679 if (addr_prop == NULL) 680 return 0; 681 phys_addr = be64_to_cpu(addr_prop[0]); 682 block_size = be64_to_cpu(addr_prop[1]); 683 if (block_size != (16 * GB)) 684 return 0; 685 printk(KERN_INFO "Huge page(16GB) memory: " 686 "addr = 0x%lX size = 0x%lX pages = %d\n", 687 phys_addr, block_size, expected_pages); 688 if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) { 689 memblock_reserve(phys_addr, block_size * expected_pages); 690 pseries_add_gpage(phys_addr, block_size, expected_pages); 691 } 692 return 0; 693 } 694 #endif /* CONFIG_HUGETLB_PAGE */ 695 696 static void __init mmu_psize_set_default_penc(void) 697 { 698 int bpsize, apsize; 699 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) 700 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++) 701 mmu_psize_defs[bpsize].penc[apsize] = -1; 702 } 703 704 #ifdef CONFIG_PPC_64K_PAGES 705 706 static bool __init might_have_hea(void) 707 { 708 /* 709 * The HEA ethernet adapter requires awareness of the 710 * GX bus. Without that awareness we can easily assume 711 * we will never see an HEA ethernet device. 712 */ 713 #ifdef CONFIG_IBMEBUS 714 return !cpu_has_feature(CPU_FTR_ARCH_207S) && 715 firmware_has_feature(FW_FEATURE_SPLPAR); 716 #else 717 return false; 718 #endif 719 } 720 721 #endif /* #ifdef CONFIG_PPC_64K_PAGES */ 722 723 static void __init htab_scan_page_sizes(void) 724 { 725 int rc; 726 727 /* se the invalid penc to -1 */ 728 mmu_psize_set_default_penc(); 729 730 /* Default to 4K pages only */ 731 memcpy(mmu_psize_defs, mmu_psize_defaults, 732 sizeof(mmu_psize_defaults)); 733 734 /* 735 * Try to find the available page sizes in the device-tree 736 */ 737 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL); 738 if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) { 739 /* 740 * Nothing in the device-tree, but the CPU supports 16M pages, 741 * so let's fallback on a known size list for 16M capable CPUs. 742 */ 743 memcpy(mmu_psize_defs, mmu_psize_defaults_gp, 744 sizeof(mmu_psize_defaults_gp)); 745 } 746 747 #ifdef CONFIG_HUGETLB_PAGE 748 if (!hugetlb_disabled && !early_radix_enabled() ) { 749 /* Reserve 16G huge page memory sections for huge pages */ 750 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL); 751 } 752 #endif /* CONFIG_HUGETLB_PAGE */ 753 } 754 755 /* 756 * Fill in the hpte_page_sizes[] array. 757 * We go through the mmu_psize_defs[] array looking for all the 758 * supported base/actual page size combinations. Each combination 759 * has a unique pagesize encoding (penc) value in the low bits of 760 * the LP field of the HPTE. For actual page sizes less than 1MB, 761 * some of the upper LP bits are used for RPN bits, meaning that 762 * we need to fill in several entries in hpte_page_sizes[]. 763 * 764 * In diagrammatic form, with r = RPN bits and z = page size bits: 765 * PTE LP actual page size 766 * rrrr rrrz >=8KB 767 * rrrr rrzz >=16KB 768 * rrrr rzzz >=32KB 769 * rrrr zzzz >=64KB 770 * ... 771 * 772 * The zzzz bits are implementation-specific but are chosen so that 773 * no encoding for a larger page size uses the same value in its 774 * low-order N bits as the encoding for the 2^(12+N) byte page size 775 * (if it exists). 776 */ 777 static void __init init_hpte_page_sizes(void) 778 { 779 long int ap, bp; 780 long int shift, penc; 781 782 for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) { 783 if (!mmu_psize_defs[bp].shift) 784 continue; /* not a supported page size */ 785 for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) { 786 penc = mmu_psize_defs[bp].penc[ap]; 787 if (penc == -1 || !mmu_psize_defs[ap].shift) 788 continue; 789 shift = mmu_psize_defs[ap].shift - LP_SHIFT; 790 if (shift <= 0) 791 continue; /* should never happen */ 792 /* 793 * For page sizes less than 1MB, this loop 794 * replicates the entry for all possible values 795 * of the rrrr bits. 796 */ 797 while (penc < (1 << LP_BITS)) { 798 hpte_page_sizes[penc] = (ap << 4) | bp; 799 penc += 1 << shift; 800 } 801 } 802 } 803 } 804 805 static void __init htab_init_page_sizes(void) 806 { 807 bool aligned = true; 808 init_hpte_page_sizes(); 809 810 if (!debug_pagealloc_enabled_or_kfence()) { 811 /* 812 * Pick a size for the linear mapping. Currently, we only 813 * support 16M, 1M and 4K which is the default 814 */ 815 if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) && 816 (unsigned long)_stext % 0x1000000) { 817 if (mmu_psize_defs[MMU_PAGE_16M].shift) 818 pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n"); 819 aligned = false; 820 } 821 822 if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned) 823 mmu_linear_psize = MMU_PAGE_16M; 824 else if (mmu_psize_defs[MMU_PAGE_1M].shift) 825 mmu_linear_psize = MMU_PAGE_1M; 826 } 827 828 #ifdef CONFIG_PPC_64K_PAGES 829 /* 830 * Pick a size for the ordinary pages. Default is 4K, we support 831 * 64K for user mappings and vmalloc if supported by the processor. 832 * We only use 64k for ioremap if the processor 833 * (and firmware) support cache-inhibited large pages. 834 * If not, we use 4k and set mmu_ci_restrictions so that 835 * hash_page knows to switch processes that use cache-inhibited 836 * mappings to 4k pages. 837 */ 838 if (mmu_psize_defs[MMU_PAGE_64K].shift) { 839 mmu_virtual_psize = MMU_PAGE_64K; 840 mmu_vmalloc_psize = MMU_PAGE_64K; 841 if (mmu_linear_psize == MMU_PAGE_4K) 842 mmu_linear_psize = MMU_PAGE_64K; 843 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) { 844 /* 845 * When running on pSeries using 64k pages for ioremap 846 * would stop us accessing the HEA ethernet. So if we 847 * have the chance of ever seeing one, stay at 4k. 848 */ 849 if (!might_have_hea()) 850 mmu_io_psize = MMU_PAGE_64K; 851 } else 852 mmu_ci_restrictions = 1; 853 } 854 #endif /* CONFIG_PPC_64K_PAGES */ 855 856 #ifdef CONFIG_SPARSEMEM_VMEMMAP 857 /* 858 * We try to use 16M pages for vmemmap if that is supported 859 * and we have at least 1G of RAM at boot 860 */ 861 if (mmu_psize_defs[MMU_PAGE_16M].shift && 862 memblock_phys_mem_size() >= 0x40000000) 863 mmu_vmemmap_psize = MMU_PAGE_16M; 864 else 865 mmu_vmemmap_psize = mmu_virtual_psize; 866 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 867 868 printk(KERN_DEBUG "Page orders: linear mapping = %d, " 869 "virtual = %d, io = %d" 870 #ifdef CONFIG_SPARSEMEM_VMEMMAP 871 ", vmemmap = %d" 872 #endif 873 "\n", 874 mmu_psize_defs[mmu_linear_psize].shift, 875 mmu_psize_defs[mmu_virtual_psize].shift, 876 mmu_psize_defs[mmu_io_psize].shift 877 #ifdef CONFIG_SPARSEMEM_VMEMMAP 878 ,mmu_psize_defs[mmu_vmemmap_psize].shift 879 #endif 880 ); 881 } 882 883 static int __init htab_dt_scan_pftsize(unsigned long node, 884 const char *uname, int depth, 885 void *data) 886 { 887 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 888 const __be32 *prop; 889 890 /* We are scanning "cpu" nodes only */ 891 if (type == NULL || strcmp(type, "cpu") != 0) 892 return 0; 893 894 prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL); 895 if (prop != NULL) { 896 /* pft_size[0] is the NUMA CEC cookie */ 897 ppc64_pft_size = be32_to_cpu(prop[1]); 898 return 1; 899 } 900 return 0; 901 } 902 903 unsigned htab_shift_for_mem_size(unsigned long mem_size) 904 { 905 unsigned memshift = __ilog2(mem_size); 906 unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift; 907 unsigned pteg_shift; 908 909 /* round mem_size up to next power of 2 */ 910 if ((1UL << memshift) < mem_size) 911 memshift += 1; 912 913 /* aim for 2 pages / pteg */ 914 pteg_shift = memshift - (pshift + 1); 915 916 /* 917 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab 918 * size permitted by the architecture. 919 */ 920 return max(pteg_shift + 7, 18U); 921 } 922 923 static unsigned long __init htab_get_table_size(void) 924 { 925 /* 926 * If hash size isn't already provided by the platform, we try to 927 * retrieve it from the device-tree. If it's not there neither, we 928 * calculate it now based on the total RAM size 929 */ 930 if (ppc64_pft_size == 0) 931 of_scan_flat_dt(htab_dt_scan_pftsize, NULL); 932 if (ppc64_pft_size) 933 return 1UL << ppc64_pft_size; 934 935 return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size()); 936 } 937 938 #ifdef CONFIG_MEMORY_HOTPLUG 939 static int resize_hpt_for_hotplug(unsigned long new_mem_size) 940 { 941 unsigned target_hpt_shift; 942 943 if (!mmu_hash_ops.resize_hpt) 944 return 0; 945 946 target_hpt_shift = htab_shift_for_mem_size(new_mem_size); 947 948 /* 949 * To avoid lots of HPT resizes if memory size is fluctuating 950 * across a boundary, we deliberately have some hysterisis 951 * here: we immediately increase the HPT size if the target 952 * shift exceeds the current shift, but we won't attempt to 953 * reduce unless the target shift is at least 2 below the 954 * current shift 955 */ 956 if (target_hpt_shift > ppc64_pft_size || 957 target_hpt_shift < ppc64_pft_size - 1) 958 return mmu_hash_ops.resize_hpt(target_hpt_shift); 959 960 return 0; 961 } 962 963 int hash__create_section_mapping(unsigned long start, unsigned long end, 964 int nid, pgprot_t prot) 965 { 966 int rc; 967 968 if (end >= H_VMALLOC_START) { 969 pr_warn("Outside the supported range\n"); 970 return -1; 971 } 972 973 resize_hpt_for_hotplug(memblock_phys_mem_size()); 974 975 rc = htab_bolt_mapping(start, end, __pa(start), 976 pgprot_val(prot), mmu_linear_psize, 977 mmu_kernel_ssize); 978 979 if (rc < 0) { 980 int rc2 = htab_remove_mapping(start, end, mmu_linear_psize, 981 mmu_kernel_ssize); 982 BUG_ON(rc2 && (rc2 != -ENOENT)); 983 } 984 return rc; 985 } 986 987 int hash__remove_section_mapping(unsigned long start, unsigned long end) 988 { 989 int rc = htab_remove_mapping(start, end, mmu_linear_psize, 990 mmu_kernel_ssize); 991 992 if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC) 993 pr_warn("Hash collision while resizing HPT\n"); 994 995 return rc; 996 } 997 #endif /* CONFIG_MEMORY_HOTPLUG */ 998 999 static void __init hash_init_partition_table(phys_addr_t hash_table, 1000 unsigned long htab_size) 1001 { 1002 mmu_partition_table_init(); 1003 1004 /* 1005 * PS field (VRMA page size) is not used for LPID 0, hence set to 0. 1006 * For now, UPRT is 0 and we have no segment table. 1007 */ 1008 htab_size = __ilog2(htab_size) - 18; 1009 mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false); 1010 pr_info("Partition table %p\n", partition_tb); 1011 } 1012 1013 void hpt_clear_stress(void); 1014 static struct timer_list stress_hpt_timer; 1015 static void stress_hpt_timer_fn(struct timer_list *timer) 1016 { 1017 int next_cpu; 1018 1019 hpt_clear_stress(); 1020 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1021 tlbiel_all(); 1022 1023 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); 1024 if (next_cpu >= nr_cpu_ids) 1025 next_cpu = cpumask_first(cpu_online_mask); 1026 stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10); 1027 add_timer_on(&stress_hpt_timer, next_cpu); 1028 } 1029 1030 static void __init htab_initialize(void) 1031 { 1032 unsigned long table; 1033 unsigned long pteg_count; 1034 unsigned long prot; 1035 phys_addr_t base = 0, size = 0, end; 1036 u64 i; 1037 1038 DBG(" -> htab_initialize()\n"); 1039 1040 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) { 1041 mmu_kernel_ssize = MMU_SEGSIZE_1T; 1042 mmu_highuser_ssize = MMU_SEGSIZE_1T; 1043 printk(KERN_INFO "Using 1TB segments\n"); 1044 } 1045 1046 if (stress_slb_enabled) 1047 static_branch_enable(&stress_slb_key); 1048 1049 if (stress_hpt_enabled) { 1050 unsigned long tmp; 1051 static_branch_enable(&stress_hpt_key); 1052 // Too early to use nr_cpu_ids, so use NR_CPUS 1053 tmp = memblock_phys_alloc_range(sizeof(struct stress_hpt_struct) * NR_CPUS, 1054 0, 0, MEMBLOCK_ALLOC_ANYWHERE); 1055 memset((void *)tmp, 0xff, sizeof(struct stress_hpt_struct) * NR_CPUS); 1056 stress_hpt_struct = __va(tmp); 1057 1058 timer_setup(&stress_hpt_timer, stress_hpt_timer_fn, 0); 1059 stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10); 1060 add_timer(&stress_hpt_timer); 1061 } 1062 1063 /* 1064 * Calculate the required size of the htab. We want the number of 1065 * PTEGs to equal one half the number of real pages. 1066 */ 1067 htab_size_bytes = htab_get_table_size(); 1068 pteg_count = htab_size_bytes >> 7; 1069 1070 htab_hash_mask = pteg_count - 1; 1071 1072 if (firmware_has_feature(FW_FEATURE_LPAR) || 1073 firmware_has_feature(FW_FEATURE_PS3_LV1)) { 1074 /* Using a hypervisor which owns the htab */ 1075 htab_address = NULL; 1076 _SDR1 = 0; 1077 #ifdef CONFIG_FA_DUMP 1078 /* 1079 * If firmware assisted dump is active firmware preserves 1080 * the contents of htab along with entire partition memory. 1081 * Clear the htab if firmware assisted dump is active so 1082 * that we dont end up using old mappings. 1083 */ 1084 if (is_fadump_active() && mmu_hash_ops.hpte_clear_all) 1085 mmu_hash_ops.hpte_clear_all(); 1086 #endif 1087 } else { 1088 unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE; 1089 1090 #ifdef CONFIG_PPC_CELL 1091 /* 1092 * Cell may require the hash table down low when using the 1093 * Axon IOMMU in order to fit the dynamic region over it, see 1094 * comments in cell/iommu.c 1095 */ 1096 if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) { 1097 limit = 0x80000000; 1098 pr_info("Hash table forced below 2G for Axon IOMMU\n"); 1099 } 1100 #endif /* CONFIG_PPC_CELL */ 1101 1102 table = memblock_phys_alloc_range(htab_size_bytes, 1103 htab_size_bytes, 1104 0, limit); 1105 if (!table) 1106 panic("ERROR: Failed to allocate %pa bytes below %pa\n", 1107 &htab_size_bytes, &limit); 1108 1109 DBG("Hash table allocated at %lx, size: %lx\n", table, 1110 htab_size_bytes); 1111 1112 htab_address = __va(table); 1113 1114 /* htab absolute addr + encoded htabsize */ 1115 _SDR1 = table + __ilog2(htab_size_bytes) - 18; 1116 1117 /* Initialize the HPT with no entries */ 1118 memset((void *)table, 0, htab_size_bytes); 1119 1120 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1121 /* Set SDR1 */ 1122 mtspr(SPRN_SDR1, _SDR1); 1123 else 1124 hash_init_partition_table(table, htab_size_bytes); 1125 } 1126 1127 prot = pgprot_val(PAGE_KERNEL); 1128 1129 if (debug_pagealloc_enabled_or_kfence()) { 1130 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT; 1131 linear_map_hash_slots = memblock_alloc_try_nid( 1132 linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT, 1133 ppc64_rma_size, NUMA_NO_NODE); 1134 if (!linear_map_hash_slots) 1135 panic("%s: Failed to allocate %lu bytes max_addr=%pa\n", 1136 __func__, linear_map_hash_count, &ppc64_rma_size); 1137 } 1138 1139 /* create bolted the linear mapping in the hash table */ 1140 for_each_mem_range(i, &base, &end) { 1141 size = end - base; 1142 base = (unsigned long)__va(base); 1143 1144 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n", 1145 base, size, prot); 1146 1147 if ((base + size) >= H_VMALLOC_START) { 1148 pr_warn("Outside the supported range\n"); 1149 continue; 1150 } 1151 1152 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base), 1153 prot, mmu_linear_psize, mmu_kernel_ssize)); 1154 } 1155 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); 1156 1157 /* 1158 * If we have a memory_limit and we've allocated TCEs then we need to 1159 * explicitly map the TCE area at the top of RAM. We also cope with the 1160 * case that the TCEs start below memory_limit. 1161 * tce_alloc_start/end are 16MB aligned so the mapping should work 1162 * for either 4K or 16MB pages. 1163 */ 1164 if (tce_alloc_start) { 1165 tce_alloc_start = (unsigned long)__va(tce_alloc_start); 1166 tce_alloc_end = (unsigned long)__va(tce_alloc_end); 1167 1168 if (base + size >= tce_alloc_start) 1169 tce_alloc_start = base + size + 1; 1170 1171 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end, 1172 __pa(tce_alloc_start), prot, 1173 mmu_linear_psize, mmu_kernel_ssize)); 1174 } 1175 1176 1177 DBG(" <- htab_initialize()\n"); 1178 } 1179 #undef KB 1180 #undef MB 1181 1182 void __init hash__early_init_devtree(void) 1183 { 1184 /* Initialize segment sizes */ 1185 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL); 1186 1187 /* Initialize page sizes */ 1188 htab_scan_page_sizes(); 1189 } 1190 1191 static struct hash_mm_context init_hash_mm_context; 1192 void __init hash__early_init_mmu(void) 1193 { 1194 #ifndef CONFIG_PPC_64K_PAGES 1195 /* 1196 * We have code in __hash_page_4K() and elsewhere, which assumes it can 1197 * do the following: 1198 * new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX); 1199 * 1200 * Where the slot number is between 0-15, and values of 8-15 indicate 1201 * the secondary bucket. For that code to work H_PAGE_F_SECOND and 1202 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and 1203 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here 1204 * with a BUILD_BUG_ON(). 1205 */ 1206 BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul << (H_PAGE_F_GIX_SHIFT + 3))); 1207 #endif /* CONFIG_PPC_64K_PAGES */ 1208 1209 htab_init_page_sizes(); 1210 1211 /* 1212 * initialize page table size 1213 */ 1214 __pte_frag_nr = H_PTE_FRAG_NR; 1215 __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT; 1216 __pmd_frag_nr = H_PMD_FRAG_NR; 1217 __pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT; 1218 1219 __pte_index_size = H_PTE_INDEX_SIZE; 1220 __pmd_index_size = H_PMD_INDEX_SIZE; 1221 __pud_index_size = H_PUD_INDEX_SIZE; 1222 __pgd_index_size = H_PGD_INDEX_SIZE; 1223 __pud_cache_index = H_PUD_CACHE_INDEX; 1224 __pte_table_size = H_PTE_TABLE_SIZE; 1225 __pmd_table_size = H_PMD_TABLE_SIZE; 1226 __pud_table_size = H_PUD_TABLE_SIZE; 1227 __pgd_table_size = H_PGD_TABLE_SIZE; 1228 /* 1229 * 4k use hugepd format, so for hash set then to 1230 * zero 1231 */ 1232 __pmd_val_bits = HASH_PMD_VAL_BITS; 1233 __pud_val_bits = HASH_PUD_VAL_BITS; 1234 __pgd_val_bits = HASH_PGD_VAL_BITS; 1235 1236 __kernel_virt_start = H_KERN_VIRT_START; 1237 __vmalloc_start = H_VMALLOC_START; 1238 __vmalloc_end = H_VMALLOC_END; 1239 __kernel_io_start = H_KERN_IO_START; 1240 __kernel_io_end = H_KERN_IO_END; 1241 vmemmap = (struct page *)H_VMEMMAP_START; 1242 ioremap_bot = IOREMAP_BASE; 1243 1244 #ifdef CONFIG_PCI 1245 pci_io_base = ISA_IO_BASE; 1246 #endif 1247 1248 /* Select appropriate backend */ 1249 if (firmware_has_feature(FW_FEATURE_PS3_LV1)) 1250 ps3_early_mm_init(); 1251 else if (firmware_has_feature(FW_FEATURE_LPAR)) 1252 hpte_init_pseries(); 1253 else if (IS_ENABLED(CONFIG_PPC_HASH_MMU_NATIVE)) 1254 hpte_init_native(); 1255 1256 if (!mmu_hash_ops.hpte_insert) 1257 panic("hash__early_init_mmu: No MMU hash ops defined!\n"); 1258 1259 /* 1260 * Initialize the MMU Hash table and create the linear mapping 1261 * of memory. Has to be done before SLB initialization as this is 1262 * currently where the page size encoding is obtained. 1263 */ 1264 htab_initialize(); 1265 1266 init_mm.context.hash_context = &init_hash_mm_context; 1267 mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT); 1268 1269 pr_info("Initializing hash mmu with SLB\n"); 1270 /* Initialize SLB management */ 1271 slb_initialize(); 1272 1273 if (cpu_has_feature(CPU_FTR_ARCH_206) 1274 && cpu_has_feature(CPU_FTR_HVMODE)) 1275 tlbiel_all(); 1276 } 1277 1278 #ifdef CONFIG_SMP 1279 void hash__early_init_mmu_secondary(void) 1280 { 1281 /* Initialize hash table for that CPU */ 1282 if (!firmware_has_feature(FW_FEATURE_LPAR)) { 1283 1284 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1285 mtspr(SPRN_SDR1, _SDR1); 1286 else 1287 set_ptcr_when_no_uv(__pa(partition_tb) | 1288 (PATB_SIZE_SHIFT - 12)); 1289 } 1290 /* Initialize SLB */ 1291 slb_initialize(); 1292 1293 if (cpu_has_feature(CPU_FTR_ARCH_206) 1294 && cpu_has_feature(CPU_FTR_HVMODE)) 1295 tlbiel_all(); 1296 1297 #ifdef CONFIG_PPC_MEM_KEYS 1298 if (mmu_has_feature(MMU_FTR_PKEY)) 1299 mtspr(SPRN_UAMOR, default_uamor); 1300 #endif 1301 } 1302 #endif /* CONFIG_SMP */ 1303 1304 /* 1305 * Called by asm hashtable.S for doing lazy icache flush 1306 */ 1307 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap) 1308 { 1309 struct page *page; 1310 1311 if (!pfn_valid(pte_pfn(pte))) 1312 return pp; 1313 1314 page = pte_page(pte); 1315 1316 /* page is dirty */ 1317 if (!test_bit(PG_dcache_clean, &page->flags) && !PageReserved(page)) { 1318 if (trap == INTERRUPT_INST_STORAGE) { 1319 flush_dcache_icache_page(page); 1320 set_bit(PG_dcache_clean, &page->flags); 1321 } else 1322 pp |= HPTE_R_N; 1323 } 1324 return pp; 1325 } 1326 1327 static unsigned int get_paca_psize(unsigned long addr) 1328 { 1329 unsigned char *psizes; 1330 unsigned long index, mask_index; 1331 1332 if (addr < SLICE_LOW_TOP) { 1333 psizes = get_paca()->mm_ctx_low_slices_psize; 1334 index = GET_LOW_SLICE_INDEX(addr); 1335 } else { 1336 psizes = get_paca()->mm_ctx_high_slices_psize; 1337 index = GET_HIGH_SLICE_INDEX(addr); 1338 } 1339 mask_index = index & 0x1; 1340 return (psizes[index >> 1] >> (mask_index * 4)) & 0xF; 1341 } 1342 1343 1344 /* 1345 * Demote a segment to using 4k pages. 1346 * For now this makes the whole process use 4k pages. 1347 */ 1348 #ifdef CONFIG_PPC_64K_PAGES 1349 void demote_segment_4k(struct mm_struct *mm, unsigned long addr) 1350 { 1351 if (get_slice_psize(mm, addr) == MMU_PAGE_4K) 1352 return; 1353 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K); 1354 copro_flush_all_slbs(mm); 1355 if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) { 1356 1357 copy_mm_to_paca(mm); 1358 slb_flush_and_restore_bolted(); 1359 } 1360 } 1361 #endif /* CONFIG_PPC_64K_PAGES */ 1362 1363 #ifdef CONFIG_PPC_SUBPAGE_PROT 1364 /* 1365 * This looks up a 2-bit protection code for a 4k subpage of a 64k page. 1366 * Userspace sets the subpage permissions using the subpage_prot system call. 1367 * 1368 * Result is 0: full permissions, _PAGE_RW: read-only, 1369 * _PAGE_RWX: no access. 1370 */ 1371 static int subpage_protection(struct mm_struct *mm, unsigned long ea) 1372 { 1373 struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context); 1374 u32 spp = 0; 1375 u32 **sbpm, *sbpp; 1376 1377 if (!spt) 1378 return 0; 1379 1380 if (ea >= spt->maxaddr) 1381 return 0; 1382 if (ea < 0x100000000UL) { 1383 /* addresses below 4GB use spt->low_prot */ 1384 sbpm = spt->low_prot; 1385 } else { 1386 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT]; 1387 if (!sbpm) 1388 return 0; 1389 } 1390 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)]; 1391 if (!sbpp) 1392 return 0; 1393 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)]; 1394 1395 /* extract 2-bit bitfield for this 4k subpage */ 1396 spp >>= 30 - 2 * ((ea >> 12) & 0xf); 1397 1398 /* 1399 * 0 -> full permission 1400 * 1 -> Read only 1401 * 2 -> no access. 1402 * We return the flag that need to be cleared. 1403 */ 1404 spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0); 1405 return spp; 1406 } 1407 1408 #else /* CONFIG_PPC_SUBPAGE_PROT */ 1409 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea) 1410 { 1411 return 0; 1412 } 1413 #endif 1414 1415 void hash_failure_debug(unsigned long ea, unsigned long access, 1416 unsigned long vsid, unsigned long trap, 1417 int ssize, int psize, int lpsize, unsigned long pte) 1418 { 1419 if (!printk_ratelimit()) 1420 return; 1421 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n", 1422 ea, access, current->comm); 1423 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n", 1424 trap, vsid, ssize, psize, lpsize, pte); 1425 } 1426 1427 static void check_paca_psize(unsigned long ea, struct mm_struct *mm, 1428 int psize, bool user_region) 1429 { 1430 if (user_region) { 1431 if (psize != get_paca_psize(ea)) { 1432 copy_mm_to_paca(mm); 1433 slb_flush_and_restore_bolted(); 1434 } 1435 } else if (get_paca()->vmalloc_sllp != 1436 mmu_psize_defs[mmu_vmalloc_psize].sllp) { 1437 get_paca()->vmalloc_sllp = 1438 mmu_psize_defs[mmu_vmalloc_psize].sllp; 1439 slb_vmalloc_update(); 1440 } 1441 } 1442 1443 /* 1444 * Result code is: 1445 * 0 - handled 1446 * 1 - normal page fault 1447 * -1 - critical hash insertion error 1448 * -2 - access not permitted by subpage protection mechanism 1449 */ 1450 int hash_page_mm(struct mm_struct *mm, unsigned long ea, 1451 unsigned long access, unsigned long trap, 1452 unsigned long flags) 1453 { 1454 bool is_thp; 1455 pgd_t *pgdir; 1456 unsigned long vsid; 1457 pte_t *ptep; 1458 unsigned hugeshift; 1459 int rc, user_region = 0; 1460 int psize, ssize; 1461 1462 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n", 1463 ea, access, trap); 1464 trace_hash_fault(ea, access, trap); 1465 1466 /* Get region & vsid */ 1467 switch (get_region_id(ea)) { 1468 case USER_REGION_ID: 1469 user_region = 1; 1470 if (! mm) { 1471 DBG_LOW(" user region with no mm !\n"); 1472 rc = 1; 1473 goto bail; 1474 } 1475 psize = get_slice_psize(mm, ea); 1476 ssize = user_segment_size(ea); 1477 vsid = get_user_vsid(&mm->context, ea, ssize); 1478 break; 1479 case VMALLOC_REGION_ID: 1480 vsid = get_kernel_vsid(ea, mmu_kernel_ssize); 1481 psize = mmu_vmalloc_psize; 1482 ssize = mmu_kernel_ssize; 1483 flags |= HPTE_USE_KERNEL_KEY; 1484 break; 1485 1486 case IO_REGION_ID: 1487 vsid = get_kernel_vsid(ea, mmu_kernel_ssize); 1488 psize = mmu_io_psize; 1489 ssize = mmu_kernel_ssize; 1490 flags |= HPTE_USE_KERNEL_KEY; 1491 break; 1492 default: 1493 /* 1494 * Not a valid range 1495 * Send the problem up to do_page_fault() 1496 */ 1497 rc = 1; 1498 goto bail; 1499 } 1500 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid); 1501 1502 /* Bad address. */ 1503 if (!vsid) { 1504 DBG_LOW("Bad address!\n"); 1505 rc = 1; 1506 goto bail; 1507 } 1508 /* Get pgdir */ 1509 pgdir = mm->pgd; 1510 if (pgdir == NULL) { 1511 rc = 1; 1512 goto bail; 1513 } 1514 1515 /* Check CPU locality */ 1516 if (user_region && mm_is_thread_local(mm)) 1517 flags |= HPTE_LOCAL_UPDATE; 1518 1519 #ifndef CONFIG_PPC_64K_PAGES 1520 /* 1521 * If we use 4K pages and our psize is not 4K, then we might 1522 * be hitting a special driver mapping, and need to align the 1523 * address before we fetch the PTE. 1524 * 1525 * It could also be a hugepage mapping, in which case this is 1526 * not necessary, but it's not harmful, either. 1527 */ 1528 if (psize != MMU_PAGE_4K) 1529 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1); 1530 #endif /* CONFIG_PPC_64K_PAGES */ 1531 1532 /* Get PTE and page size from page tables */ 1533 ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift); 1534 if (ptep == NULL || !pte_present(*ptep)) { 1535 DBG_LOW(" no PTE !\n"); 1536 rc = 1; 1537 goto bail; 1538 } 1539 1540 /* 1541 * Add _PAGE_PRESENT to the required access perm. If there are parallel 1542 * updates to the pte that can possibly clear _PAGE_PTE, catch that too. 1543 * 1544 * We can safely use the return pte address in rest of the function 1545 * because we do set H_PAGE_BUSY which prevents further updates to pte 1546 * from generic code. 1547 */ 1548 access |= _PAGE_PRESENT | _PAGE_PTE; 1549 1550 /* 1551 * Pre-check access permissions (will be re-checked atomically 1552 * in __hash_page_XX but this pre-check is a fast path 1553 */ 1554 if (!check_pte_access(access, pte_val(*ptep))) { 1555 DBG_LOW(" no access !\n"); 1556 rc = 1; 1557 goto bail; 1558 } 1559 1560 if (hugeshift) { 1561 if (is_thp) 1562 rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep, 1563 trap, flags, ssize, psize); 1564 #ifdef CONFIG_HUGETLB_PAGE 1565 else 1566 rc = __hash_page_huge(ea, access, vsid, ptep, trap, 1567 flags, ssize, hugeshift, psize); 1568 #else 1569 else { 1570 /* 1571 * if we have hugeshift, and is not transhuge with 1572 * hugetlb disabled, something is really wrong. 1573 */ 1574 rc = 1; 1575 WARN_ON(1); 1576 } 1577 #endif 1578 if (current->mm == mm) 1579 check_paca_psize(ea, mm, psize, user_region); 1580 1581 goto bail; 1582 } 1583 1584 #ifndef CONFIG_PPC_64K_PAGES 1585 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep)); 1586 #else 1587 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep), 1588 pte_val(*(ptep + PTRS_PER_PTE))); 1589 #endif 1590 /* Do actual hashing */ 1591 #ifdef CONFIG_PPC_64K_PAGES 1592 /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */ 1593 if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) { 1594 demote_segment_4k(mm, ea); 1595 psize = MMU_PAGE_4K; 1596 } 1597 1598 /* 1599 * If this PTE is non-cacheable and we have restrictions on 1600 * using non cacheable large pages, then we switch to 4k 1601 */ 1602 if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) { 1603 if (user_region) { 1604 demote_segment_4k(mm, ea); 1605 psize = MMU_PAGE_4K; 1606 } else if (ea < VMALLOC_END) { 1607 /* 1608 * some driver did a non-cacheable mapping 1609 * in vmalloc space, so switch vmalloc 1610 * to 4k pages 1611 */ 1612 printk(KERN_ALERT "Reducing vmalloc segment " 1613 "to 4kB pages because of " 1614 "non-cacheable mapping\n"); 1615 psize = mmu_vmalloc_psize = MMU_PAGE_4K; 1616 copro_flush_all_slbs(mm); 1617 } 1618 } 1619 1620 #endif /* CONFIG_PPC_64K_PAGES */ 1621 1622 if (current->mm == mm) 1623 check_paca_psize(ea, mm, psize, user_region); 1624 1625 #ifdef CONFIG_PPC_64K_PAGES 1626 if (psize == MMU_PAGE_64K) 1627 rc = __hash_page_64K(ea, access, vsid, ptep, trap, 1628 flags, ssize); 1629 else 1630 #endif /* CONFIG_PPC_64K_PAGES */ 1631 { 1632 int spp = subpage_protection(mm, ea); 1633 if (access & spp) 1634 rc = -2; 1635 else 1636 rc = __hash_page_4K(ea, access, vsid, ptep, trap, 1637 flags, ssize, spp); 1638 } 1639 1640 /* 1641 * Dump some info in case of hash insertion failure, they should 1642 * never happen so it is really useful to know if/when they do 1643 */ 1644 if (rc == -1) 1645 hash_failure_debug(ea, access, vsid, trap, ssize, psize, 1646 psize, pte_val(*ptep)); 1647 #ifndef CONFIG_PPC_64K_PAGES 1648 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep)); 1649 #else 1650 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep), 1651 pte_val(*(ptep + PTRS_PER_PTE))); 1652 #endif 1653 DBG_LOW(" -> rc=%d\n", rc); 1654 1655 bail: 1656 return rc; 1657 } 1658 EXPORT_SYMBOL_GPL(hash_page_mm); 1659 1660 int hash_page(unsigned long ea, unsigned long access, unsigned long trap, 1661 unsigned long dsisr) 1662 { 1663 unsigned long flags = 0; 1664 struct mm_struct *mm = current->mm; 1665 1666 if ((get_region_id(ea) == VMALLOC_REGION_ID) || 1667 (get_region_id(ea) == IO_REGION_ID)) 1668 mm = &init_mm; 1669 1670 if (dsisr & DSISR_NOHPTE) 1671 flags |= HPTE_NOHPTE_UPDATE; 1672 1673 return hash_page_mm(mm, ea, access, trap, flags); 1674 } 1675 EXPORT_SYMBOL_GPL(hash_page); 1676 1677 DEFINE_INTERRUPT_HANDLER(do_hash_fault) 1678 { 1679 unsigned long ea = regs->dar; 1680 unsigned long dsisr = regs->dsisr; 1681 unsigned long access = _PAGE_PRESENT | _PAGE_READ; 1682 unsigned long flags = 0; 1683 struct mm_struct *mm; 1684 unsigned int region_id; 1685 long err; 1686 1687 if (unlikely(dsisr & (DSISR_BAD_FAULT_64S | DSISR_KEYFAULT))) { 1688 hash__do_page_fault(regs); 1689 return; 1690 } 1691 1692 region_id = get_region_id(ea); 1693 if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID)) 1694 mm = &init_mm; 1695 else 1696 mm = current->mm; 1697 1698 if (dsisr & DSISR_NOHPTE) 1699 flags |= HPTE_NOHPTE_UPDATE; 1700 1701 if (dsisr & DSISR_ISSTORE) 1702 access |= _PAGE_WRITE; 1703 /* 1704 * We set _PAGE_PRIVILEGED only when 1705 * kernel mode access kernel space. 1706 * 1707 * _PAGE_PRIVILEGED is NOT set 1708 * 1) when kernel mode access user space 1709 * 2) user space access kernel space. 1710 */ 1711 access |= _PAGE_PRIVILEGED; 1712 if (user_mode(regs) || (region_id == USER_REGION_ID)) 1713 access &= ~_PAGE_PRIVILEGED; 1714 1715 if (TRAP(regs) == INTERRUPT_INST_STORAGE) 1716 access |= _PAGE_EXEC; 1717 1718 err = hash_page_mm(mm, ea, access, TRAP(regs), flags); 1719 if (unlikely(err < 0)) { 1720 // failed to insert a hash PTE due to an hypervisor error 1721 if (user_mode(regs)) { 1722 if (IS_ENABLED(CONFIG_PPC_SUBPAGE_PROT) && err == -2) 1723 _exception(SIGSEGV, regs, SEGV_ACCERR, ea); 1724 else 1725 _exception(SIGBUS, regs, BUS_ADRERR, ea); 1726 } else { 1727 bad_page_fault(regs, SIGBUS); 1728 } 1729 err = 0; 1730 1731 } else if (err) { 1732 hash__do_page_fault(regs); 1733 } 1734 } 1735 1736 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea) 1737 { 1738 int psize = get_slice_psize(mm, ea); 1739 1740 /* We only prefault standard pages for now */ 1741 if (unlikely(psize != mm_ctx_user_psize(&mm->context))) 1742 return false; 1743 1744 /* 1745 * Don't prefault if subpage protection is enabled for the EA. 1746 */ 1747 if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea))) 1748 return false; 1749 1750 return true; 1751 } 1752 1753 static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea, 1754 bool is_exec, unsigned long trap) 1755 { 1756 unsigned long vsid; 1757 pgd_t *pgdir; 1758 int rc, ssize, update_flags = 0; 1759 unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0); 1760 unsigned long flags; 1761 1762 BUG_ON(get_region_id(ea) != USER_REGION_ID); 1763 1764 if (!should_hash_preload(mm, ea)) 1765 return; 1766 1767 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx," 1768 " trap=%lx\n", mm, mm->pgd, ea, access, trap); 1769 1770 /* Get Linux PTE if available */ 1771 pgdir = mm->pgd; 1772 if (pgdir == NULL) 1773 return; 1774 1775 /* Get VSID */ 1776 ssize = user_segment_size(ea); 1777 vsid = get_user_vsid(&mm->context, ea, ssize); 1778 if (!vsid) 1779 return; 1780 1781 #ifdef CONFIG_PPC_64K_PAGES 1782 /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on 1783 * a 64K kernel), then we don't preload, hash_page() will take 1784 * care of it once we actually try to access the page. 1785 * That way we don't have to duplicate all of the logic for segment 1786 * page size demotion here 1787 * Called with PTL held, hence can be sure the value won't change in 1788 * between. 1789 */ 1790 if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep)) 1791 return; 1792 #endif /* CONFIG_PPC_64K_PAGES */ 1793 1794 /* 1795 * __hash_page_* must run with interrupts off, including PMI interrupts 1796 * off, as it sets the H_PAGE_BUSY bit. 1797 * 1798 * It's otherwise possible for perf interrupts to hit at any time and 1799 * may take a hash fault reading the user stack, which could take a 1800 * hash miss and deadlock on the same H_PAGE_BUSY bit. 1801 * 1802 * Interrupts must also be off for the duration of the 1803 * mm_is_thread_local test and update, to prevent preempt running the 1804 * mm on another CPU (XXX: this may be racy vs kthread_use_mm). 1805 */ 1806 powerpc_local_irq_pmu_save(flags); 1807 1808 /* Is that local to this CPU ? */ 1809 if (mm_is_thread_local(mm)) 1810 update_flags |= HPTE_LOCAL_UPDATE; 1811 1812 /* Hash it in */ 1813 #ifdef CONFIG_PPC_64K_PAGES 1814 if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K) 1815 rc = __hash_page_64K(ea, access, vsid, ptep, trap, 1816 update_flags, ssize); 1817 else 1818 #endif /* CONFIG_PPC_64K_PAGES */ 1819 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags, 1820 ssize, subpage_protection(mm, ea)); 1821 1822 /* Dump some info in case of hash insertion failure, they should 1823 * never happen so it is really useful to know if/when they do 1824 */ 1825 if (rc == -1) 1826 hash_failure_debug(ea, access, vsid, trap, ssize, 1827 mm_ctx_user_psize(&mm->context), 1828 mm_ctx_user_psize(&mm->context), 1829 pte_val(*ptep)); 1830 1831 powerpc_local_irq_pmu_restore(flags); 1832 } 1833 1834 /* 1835 * This is called at the end of handling a user page fault, when the 1836 * fault has been handled by updating a PTE in the linux page tables. 1837 * We use it to preload an HPTE into the hash table corresponding to 1838 * the updated linux PTE. 1839 * 1840 * This must always be called with the pte lock held. 1841 */ 1842 void __update_mmu_cache(struct vm_area_struct *vma, unsigned long address, 1843 pte_t *ptep) 1844 { 1845 /* 1846 * We don't need to worry about _PAGE_PRESENT here because we are 1847 * called with either mm->page_table_lock held or ptl lock held 1848 */ 1849 unsigned long trap; 1850 bool is_exec; 1851 1852 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ 1853 if (!pte_young(*ptep) || address >= TASK_SIZE) 1854 return; 1855 1856 /* 1857 * We try to figure out if we are coming from an instruction 1858 * access fault and pass that down to __hash_page so we avoid 1859 * double-faulting on execution of fresh text. We have to test 1860 * for regs NULL since init will get here first thing at boot. 1861 * 1862 * We also avoid filling the hash if not coming from a fault. 1863 */ 1864 1865 trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL; 1866 switch (trap) { 1867 case 0x300: 1868 is_exec = false; 1869 break; 1870 case 0x400: 1871 is_exec = true; 1872 break; 1873 default: 1874 return; 1875 } 1876 1877 hash_preload(vma->vm_mm, ptep, address, is_exec, trap); 1878 } 1879 1880 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1881 static inline void tm_flush_hash_page(int local) 1882 { 1883 /* 1884 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a 1885 * page back to a block device w/PIO could pick up transactional data 1886 * (bad!) so we force an abort here. Before the sync the page will be 1887 * made read-only, which will flush_hash_page. BIG ISSUE here: if the 1888 * kernel uses a page from userspace without unmapping it first, it may 1889 * see the speculated version. 1890 */ 1891 if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 1892 MSR_TM_ACTIVE(current->thread.regs->msr)) { 1893 tm_enable(); 1894 tm_abort(TM_CAUSE_TLBI); 1895 } 1896 } 1897 #else 1898 static inline void tm_flush_hash_page(int local) 1899 { 1900 } 1901 #endif 1902 1903 /* 1904 * Return the global hash slot, corresponding to the given PTE, which contains 1905 * the HPTE. 1906 */ 1907 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift, 1908 int ssize, real_pte_t rpte, unsigned int subpg_index) 1909 { 1910 unsigned long hash, gslot, hidx; 1911 1912 hash = hpt_hash(vpn, shift, ssize); 1913 hidx = __rpte_to_hidx(rpte, subpg_index); 1914 if (hidx & _PTEIDX_SECONDARY) 1915 hash = ~hash; 1916 gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1917 gslot += hidx & _PTEIDX_GROUP_IX; 1918 return gslot; 1919 } 1920 1921 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize, 1922 unsigned long flags) 1923 { 1924 unsigned long index, shift, gslot; 1925 int local = flags & HPTE_LOCAL_UPDATE; 1926 1927 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn); 1928 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1929 gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index); 1930 DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot); 1931 /* 1932 * We use same base page size and actual psize, because we don't 1933 * use these functions for hugepage 1934 */ 1935 mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize, 1936 ssize, local); 1937 } pte_iterate_hashed_end(); 1938 1939 tm_flush_hash_page(local); 1940 } 1941 1942 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1943 void flush_hash_hugepage(unsigned long vsid, unsigned long addr, 1944 pmd_t *pmdp, unsigned int psize, int ssize, 1945 unsigned long flags) 1946 { 1947 int i, max_hpte_count, valid; 1948 unsigned long s_addr; 1949 unsigned char *hpte_slot_array; 1950 unsigned long hidx, shift, vpn, hash, slot; 1951 int local = flags & HPTE_LOCAL_UPDATE; 1952 1953 s_addr = addr & HPAGE_PMD_MASK; 1954 hpte_slot_array = get_hpte_slot_array(pmdp); 1955 /* 1956 * IF we try to do a HUGE PTE update after a withdraw is done. 1957 * we will find the below NULL. This happens when we do 1958 * split_huge_pmd 1959 */ 1960 if (!hpte_slot_array) 1961 return; 1962 1963 if (mmu_hash_ops.hugepage_invalidate) { 1964 mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array, 1965 psize, ssize, local); 1966 goto tm_abort; 1967 } 1968 /* 1969 * No bluk hpte removal support, invalidate each entry 1970 */ 1971 shift = mmu_psize_defs[psize].shift; 1972 max_hpte_count = HPAGE_PMD_SIZE >> shift; 1973 for (i = 0; i < max_hpte_count; i++) { 1974 /* 1975 * 8 bits per each hpte entries 1976 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit] 1977 */ 1978 valid = hpte_valid(hpte_slot_array, i); 1979 if (!valid) 1980 continue; 1981 hidx = hpte_hash_index(hpte_slot_array, i); 1982 1983 /* get the vpn */ 1984 addr = s_addr + (i * (1ul << shift)); 1985 vpn = hpt_vpn(addr, vsid, ssize); 1986 hash = hpt_hash(vpn, shift, ssize); 1987 if (hidx & _PTEIDX_SECONDARY) 1988 hash = ~hash; 1989 1990 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1991 slot += hidx & _PTEIDX_GROUP_IX; 1992 mmu_hash_ops.hpte_invalidate(slot, vpn, psize, 1993 MMU_PAGE_16M, ssize, local); 1994 } 1995 tm_abort: 1996 tm_flush_hash_page(local); 1997 } 1998 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1999 2000 void flush_hash_range(unsigned long number, int local) 2001 { 2002 if (mmu_hash_ops.flush_hash_range) 2003 mmu_hash_ops.flush_hash_range(number, local); 2004 else { 2005 int i; 2006 struct ppc64_tlb_batch *batch = 2007 this_cpu_ptr(&ppc64_tlb_batch); 2008 2009 for (i = 0; i < number; i++) 2010 flush_hash_page(batch->vpn[i], batch->pte[i], 2011 batch->psize, batch->ssize, local); 2012 } 2013 } 2014 2015 long hpte_insert_repeating(unsigned long hash, unsigned long vpn, 2016 unsigned long pa, unsigned long rflags, 2017 unsigned long vflags, int psize, int ssize) 2018 { 2019 unsigned long hpte_group; 2020 long slot; 2021 2022 repeat: 2023 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; 2024 2025 /* Insert into the hash table, primary slot */ 2026 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags, 2027 psize, psize, ssize); 2028 2029 /* Primary is full, try the secondary */ 2030 if (unlikely(slot == -1)) { 2031 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; 2032 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, 2033 vflags | HPTE_V_SECONDARY, 2034 psize, psize, ssize); 2035 if (slot == -1) { 2036 if (mftb() & 0x1) 2037 hpte_group = (hash & htab_hash_mask) * 2038 HPTES_PER_GROUP; 2039 2040 mmu_hash_ops.hpte_remove(hpte_group); 2041 goto repeat; 2042 } 2043 } 2044 2045 return slot; 2046 } 2047 2048 void hpt_clear_stress(void) 2049 { 2050 int cpu = raw_smp_processor_id(); 2051 int g; 2052 2053 for (g = 0; g < stress_nr_groups(); g++) { 2054 unsigned long last_group; 2055 last_group = stress_hpt_struct[cpu].last_group[g]; 2056 2057 if (last_group != -1UL) { 2058 int i; 2059 for (i = 0; i < HPTES_PER_GROUP; i++) { 2060 if (mmu_hash_ops.hpte_remove(last_group) == -1) 2061 break; 2062 } 2063 stress_hpt_struct[cpu].last_group[g] = -1; 2064 } 2065 } 2066 } 2067 2068 void hpt_do_stress(unsigned long ea, unsigned long hpte_group) 2069 { 2070 unsigned long last_group; 2071 int cpu = raw_smp_processor_id(); 2072 2073 last_group = stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1]; 2074 if (hpte_group == last_group) 2075 return; 2076 2077 if (last_group != -1UL) { 2078 int i; 2079 /* 2080 * Concurrent CPUs might be inserting into this group, so 2081 * give up after a number of iterations, to prevent a live 2082 * lock. 2083 */ 2084 for (i = 0; i < HPTES_PER_GROUP; i++) { 2085 if (mmu_hash_ops.hpte_remove(last_group) == -1) 2086 break; 2087 } 2088 stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1] = -1; 2089 } 2090 2091 if (ea >= PAGE_OFFSET) { 2092 /* 2093 * We would really like to prefetch to get the TLB loaded, then 2094 * remove the PTE before returning from fault interrupt, to 2095 * increase the hash fault rate. 2096 * 2097 * Unfortunately QEMU TCG does not model the TLB in a way that 2098 * makes this possible, and systemsim (mambo) emulator does not 2099 * bring in TLBs with prefetches (although loads/stores do 2100 * work for non-CI PTEs). 2101 * 2102 * So remember this PTE and clear it on the next hash fault. 2103 */ 2104 memmove(&stress_hpt_struct[cpu].last_group[1], 2105 &stress_hpt_struct[cpu].last_group[0], 2106 (stress_nr_groups() - 1) * sizeof(unsigned long)); 2107 stress_hpt_struct[cpu].last_group[0] = hpte_group; 2108 } 2109 } 2110 2111 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE) 2112 static DEFINE_RAW_SPINLOCK(linear_map_hash_lock); 2113 2114 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi) 2115 { 2116 unsigned long hash; 2117 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize); 2118 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize); 2119 unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY); 2120 long ret; 2121 2122 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize); 2123 2124 /* Don't create HPTE entries for bad address */ 2125 if (!vsid) 2126 return; 2127 2128 if (linear_map_hash_slots[lmi] & 0x80) 2129 return; 2130 2131 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode, 2132 HPTE_V_BOLTED, 2133 mmu_linear_psize, mmu_kernel_ssize); 2134 2135 BUG_ON (ret < 0); 2136 raw_spin_lock(&linear_map_hash_lock); 2137 BUG_ON(linear_map_hash_slots[lmi] & 0x80); 2138 linear_map_hash_slots[lmi] = ret | 0x80; 2139 raw_spin_unlock(&linear_map_hash_lock); 2140 } 2141 2142 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi) 2143 { 2144 unsigned long hash, hidx, slot; 2145 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize); 2146 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize); 2147 2148 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize); 2149 raw_spin_lock(&linear_map_hash_lock); 2150 if (!(linear_map_hash_slots[lmi] & 0x80)) { 2151 raw_spin_unlock(&linear_map_hash_lock); 2152 return; 2153 } 2154 hidx = linear_map_hash_slots[lmi] & 0x7f; 2155 linear_map_hash_slots[lmi] = 0; 2156 raw_spin_unlock(&linear_map_hash_lock); 2157 if (hidx & _PTEIDX_SECONDARY) 2158 hash = ~hash; 2159 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 2160 slot += hidx & _PTEIDX_GROUP_IX; 2161 mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize, 2162 mmu_linear_psize, 2163 mmu_kernel_ssize, 0); 2164 } 2165 2166 void hash__kernel_map_pages(struct page *page, int numpages, int enable) 2167 { 2168 unsigned long flags, vaddr, lmi; 2169 int i; 2170 2171 local_irq_save(flags); 2172 for (i = 0; i < numpages; i++, page++) { 2173 vaddr = (unsigned long)page_address(page); 2174 lmi = __pa(vaddr) >> PAGE_SHIFT; 2175 if (lmi >= linear_map_hash_count) 2176 continue; 2177 if (enable) 2178 kernel_map_linear_page(vaddr, lmi); 2179 else 2180 kernel_unmap_linear_page(vaddr, lmi); 2181 } 2182 local_irq_restore(flags); 2183 } 2184 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_KFENCE */ 2185 2186 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base, 2187 phys_addr_t first_memblock_size) 2188 { 2189 /* 2190 * We don't currently support the first MEMBLOCK not mapping 0 2191 * physical on those processors 2192 */ 2193 BUG_ON(first_memblock_base != 0); 2194 2195 /* 2196 * On virtualized systems the first entry is our RMA region aka VRMA, 2197 * non-virtualized 64-bit hash MMU systems don't have a limitation 2198 * on real mode access. 2199 * 2200 * For guests on platforms before POWER9, we clamp the it limit to 1G 2201 * to avoid some funky things such as RTAS bugs etc... 2202 * 2203 * On POWER9 we limit to 1TB in case the host erroneously told us that 2204 * the RMA was >1TB. Effective address bits 0:23 are treated as zero 2205 * (meaning the access is aliased to zero i.e. addr = addr % 1TB) 2206 * for virtual real mode addressing and so it doesn't make sense to 2207 * have an area larger than 1TB as it can't be addressed. 2208 */ 2209 if (!early_cpu_has_feature(CPU_FTR_HVMODE)) { 2210 ppc64_rma_size = first_memblock_size; 2211 if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) 2212 ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000); 2213 else 2214 ppc64_rma_size = min_t(u64, ppc64_rma_size, 2215 1UL << SID_SHIFT_1T); 2216 2217 /* Finally limit subsequent allocations */ 2218 memblock_set_current_limit(ppc64_rma_size); 2219 } else { 2220 ppc64_rma_size = ULONG_MAX; 2221 } 2222 } 2223 2224 #ifdef CONFIG_DEBUG_FS 2225 2226 static int hpt_order_get(void *data, u64 *val) 2227 { 2228 *val = ppc64_pft_size; 2229 return 0; 2230 } 2231 2232 static int hpt_order_set(void *data, u64 val) 2233 { 2234 int ret; 2235 2236 if (!mmu_hash_ops.resize_hpt) 2237 return -ENODEV; 2238 2239 cpus_read_lock(); 2240 ret = mmu_hash_ops.resize_hpt(val); 2241 cpus_read_unlock(); 2242 2243 return ret; 2244 } 2245 2246 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n"); 2247 2248 static int __init hash64_debugfs(void) 2249 { 2250 debugfs_create_file("hpt_order", 0600, arch_debugfs_dir, NULL, 2251 &fops_hpt_order); 2252 return 0; 2253 } 2254 machine_device_initcall(pseries, hash64_debugfs); 2255 #endif /* CONFIG_DEBUG_FS */ 2256 2257 void __init print_system_hash_info(void) 2258 { 2259 pr_info("ppc64_pft_size = 0x%llx\n", ppc64_pft_size); 2260 2261 if (htab_hash_mask) 2262 pr_info("htab_hash_mask = 0x%lx\n", htab_hash_mask); 2263 } 2264 2265 unsigned long arch_randomize_brk(struct mm_struct *mm) 2266 { 2267 /* 2268 * If we are using 1TB segments and we are allowed to randomise 2269 * the heap, we can put it above 1TB so it is backed by a 1TB 2270 * segment. Otherwise the heap will be in the bottom 1TB 2271 * which always uses 256MB segments and this may result in a 2272 * performance penalty. 2273 */ 2274 if (is_32bit_task()) 2275 return randomize_page(mm->brk, SZ_32M); 2276 else if (!radix_enabled() && mmu_highuser_ssize == MMU_SEGSIZE_1T) 2277 return randomize_page(max_t(unsigned long, mm->brk, SZ_1T), SZ_1G); 2278 else 2279 return randomize_page(mm->brk, SZ_1G); 2280 } 2281